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One, two and three soliton solutions are formally derived for a generalized version of the sixth-order
KdV equation (KdV6) by using the Cole-Hopf transform. A comparison with particular cases of recently
discovered completely integrable KdV6 equations are considered to illustrate the results obtained.
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INTRODUCTION

The general sixth-order KdV equation (KdV6) reads

Uy AU, +bU U +cu?U +du, +eu, + fuu, +guu, =0e=0. (1)

XXt

where a,b,c,d,e,f and { are arbitrary parameters.

This equation was derived by Karasu et al. (2008). They
found that there are four distinct cases of relations
between the parameters for Equation 1 to pass the
Painlevé test. Three of them were well-known integrable
systems: A bidirectional version of the Sawada-Kotera-
Caudrey-Dodd-Gibbon  equation and the Kaup-
Kupershmidt equation as well as the Drinfeld- Sokolov-
Hirota-Satsuma equation (Kupershmidt, 2008; Caudrey et
al.,, 1976; Ramani, 1981; Ramani et al., 2008; Kaup,
1980; Drinfeld and Sokolov, 1981). Further, Yao et al.
(2008a, b) showed that the KdV 6 equation is equivalent

to the Rosochatius deformation of KdV equation with
self-consistent sources. Gémez and Salas (2008) studied
some exact solutions for the particular case a =20,

b=40,c=120,d =0, e=1, f =8, g=4, thatis,

+8uu, +4uu, =0 (2)

xxxt XXt

U +20U U +40u U +120u’u, +Uu

XXXXXX XTOXXXX XX XXX
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by using the Cole-Hopf transformation and an improved
tanh-coth method. Wazwaz (2008) obtained multiple
soliton solutions and multiple singular soliton solutions of
Equation 2. Moreover, in a recent work (Zhang et al.,
2009), authors obtained new bilinear forms of the KdV 6
equation and the multi-soliton solutions were derived.

In this paper, we shall study the Kdv6 from a more
general point of view. The main purpose is to generalize
results in previous cited works. We always shall suppose
that the KdV6 Equation 1 satisfies the following condition
(Karasu et al., 2008):

c =12a+ 6b—360. ()

Observe that Equation 2 satisfies condition (3). We will
derive one, two and three soliton solutions under certain

additional restrictions over the coefficients a,b,d,e, f
and J . To this end, we first substitute

u(x,t) =exp(kx — wt) (4)

into the linear terms of the Equation 1, that is, we
consider the simplified equation

u +du, +eu

XXXXXX

=0 (5)

XXXt

to determine the dispersion relation between K and
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@ . This gives

do’ —ek’w+k® =0, (6)
from which
w—EtNe —4d \;e2—4dk3 if d=0 (7)
2d
and
o=2Kif d=0. ®)
e

ONE SOLITON SOLUTIONS TO KDV6
We seek solutions to Equation 1 in the Cole-Hopf form

o, fF(x,1) 9)

u(x,t) =R o)

for the special choice

f (x,t) =1+exp(kx— at), (10)

where R is some constant and @ is given by either Equations 7
or 8. Substituting Equation 9 to 10 into Equation 1 gives a

polynomial equation in the variable X=exp(kx—a)t).

Equating the coefficients of X i (i = 0,], 2,...) to zero, we obtain
an algebraic system in the variables @,b,d,e, f | g, w, k

and R. Solving it with the aid of a computer package such as
Mathematica 8 or Maple 15 gives us following solutions:

e e++/e’ —4d

2d

k%,

g:%[(a+b—36)e—2f J_r(60—a—b)\/e2—4dJ, R=1:

L) = kexp (kx—at) ' a
1+exp(kx—at)

w:ei\/e2—4d K3
2d

g= f%((af2b7180)e+10f)il(afGO)\/ez —4d

R—_ 0 .
2a+b—60

60k exp (kx— wt)

,where2a+b-60=0. (12)
(2a+b—60)(L+exp(kx—at))

u(x,t)=

g=(a+b-48)e-f Rr=1.

