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The availability of genome sequences for some of the most

devastating eukaryotic plant pathogens has led a revolution in our

understanding of how these parasites cause disease, and how their

hosts respond to invasion [1–7]. One of the most significant

discoveries from the genome sequences of plant pathogenic

oomycetes is the plethora of putative translocated effector proteins

these organisms encode. Many effector genes display signatures of

rapid evolution and tend to reside in dynamic regions of the

pathogen genomes. Once inside the host, effector proteins

modulate cellular processes, mainly suppressing plant immunity

[8–12]. Effectors can also be recognized directly or indirectly by

the plant immune system through the action of disease resistance

(R) proteins [13,14].

Plant Pathogenic Oomycetes Express RXLR
Effector Proteins

One expanded family of effector proteins is defined by the

sequence RXLR (Arg-X-Leu-Arg, where X is any amino acid),

which in some cases is followed by an acidic-rich dEER motif

(Asp-Glu-Glu-Arg) (Figure 1). The RXLR motif was originally

identified by comparing sequences of effectors from Hyaloper-

onospora arabidopsidis, Phytophthora infestans, and Phytophthora sojae

[15]. It has since been shown that the RXLR motif is important

for translocation of oomycete effectors into plant cells [16,17]. It

is widely accepted that RXLR effectors are modular proteins

comprising an N-terminal secretion signal, followed by the

RXLR region, and a C-terminal ‘‘effector’’ domain that

encodes the biochemical activity of the protein when expressed

directly in plant cells [18,19]. A large family of Phytophthora

RXLR effectors contain conserved sequence motifs (W, Y, and

L) in their C-terminal domains that often form tandem repeats

[2,20].

Structural Biology Uncovers an Effector Fold
Conserved across Oomycete Species

Our laboratories have employed structural biology to investigate

the molecular basis of RXLR effector function. A total of four

structures have recently been published, those of AVR3a4 and

AVR3a11 (paralogues from Phytophthora capsici), PexRD2 (from

P. infestans), and ATR1 (from H. arabidopsidis) [21–23]. Each

publication focused on a different aspect of structure/function

analysis including phospholipid binding, protein folding, and

effector recognition by the host.

The studies of Boutemy et al. and Chou et al. independently

described the structural homology of AVR3a11 and a domain of

ATR1, respectively, to the cyanobacterial four-helix bundle

protein KaiA [24]. This strongly implied they would also be

structurally related to each other. This is unexpected, as these

Phytophthora and H. arabidopsidis effectors do not share any

significant sequence similarity: the conservation was only

apparent after the structures were determined and compared.

Further, the structural conservation across different oomycete

species was particularly intriguing, as studies with the Phytophthora

proteins AVR3a11 and PexRD2 [21] had suggested a three-helix

bundle fold could be the basic structural unit adopted by the

repeating W-Y motifs found in .520 Phytophthora RXLR effectors

(44% of annotated RXLR effectors in P. infestans, Phytophthora

ramorum, and P. sojae). Using Hidden Markov Model (HMM)-

based sequence searches, these motifs had also been detected in

H. arabidopsidis RXLR effector proteins, with 35 out of 134 (26%)

containing this fold (HMM score.0), including ATR1 with a low

confidence score [21]. Boutemy et al. named this conserved

structural unit the ‘‘WY-domain’’ and it comprises three a-helices

connected by variable loop regions. The minimal three-helix

WY-domain is found in PexRD2, but Avr3a4, Avr3a11, and

ATR1 all have an N-terminal helix as an extension to this unit

that forms a four-helix bundle. Further analysis of the ATR1

structure revealed that not only residues 139–210 (the domain

originally identified as having a KaiA-like fold), but also 226–308

comprised a WY-domain four-helix bundle (ATR1 also has a fifth

helix that creates a five-helix repeat) [22]. This tandem repeat

could not be detected from amino acid sequence comparison, and

was only discovered after the ATR1 structure was determined

[22]. The structure of ATR1 shows how tandem WY-domains

encoded by very divergent amino acid sequences are linked in

three-dimensional space. This is significant, as it provides insight

into how WY-domains may be arranged in other WY motif

repeat RXLR effectors.
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The Conserved Fold Is Based on a ‘‘Flexible’’
Hydrophobic Core

