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NUMERICAL LINEAR ALGEBRA
FOR NONLINEAR MICROWAVE IMAGING  *

FABIO DI BENEDETTO!, CLAUDIO ESTATICO¥, JAMES G. NAGY}, AND MATTEO PASTORINGY

Abstract. A nonlinear inverse scattering problem arising in microevawmaging is analyzed and numerically
solved. In particular, the dielectric properties of an imugeneous object (i.e., the image to restore) are retrieved
by means of its scattered microwave electromagnetic fiedd ¢he input data) in a tomographic arrangement. From
a theoretical point of view, the model gives rise to a nordmiategral equation, which is solved by a deterministic
and regularizing inexact Gauss-Newton method. At eachdftéipe method, matrix strategies of numerical linear
algebra are considered in order to reduce the computatitma and memory) load for solving the obtained large
and structured linear systems. These strategies invabak lecompositions, splitting and regularization, andesup
resolution techniques. Some numerical results are givegravtihe proposed algorithm is applied to recover high
resolution images of the scatterers.

Key words. inverse scattering, microwave imaging, inexact-Newtorthoes, block decomposition, regulariza-
tion.
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1. Introduction. Nonlinear inverse problems, which arise in many importgmiaa-
tions, present significant mathematical and computaticmallenges10]. For example, it is
often difficult to determine existence and uniqueness ofrelydical solution in a theoret-
ical setting. But even in cases where these properties awrknand a particular solution
is sought, solving the problem in a discrete setting may Istilvery difficult. Indeed, nu-
merically solving a nonlinear inverse problem generallyuiees solving a computationally
expensive optimization problem involving very large-schhear systems. In addition, be-
cause the underlying continuous problem is ill-posed,tamis are typically very sensitive
to noise in the measured data. Thus, special considerai@nseeded in developing and
implementing algorithms to solve these problems.

In this paper we develop an efficient approach to computecpate solutions of a
nonlinear image reconstruction problem from inverse scatj [7, 20]. Specifically, we
consider the problem of reconstructing the internal diele@roperties of an object based
on knowledge of the external scattered electric field, wiéchenerated by the interaction
between the object and a known incident electromagneticomave. Applications that use
this imaging technique range from civil and industrial eregiring (nondestructive testing and
material characterization) to detection of buried objects medical diagnostics.

In order to restore the unknown object, the external seadtefectric field must be eval-
uated from known incident electromagnetic waves. Theimiahip between the scattered
electric field and the incident electromagnetic waves is etedl by an integral equation.
Because the problem is highly underdetermined, a singléént electromagnetic wave is
insufficient to reconstruct an accurate approximation efdhject. It is therefore necessary
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to increase information by using several different incidelectromagnetic waves. Another
complication is that the scattered electric field insidedbject also needs to be approximated,
since it is required to invert the above integral operatosdme basic cases, a simplified ap-
proximation of the internal scattered field can be used;se806rn approximations for weak
scatterers inq]. We, however, do not use this assumption, but instead den#iie internal
scattered field as an additional unknown to recover. Ourgsegp scheme is therefore very
general, and can be used, for example, in applications whemgsscatterers are introduced.

The approach we use to solve the resulting nonlinear imaggnsetruction problem is
based on Newton linearization techniques to deal with thdimearity, and regularization
techniques to deal with the ill-posedneSk [The focus of this paper is on the use of numerical
linear algebra tools to exploit structure and sparsity efifige-scale linear systems that need
to be solved in the optimization algorithm. To further redtice complexity of the problem,
we propose to recover first a number of low resolution appnexions of the output object
using a coarse discretization and, after that, to recocistrgingle output image with higher
resolution. The low resolution images will be obtained icls@a way that they represent
reconstructions of the object after it has been shifted typmel displacements. Super-
resolution methods3] 6, 8, 11, 17, 19, 21] will then be used to fuse the different information
available in the low resolution images to obtain the higloheson image.