k exp (kx—at)
1+exp(kx—at)

u(x,t) = (13)

d=0,  _Kk g=-15(3a-b-240)e+5f), p—_ 099 .
® = ( Je-+5) 2a+b—60

60k exp (kx - )

, Where2a+b-60£0. (14)
(2a+b-60)(1+exp(kx-wt))

u(x,t) =

TWO SOLITON SOLUTIONS TO KDV6

We look for two-soliton solutions to Equation 1 in the form

o0, f(x,t)

u(x,t)=R o)

(15)

for the special choice

f(x,t) =1+exp(kx-at) +expkx- )+ Sexp((k +k,)x- (@ + o,)t), (16)

where R and S are some constants and the @ is given by

_ e++e?—4d

o, > k? if d=0 fori=12. an
and
1 5. .
o =—k>if d=0 fori=12. (18)
e

Inserting Equations 15 to 16 into Equation 1 gives a polynomial

equaton in the variables X :exp(klx—a)lt) and

Y =exp(k,X—m,t). Equating the coefficients of X'y
(i, j =0,:L 2,...) to zero yields an algebraic system in the

variables a,b,d,e,f , g, kl, kz' R and S. Solving it with
the aid of a computer gives the following solutions :

e++e?—4d — k3
P o, = pk?, 0= pKy

2
(_arlzep=24 . b-36 R_q g =(|<1—k2)2 |
P P (k1+k2)



f(xt) =1+exp(kx— pket) +exp (k,x — pk3t)

2
+Et1;t2;2 exp [k, +k, ) x— o[k + K3 Jt), (19)
1 2

0, (xt)

u(x,t) = D

e exve’ —4d

g o =pki, @, = pk;, a=30,

b=30, f =6e, g=6e, R=1,

(ky =k )° ek p+ekoky ook p—2k7 +kokg —2k3 |

(kg +ko ) ek p—ekoky p+ek3 p—2Kk7 —kyk —2k3 |

f(x,t) =1+exp(kx— pkit) +exp(k,x— pkjt) +

(k= ek p+ ek - 2K+~ 2K

exp((k +k,|x-p[k*+KC]t),  (20)
[k +k ek p-ek o+ ek p- 2K~k -2 bl

+k, )* (k? —k,k, +k?
u(x,t):axf(x’t),whered;«r&(k1 : ( L 2 22] 2
f(x1) (2K + Kk, +2K? |
_ 2kf +kokg+2kZ

ek kok+kE ]
¢l akf —akyk; +ak3 +36kyk |
2k?Z +k,k, +2k2

b=30, f =

(b-36){ K’ —kaky+K3 | S
T 2kP+kgkge2k? o REL T T

f(xt) =1+exp(kx— pkit ) +exp (k,x — pk3t) +

k —k, )
ﬁexp((kl+k2)x—p(kf+k;‘]t), 21)
1T Ky
u(x,t)= 6xf(x’t),whered = [k +ko) [kl =Kok +2k2]e2
f(X,t) (2k12+k2k1+2k22)

o =pk’, o,=pk’, a=30,
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p=exe*-4d2d, o = pk} o, = pkZ,
f =1(2a+b-60)e+a—2b+1205p,
g =-2(3a—b—-90)5p,

__ B0 sk =k, ) (k +k,)
Ro %S =k =k [k +h)

f(xt) =1+exp(kx—apkit)+exp(kx - akst)

2

k, —k
+Eki+kz;2 exp((k1+k2)x—a)o(kf+k23jt), 22)
u(x,t) = 00 6Xf(x’t),where 2a+b—-60+0.