The availability of these four oomycete RXLR effector domain

structures, from three different pathogens, allows us to present a

detailed analysis of the WY-domain fold. Structural overlays of the

conserved WY-domains from each of the effectors are shown in

Figure 1, and the root mean square deviations derived from the

overlays are given in Table 1 (obtained using Secondary Structure

Matching (SSM) algorithms [25]). What are the features of this

fold that allow structural conservation with little, if any,

identifiable pair-wise sequence identity? In the HMM models,

the conserved motif is largely defined by residues such as the W

and Y (for Trp and Tyr) that, in each structure, are buried in the

hydrophobic core of the helical bundle (other hydrophobic

residues that contribute to the core are also prevalent in the

HMM). Critically, the identity of these residues can change,

without affecting the fold, as long as their hydrophobic potential is

maintained. For example, in the WY-domain structures available,

the W and Y positions are Trp-Tyr (AVR3a4 and AVR3a11),

Met-Tyr (PexRD2), and Trp-Cys/Tyr-Tyr (for the two WY-

domains of ATR1). Further, there is evidence from the existing

structures that solvent remains excluded from the hydrophobic

core when mutations from bulkier to smaller side chains occurs

Figure 1. Structural conservation of the WY-domain fold in RXLR effectors from P. infestans, P. capsici, and H. arabidopsidis.
(a) Schematic representation (to scale) of the domain architectures of AVR3a4, AVR3a11, PexRD2, and ATR1 showing the positions of the WY-domains
used in the structural overlays. SP = signal peptide region, RXLR = RXLR/dEER region, WY = WY-domain regions (schematics are aligned at the end of
the RXLR/dEER region). (b) Structure-based sequence alignment showing the positions of the conserved helices in each WY-domain. (c) Stereo view
of an overlay comprising the WY-domains from AVR3a11, ATR1-WY1, ATR1-WY2, PexRD2, and AVR3a4 (a2–a4 span the WY-domain, a1 is the N-
terminal helix present in all but PexRD2). The helices of the structures are colored in grades of blue through to cyan. Connecting regions are in gray
(all structures). (d) Stereo view (orientation as in (c)) showing the positions of important residues within the hydrophobic core of the WY-domain
(red = the W position, blue = the Y position, in green are two positions contributed from a3). Only the conserved helices are shown in cartoon
representation (connecting regions removed for clarity).
doi:10.1371/journal.ppat.1002400.g001
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through complementary mutations at other positions that fill the

available space. The ability of this structural fold to accommodate

the rapid evolution of protein sequence explains why the WY-

domain was not identifiable in pair-wise sequence comparisons.

The WY-Domain Fold Is Restricted to the
Peronosporales

We believe that the conservation of this ‘‘flexible’’ hydrophobic

core fold indicates that a large family of plant pathogenic

oomycete effectors may have been derived from a common

ancestor. Intriguingly, this effector family has rapidly diverged to

gain new and/or adapt existing virulence functions and/or evade

detection by plant immune systems. New or modified effector

functions may be derived from surface point mutations or indels in

the connecting regions between helices (including domain

duplication). To test the argument for a common ancestor, we

extended previous analyses and searched the proteomes of various

organisms using the HMM for the WY-domain, as described in

[21]. Firstly, we searched the proteomes of 47 different eukaryotes

[26]. These searches included diverse species, from fungi through

plants and animals. We found no evidence for the presence of the

WY-domain signature beyond the level of our previously described

false-positive rate [21]. We then narrowed our search and

screened the available proteomes of phylogenetically diverse

oomycetes: Saprolegnia parasitica [27], Albugo labachii [28], and

Pythium ultimum [29], adding to the Phytophthora and Hyaloperonospora

proteomes searched previously [21] (Figure 2). These searches

show that, with the data available, the WY-domain is limited to a

single clade within the oomycetes, the Peronosporales, that are

exclusively plant pathogens [30]. This suggests that the WY-

domain may be an innovation within the Peronosporales. The

WY-domain is also correlated with the emergence of the RXLR

motif in the Peronosporales, and is linked with the evolution of

haustoria as a possible interface for effector delivery in this lineage

[19,29]. Of the seven oomycetes whose genome sequences are

available, all of the Peronosporales (four species) have RXLRs and

WY-domains (Figure 2); the non-Peronosporales (three species)

encode essentially no RXLR or WY-domain proteins, and those

few identified may be false positives given that they are not

enriched in the secretome (as in the Peronosporales). It is also

notable that oomycetes with expansions of their RXLR effector

repertoire (P. infestans.P. sojae.P. ramorum.H. arabidopsidis) also

encode a significantly higher percentage of WY-domains in their

secretomes (P. infestans.P. ramorum.P. sojae.H. arabidopsidis,

Figure 2). Further, as WY-domains are found in both Phytophthora

(hemibiotrophs) and Hyaloperonospora (obligate biotrophs), but not

P. ultimum, it appears that the WY-domain emerged with biotrophy

in this lineage along with the evolution of haustoria and RXLR

Table 1. Root mean square deviations (based on Ca atoms)
for overlays of the published RXLR effector structures (only
the A-chains of ATR1 and PexRD2 were considered).

Effector ATR1-WY1 ATR1-WY2 AVR3a4 PexRD2

AVR3a11 1.72 Å 1.86 Å 0.85 Å 0.73 Å

ATR1-WY1 2.12 Å 1.75 Å 1.30 Å

ATR1-WY2 1.83 Å 0.94 Å

AVR3a4 0.93 Å

Residues used in the overlays are those within the conserved helices of each
structure as revealed by pair-wise comparisons.
doi:10.1371/journal.ppat.1002400.t001

Figure 2. Phylogenetic relationship and presence of the WY-domain HMM signature in sequenced oomycete genomes. Schematic
representation of the phylogenetic relationship among seven oomycetes for which genome sequences are available and the distribution of WY-
domain in their extracellular and cytoplasmic proteomes (as a percentage of the total). Hpa = H. arabidopsidis; Pi = P. infestans; Ps = P. sojae; Pr = P.
ramorum; Pyu = P. ultimum; Al = A. labachii; Sp = S. parasitica.
doi:10.1371/journal.ppat.1002400.g002
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effectors [19,31]. Whilst arguing in favour of a common ancestor

of the WY-domain within the Peronosporales, we acknowledge

that alternative interpretations (including convergent evolution to

a fold adapted for stability in the plant cell and/or well-suited to a

particular function, such as secretion and/or translocation) remain

possible.

Some of the most notorious and agriculturally important

pathogenic oomycetes contain RXLR:WY-domain effectors,

suggesting that this structure has been critical for the success of

these pathogens. This raises questions such as, why has this fold

been preserved and what can it tell us about the function of these

proteins? How can we use this knowledge to design novel disease

management strategies? Future studies will help define the roles of

the WY-domain fold in the virulence mechanisms of these

pathogens, in particular how it engages with plant cell targets,

and will help to unravel the extent of structural diversity in RXLR

effectors. Our initial studies have laid the foundation for new,

exciting discoveries addressing the function of oomycete effectors.
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