To reconstruct each of the low resolution images, we propmase a regularizing three-
level iterative algorithm, where a Gauss-Newton lineagzscheme (the first level, or out-
ermost iterative method) is inexactly solved at each itenaby an iterative block splitting
method (this is the second level, or the first inner itergtidime block iteration involves a se-
guence of smaller linear systems, which are then solved lagia ke.g., Landweber) iterative
regularization method (this is the third level, or the irmest iteration).

The paper is outlined as follows. In Sectigiwe describe the mathematical model of
the inverse scattering problem from microwave imaging dredstructure of the block ma-
trix arising in our linearization approach. The three-léterative algorithm and appropriate
numerical linear algebra tools to solve the resulting madr optimization problem, and to
do the super-resolution post-processing, are develop&a&dtion3. Numerical results are
reported in SectioA.

2. Mathematical formulation. Although the mathematical model for the inverse scat-
tering problem can be introduced in a general three-dinoeassetting, to simplify notation,
we focus on the two-dimensional case. From a theoreticaltpdiview, the mathemati-
cal model is related to the tomographic configuration forieging the cross section of an
“infinite” cylindrical object.

2.1. The mathematical model.Let us consider a cylindrical scatterer embedded in a
linear and homogeneous medium (the background), whoss seasion is strictly contained
in a known, bounded, and simply connected plane of investigg? ¢ R2. The dielec-
tric properties of2 are described by the inhomogeneous contrast fungtionQ — C,
x(r) = e(r)/ep — 1, where the relative refractive indexr)/¢, is the ratio between the
dielectric permittivitye(r) at the pointr € 2 (the position coordinate), and the constant
dielectric permittivitye, of the background. Since the cross section of the scattei@ri-
tained in(2, the contrast functioy has compact support, which we assume is endowed with
Lipschitz continuous smooth boundary.

A known incident fieldu’ interacts with the scatterer, leading to a total fieldon R?
which is the sum of the incident field’ and the scattered field*; that is,u = u® 4 u°.
Thedirect (or forward) scattering problem is to compute the total fielrom the dielectric
properties of the domaifl. Theinversescattering problem is to retrieve the contrast function
x, from measurements of the total fieldin a region of observatioR™) (usually disjoint
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from Q). In addition, the total electric field in the regionf2 is unknown, since that region is
inaccessible to measurements.

Assuming no magnetic media are involved, the classicaédfitial model for the di-
rect scattering problem with Sommerfeld radiation cowoditat infinity [7] has the following
equivalent Lippmann-Schwinger integral formulation

u(r) — / G (r,7) u(7) x(7) dF = u'(r), Vr € R?, (2.1)
Q
whereG(r,7) = —kf%HéQ)(kar — 7||) is the Green’s function for the two-dimensional
Helmholtz equationHéQ) is a zeroth order, second kind Hankel functigh,= —1, and

ky = w,/e o is the background wave number for the magnetic permeabilitie vacuum

o, with angular frequency. We remark that the integral operator on the left side isinealr

with respect toy, since the total field:, generated by the interaction between the scatterer
and the incident field, depends gn

Concerning the direct problem with fixed scattering potnti if the incident fieldw’
is a plane electromagnetic wavé&(x) = exp(—jkyz - d) onQ, whered € S? = {z € R? :
|lz|| = 1} is the incident direction, then a solutienc L?(R?) satisfying @.1) exists and is
unique for all wavenumbers, > 0 and all incident directiong € S? [7, 18§].

For the inverse scattering problem, a solutiois unique whenever it exists, but the prob-
lem is severely ill-posed; se@][for a comprehensive discussion of the topic. However, the
integral formulation2.1) cannot be used straightforwardly to retrieve the scattgpotential
X, since the total field: can only be measured in the observation dorfiaif). We therefore
must consider its restriction gn(*)

G(r, 7) u(F) x(7) dF = u* (). vr e QD 22)
Q

where the scattered field = v — u* on QM) represents the data we collect for the inverse
problem.

Recall that, in the above integrand, the total electric field the region(2 is unknown.
For this reason, together witR.¢), we consider in our scheme the following integral Fred-
holm operator of the second type

u(r) — / G(r,7) u(7) x () dF = u'(r), vr € Q, (2.3)
Q

which represents the implicit relationship between thenamkn total and the known inci-
dent electric fields. The idea is then to use the coupled liategjuations.2) and @.3) to
simultaneously compute andu on €2, by means of a fixed point iterative scheme.