2a+b—60 f(xt)

d=0, f =(a—12)e,
g=(b-36)e, S=(k —k,| (k +k,)’, R=1"

o =k, o =Ke,

f ()= f(x.t) =1+exp(kx—lekjt)+exp(k,x—lekjt)

+Etll;—t2;2exp((k1+k2)x—le[kf+k§‘]t), (23)

u(x,t) = —a?f()((xt,)t) .

d=0, o =k’e, ,=kle, a=30,b=30, f =6e,
g=6e, S=(k —k,)'(k +k,) R=1:

f(x.t) = f(x.t) =1+exp(kx—Tekft)+exp(k,x—lekst )
(ke =k, ) (ky K, ) exp( (K, + K, ) x~1e (k7 +K Jt),

(24)
u(x,t) = O f (1) .
f(x.1)
THREE SOLITON SOLUTIONS
The three-soliton solutions to Equation 1 have the form
o, T(xt
u(x,t)=R—= (x, ), (25)

f(x,1)
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for the special choice

f(x,t):1+iexp(kix—a)it)+ Z [%) exp((k +k)x- (@ + o, )t) +

wicje| K K;

k1‘k2 _kz_ka.ka_kl
k+k, k,+k; k+k

j exp((k +k, +k)X— (@ + @, +@)t).  (26)

where R is some constant and the @, are given by either

++Je? -
o=V =4 s i 420 fori=123,
2d
(27)

or
1. .. .

o ==k’if d=0 fori=12,3. (28)
e

Inserting Equations 25 to 26 into Equation 1 gives a polynomial

X =exp(kx—apt),
Y =exp(k,X—m,t) and Z =exp(K,Xx —ayt). Equating the

equation in the variables

coefficients of X'YIZ' (i, j,1=0,12,...) to zero yields an

algebraic system. Solving it with the aid of a computer gives
following solutions:

A 2_
o, = pk?, P=%,

g :% and R=1.

f =12e g+,

3 _ etye?-4d _ a+2aep+(b-60)(ep—2)
@, = pkl ’ p - 2d ' f - 5p
_ 2(90-3a+h) R=_
g= 5p and 'Y 2a4h-60

3

d=0, @ :k?i, f =(a—12)e, g =(b—36)e and

u(x,t) =

R=1.

COMPARISON OF OBTAINED RESULTS WITH
KNOWN ONES

Here, we show that previous results are a generalization
to some of the results in Wazwaz (2008) for one, two and
three soliton solutions.

First case
a=20,b=40,c=120,d=0,e=1, f =8, g=4.

Observe that these values satisfy the conditionsd =0,
g=(@a+b—-48e—-f, R=1 that correspond to
3

Equation 13 with @ = — =k>.
e
The Kdv6 reads

Uy +200U, +400 U +120u%u, +u  +8uu, +4uu =0 (29)

XUt

Equation 29 appears in Wazwaz (2008). From Equation
13, the following is a solution to Equation 29:

kexp(kx—k3t) (30)

ueet) = 1+exp(kx—k°t)

Figure 1 shows the graph of Equation 30.

On the other hand, the values a=20, b=40,
c=120, d =0, e=1, f =8, g =4 meet conditions
f =(a—12)e and g =(b—36)e which correspond to
Equation 23 with @, =k’ and @, =k,>. Thus, a two-
soliton solution to Equation 29 is

k,exp(kx—k:t)+k, exp(k,x —k5t) + L) exp((k, +k,)x— (k¥ + k)t )

Figure 2 shows the graph of Equation 31.

(ki+ky)’
2 (31)
3 3 (ky—ky) 3 3
1+exp(kx—kit)+exp(kx—kt) + e exp((k, +k,)x— (K} +K3)t)
Second case
A three-soliton solution to Equation 29 is given by
a=30, b=30, c=180, d=-%, e=1, f =6,

Equations 25 and 26 with R=1 and @ =k’ for

1=123.
The graph of Equations 25 to 26 is shown in Figure 3.

g=>0.
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=D

Y

Figure 1. Graph of solution of Equations 30 to 29 for K =1, =10 < X <10 and —2<t< 2.

1 > Observe also that Equations 15 to 20 is a two soliton
g :E[(a+b—36)e—2f -(60-a-b)ve —4dj (32) solution to Equation 33 with
that corresponds to Equation 11 with p= _1[51 3\/§j (36)
o=-1(5+35 k. 2
The KdV6 reads Third case

um+30uxuxm+30uxxum+180ufuxx—%un+um,+6uxux,+6utuxx:0. (33) a=18, b=36, c=72, d=-2, e=1, f=0,
g=0.