Unfortunately, the pair of nonlinear integral equatioda)—(2.3 is not enough to solve
the inverse problem. Indeed, the classical theory of irvecattering requires that the scat-
tered data be known for all wavenumbégs> 0 and all incident directiong € S? in order
to solve the inverse problem. In a real setting, we can useta §iat of P different configu-
rations of the source (incident field), which allows us tdectl more information about the
scattered field in different radiation conditions, and,lie €nd, more information about the
scatter. The different source configurations are attailyadabying

(i) the position of the whole apparatus, including both tih&iteng antenna and the

co-moving receiving detectors, and
(ii) the frequency of the incident microwaves.
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Let u; denote the incident electric field produced by flle source, and let, be the
resulting total electric field measured in a reg(@ﬁw), which is disjoint fromQ2. The aim of
the inverse scattering problemis thus to retrieve a gootbaqopation of the contrast function
x on (2, given knowledge of all the electric fields, € LQ(QI()M)) ,p=1,...,P.

The integral equation2(2) and @.3) can be regarded as a system where the unknowns
arey and{u,},—1,...p in Q, while the known terms aréu;,},—:, ... p in  (recall that the
incident fields are known everywhere) and the scatteredirEiéi«alds{u;}pzl p, With uy
in Q,(,M), forp=1,...,P.

By introducing the nonlinear operatof : [, L2(Q) — (IT_, L2(2")) x

(117, L2() .

.....

Jo G(r, 7) ur (7) x(7) dF

Joy G 7) up() x(7) dF
A(uy,...,up, x)(r) = , (2.4)
ui(r) — [o G(r,7) uy (7) x(7) d

up(r) — [, G(r,7) up(F) X(7) dF

and the known vectdr € (]_[5:1 228 x ([T5., L2(Q)

p=1
b:(uf,...,usp,ui,...,uﬁp) , (2.5)

the inverse scattering problem can be formally stated a$ollmving functional equation:
find y € L*(Q) andu, € L*(Q), p=1,..., P, such that

A(uy,...,up, x) =b. (2.6)

As is well known, the nonlinear inverse scattering probleniliposed, and a regular-
ization strategy is needed to stabilize the inversion pecén this paper, we use a suitably
regularized inexact-Newton iterative algorithm.

2.2. The Fréchet Derivative for the Newton schemes.Let the Hilbert spaces
X = Hfjll L?(Q) andY = (]_[5:1 L2 x (Hf::l L?(Q)) denote the domain and
codomain of the operatot defined in 2.4). The Newton methods require the computation
of the Fréchet derivative ofl. We recall that the Fréchet derivative of the operatat the

pointx = (u1,...,up, x) € X is the linear operatad), : X — Y such that
Az + h) = A(z) + ALh + o(||h|]). (2.7)

Concerning the existence of such a derivative, since tlegiat formulation2.1) is Fréchet
differentiable [L6], both (2.2) and @.3) are Fréchet differentiable; therefore the operatas
Fréchet differentiable, too.

By using this notation, the classical Newton scheme for thr@inear equationi(z) = b
is formally the following: letzy € X be an appropriate initial guess, and compute, for
k =0,1,2,..., the iterative steps;, = xx — (A}, )" '(A(zx) — b), where the Fréchet
derivativeA, is required to be invertible. Since in inverse problems tiézket derivative is
usually a non-invertible and ill-posed operator, the prasisimple classical scheme cannot
be used in real applications. In practice, some regulaoizéchniques must be introduced in
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order to regularize the solution of each Newton step. Thig tiee iterative scheme becomes
the following, namely the inexact Gauss-Newton method,

Te41 = Tk — ¢(/€a A;,TA;,C) AQ:(A(Ik) - b)a (2-8)

wherex denotes the adjoint operatai(k, \) : N x [0, +00) — R is a piecewise continuous
function, and the evaluation af on the operator in24.8) has the classical meaning in the
context of spectral theor@]. Formally, the role ofs consists of regularizing the computation
of the least squares soluti¢d/,* A/, )~ A.*(A(xy) — b) of the Newton step.

The simplest method belonging to the general scheh& i6 the Landweber algorithm
for nonlinear problems, where the regularizing schenea constant function. In particular,
é(k,\) = 7 > 0, wherer depends on the spectral normA4f* A’ in a neighborhood of the
solution, leading tap(k, A} * A}, ) = 7A,* A, [14]. The widely used Levenberg-Marquardt
method belongs to the clas®.), too, since heres(k,\) = (X + i)~ !, whereu, > 0
is a regularization parameter, leadinggtt:, A,* A/, ) = (A,* Al + uI)~" (notice that
the method is Gauss-Newton with Tikhonov regularizationttos linearization). Another
instance of 2.8) is the Gauss-Newton method with truncated singular vageohposition,
whereg(k, \) = A\71, for A > T}, andé(k, \) = 0 otherwise; in this case the regularization
parameter is the truncation threshdld,

An important set of methods of typ&.9) is the class of Gauss-Newton methods with
iterative inner regularizatior?3], where the functior is evaluated by means of an iterative
formula. This is the case of the inexact Gauss-Newton metieeh the inner regularization
is performed by means afLandweber iterations. In this case, the regularizing seheis a
polynomial approximation of the inverse function. In peutar,¢(k, \) = Py(\), whered =
d(k) € NandP, is thed-degree polynomiaP;(\) = erZO(l —TA)t = ﬂ [5].

The purpose of the parameter> 0 is to control and to accelerate the convergence
of the iterates along the different components. In paricutonsider the eigenspace re-
lated to a fixed eigenvalug of A,* A’ : after the application of the regularizing operator
p(k, ALr Al ), the vectorA!*(A(xz,) — b) is multiplied along that component b, ().
Thus, in the computation of the (generalized) solutiaf A),* A) 6 = Al *(A(xy) —b), the
relative error in the same component is

I—(1 -7 1 1 a4l

for a detailed discussion, seg Equations (2.10)—(2.11)]). This means that the convargen
of the iterations toward the solutighis slow along the components for which the value of
A is close to0 or 271, whereas it is the fastest one wheiis close tor 1. Therefore, the
convergence s always slow in the space wheigesmall, which is usually the space corrupted
by noise in inverse problems, but an appropriate choice @fiables us to “select” the most
important subspace of components to be first resolved in émellveber iterative resolution
process. For instance, the simple choice= [|A,* A’ ||;" provides the fast convergence
of the solution in the subspace related to the largest eaees of A" A’ , which usually
contains much information and is less sensitive to the nmisthe data.

From a computational point of view, sind@&(\) = Py_1(A\) + 7(1 — AP;_1(}\)), the
evaluation ofp(k, A7x A}, ) A" (A(xr) — b) in the second term of(8) is efficiently com-
puted by the following iterative procedure:

fo=0, fs+1:fs+TA/z:((A(xk)_b)_A/zka)v s=0,1,...,d

For nonlinear inverse problems it is very important thatisohs of the inner linear sys-
tem not be corrupted by noise; it is better to compute a soiuthiat is over-regularized than
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one that is under-regularized. lterative methods that eqesslowly, such as Landweber,
have better noise filtering properties and do not require@sige a stopping criteria as itera-
tive methods that converge very quickly, such as conjugat@ignts [L3]. It is for this reason
that Landweber is often chosen to solve the inner linearesystthat arise from nonlinear
inverse problems. We remark that a higher degted the polynomialP,()\) results in a
better approximation of the inverse functian!, and thus reduces the regularization effects
of the Landweber inner iteration. In this respect, it is iagting to notice that it/ = 0,
this method corresponds to the classical Landweber altgoifior nonlinear problems. In this
case, the regularizing schemés a constant function, which can be considered as the stowes
and most regularizing algorithm among all the Gauss-Newtethods with Landweber inner
regularization.