From Equation 11, we see that one soliton solution tom

Equation 33 is Observe that these values meet the condition

g =%[(a+b—36)e—2f ~(60-a—b)/e? —4d |

kexp(kx+%[ iSJg]kst)
3.

° . (34)
1+exp(kx+%[5¢3\/§]k t)

u(x,t) =

that corresponds to Equation 11 with



e_ \jez _4d 3 1 3
o=———k’==k".
2d 2
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0

1N

Figure 2. Graph of solution of Equations 31 to 29 for kK, =—2, k, =2.1, 2<X<2 and 2<t<2.

The Kdvé6 reads f_atl2ep-24. g _b=36  hich correspond  to

p p
2
Upyoooec 18Uy U +36U,, U, + 720U, — 22U, +U, =0, (37) Equation 19. We conclude that Equation 19 is a two-
soliton solution to Equation 37 with p =10r p =-12.
From Equation 11, it is clear that the following is a one-

soliton solution to Equation 37: Finally, we observed that the values a=18,

b =36,

kexp[kx—%k%] (38) c=72, d=-2, e=1, f=0, g=0 satisfy the
u(xt) = TR conditons, f =12e—g+&28  g=03%  hjch
3 P p
1+exp(kx——k t) . . 3
2 correspond to Equations 25 to 26 with @ = pk;
Now, it is easy to see that the values meet conditions eel-ad _

1
(i1=1,2,3), P=3 —Eand R=1



DISCUSSION

We obtained solutions to a generalized version of KdV6
Equation 1 for the special choice Equation 3. This
condition is necessary for the Equation 1 to pass the
Painlevé test for integrability (Karasu et al., 2008). Our

Figure 3. A three-soliton solution to Equation 29 for k1 =-1, k2 =—

solutions for the particular case of the KdV6 given by
Equation 2. The same results were obtained (Wazwaz,
2008) by using the simplified Hirota’s method. The
advantage of the Cole-Hopf transformation Equation 15
over Hirota’s method is that, we do not need to put the
equation in its bilinear form which requires the use of
Hirota’s bilinear operators and a great amount of
complicated algebraic calculations. Bilinear form to
Equation 2 is not easily obtained. On the other hand, the
Cole-Hopf transformation gives exact solutions to many
nonlinear partial differential equations. The difference
between the method we use and Hirota’s bilinear method
is that, this last method is applied to bilinear form.

results were obtained by using the Cole-Hopf
transformation Equation 15. There exists another useful
method to obtain solutions to nonlinear equations. This is
the Hirota’s bilinear method. This method was applied in

a recent work (Zhang et al., 2009) to obtain N -soliton
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1N

15, k,=2.6, -10<x<10 and -1.5<t<15.

However, both methods use the same choice for the
function f(x,t) given by Equations 10, 16 and 26.

Previously, we showed that the known solutions in
Wazwaz (2008) and Zhang (2009) are covered by the
solutions we obtained in the case of one- and two-
solitons solutions. The same is valid for three-soliton
solutions.

On the other hand, we obtained one, two and three-
soliton solutions to a generalized version of the
completely integrable KdV6 Equation 2. This more
general equation is given by Equation 1 with:



3

d=0, w,:k;‘, f=(@-12e, g¢g=(b-36e and

c=12a+6b—360. (38)

Conclusion

We have derived one, two and three-soliton solutions for
a generalized KdV6 equation with the aid of symbolic
computation. Some of the results in this work are a
generalization of recent results. We also may obtain
similar one, two and three singular soliton solutions. We
believe that the generalized version Equation 1 of the
KdV6 subject to Equation 38 is completely integrable.
Finally, we think that some of the results in this work are
760 Int. J. Phys. Sci.

new in the open literature. Other results concerning Kdv6é
equation may be found in Salas and Gomez (2010a, b),
Salas (2010a) and Salas (2010b).
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