By means of simple algebraic computations based on its tlefir{2.7), the computation
of the Fréchet derivative of the operatérat the pointc = (u1,...,up, x) gives rise to the
following sparse and structured matrix

[ Al 0 ... 0 AN
M ., : M
o Al o AN
0 ;
- - (M) (M)
A; = O ’ ’ AXaP AuaP s (2.9)
I—AX 0 —Au71
0 I-A, " : —Auso
: g g 0 ;
.0 0 I-A, —Aup

where {A"DY, 1 o 1AM b {Auptpr..p, and A, are the following linear
operators:

AM h(r /Grr ) x(F) dF, re QM
M)h /Grr up(7) h(F) dF, reQéM)7
= [ G 7)) req,
r) = /QG(T, 7) h(F) x(7) dF, re .

The notation of the blocks of the Fréchet derivatid/erecalls the dependence on the param-
eters in the associated integral kernels.

As an example of computation, for the partial derivativethia first row of A/, we have
to linearize the first component of the operatbin (2.4) by considering an argument+ h,
wherez = (uq,...,up, x) andh = (hi, ha, ..., hp, hy):

/Grr (w1 + h1)(7) (X + hy) F)df—/QG(r,f)ul(F)X(F)df
:/G(nf)hl(f)x(f)df—i-/G(T,F)ul(F)hX(f)dF—i-/G(r,ﬁ)hl(F)hX(f)df,
Q Q Q
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forr € Q™). Since [, G(r,7) hi(7) hy(7) di = O(||h||*), the first two integral operators
on the right-hand side represent the Fréchet derivatitkeomentioned component, applied
to the variables contained . Therefore there is no dependenceloy). .., hp whereas

these two terms are respectively the matrix bloﬂ@%) (derivative with respect ta;) and
Afﬁ) (derivative with respect tg) in the first row of ¢.9) [4].

2.3. Computation of the operators. It is important to notice thatin our iterative solving
scheme, which is based on the inexact-Newton metB@®) &nd on the linearizatior2(9), it
is required to compute many integrals involving the Gre@mstionG. These integrals arise
in the forward operatod and in the Fréchet derivativ&’,, and all are of the form

Hﬂ:LG@ﬂmUmUd

where both the functiong, andg, are known. In the computation of electromagnetic fields
for applications in many areas as well as in our algorithraséhintegrals are well approxi-
mated by using the so-called moment methd8.[ In particular, each integral(r) is ap-
proximated by considering a partitioning2,}s—1,... s of the integration domai (i.e.,
Q=US_,Q, andQ,, NQ,, = P if s; # s5) so that

/GTTgl 7) g2 (7 Z/Grrgl ) g2(F) dF.

If a partitioning is sufficiently small, then

S
nzzmmmm%gmmw

wherer, is the barycenter d2;. As a result, the computation of the integfél) is reduced

to the computation of all the integrq[&%q G(r,7) dr, which are independent of both the func-
tionsu andy, and thus can be computed once for all the iterations. Ineswag imaging
applications, a very useful analytical expression for ¢hiesegrals is obtained by approxi-
mating each subdomain, by a circleC; of equivalent area. Indeed, in this case the integral
of the Green’s function on a circlé, is given by the following explicit formulaZ2]:

/ G(r,7) dF ~ / G(r,F) di = kgiﬁdle(kbds)H(?) (k|| = 74]])
QS Cs

(see the notation of2(1)), where J; is the first order Bessel function of first kind,
ds = \/AQ, /7 is the radius of the equivalent circle, and), the area of2,. In our scheme,
each domaiif2, corresponds to a single (rectangular) discretizatiororegrhus, ifr = r,,,
wherer,,, is again the barycenter of the regifQ,, we approximate all integrals in our algo-
rithm by the moment method as

S

I(rm) &Y amsg1(rs) g2(rs),

s=1

where the coefficients,,, s = k7 wd Ji(kpds) H, 2)(/€b||7’m — r5||) can be considered as the
elements of a fixed matrix for the computation of each integ(a,,), form = 1,...,S.
Notice that the above matrix has a scaled Toeplitz structure
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3. Numerical linear algebra tools for the Newton schemesNewton methods require
the computation of (a regularized approximation of) seMémaar equations involving the
derivativesA! for z € X. In a real setting, the discretization of the inverse scatjenodel
leads to matriced/, whose dimensions are extremely large in general. Indeedlisicretiza-
tion of the model consists of

e n x n pixels for the investigation domain,

e m pointwise receiving detectors on each observation douﬂg\ﬁ for each source
p=1,..., P,

e P = R- F different sources of the incident field, wheRds the number of rotations
of the apparatus (the so-called views), ands the number of frequencies of the
incident microwave (the so-called illuminations) for eaddw.

Having introduced these constants, it is simple to checkahg blockA%) is anm x n?
matrix, A, is n? x n2, any A ism x n?, and anyA,, isn? x n?, so that the total size of
the matrix A/, is

(Pm + Pn?) x (Pn? +n?) = P(m +n?) x (P +1)n%

For instance, real data collected for the database of thiguinBresnel of Marseille]]
comes from a device witin = 241 detectors on a circular observation dom@ﬁ”) with
a radius of about 1.5 meters, with = 18 views andF' = 9 different illuminations. In this
setup, am x n = 64 x 64 discretization of gives rise to a matrixl’, of about7.0 - 10° x
6.7 - 10° elements. The same setting, with the larger discretizationn = 1024 x 1024,
gives a size ford, of about1.7 - 10® x 1.7 - 10® elements!

It is essential to use advanced numerical linear algebia toseduce the computational
complexity of reconstruction algorithms involving theaege-scale linear systems. This goal
can be reached by exploiting two peculiarities of the problé) the sparsity and the block
structure arising at the first level, and (ii) the structutisiag in the individual blocks. In this
paper we focus on the first approach.

3.1. Exploiting sparsity. Each inexact Newton ste@.@) involves the computation of
the normal equation system matiix= A’ * A’ . Itis simple to show that the normal equation
system matrixt has the following block-arrow structure

]\/[1 Vl
M, Va
E=ArA = L (3.1)
Mp Vp
v v Lo vE O

where each block has sizé x n? and is the sum of products of structured matrix blocks of
A’,, since

M, = ALDTAQD + (I 4)" (I - Ay),
V= AL AQD 4 (A% — 1) Aup,

P P
M)* M *
C = Z APDTAQD 4 Z Al Ay
p=1 p=1

The simple block-arrow structure of the normal equatiortesysmatrix £ can be ex-
ploited in order to obtain solving schemes with low compotal complexity. In the follow-
ing subsections, we describe two approaches: a directrsavea splitting iterative solver.
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3.1.1. Block Cholesky Factorization.As already mentioned, inexact Newton schemes
(2.8) for nonlinear functional equations arising in inverseljgemns usually require regular-
ization at every linearized step. As a basic example, weidenthe Tikhonov regularization
method, wheres(k, \) = 1/(A + p) andp = p(k) > 0 is the regularization parameter that
depends on the iteration indéx By considering the residual= b — A(z), each iteration
of (2.8) with Tikhonov regularization can be written &as= z + h, whereh is the solution of
the block-arrow linear system

Eh=b, (3.2)

whereE = E + ul = Al Al + ul andb = A/*r.

In the case of symmetric positive definite block-arrow ntatsi the Cholesky variant
of LU factorization is very convenient. Indeed, since Clklefactorization can be carried
through without any need for pivoting or scaling, it does give rise to any fill-in and it
is numerically stable]7]. The result is that each Cholesky factor inherits the sammaa
structure in its lower triangular part. By exploiting thebk-arrow structure of?, Cholesky
decomposition at the block level gives

E=LL*
with
L,
Lo
I = ) (3.3)
Lp
Ly Ly ... Lp Lo

Here the blocks of. are defined as follows: )
e L, is the Cholesky factor of the symmetric positive definitegthiaal block/,, =
M, + ul; thatis, M, = L,L;forp=1,..., P.
o L, =V,L,*isafull matrix, forp = 1,..., P.
o Ly isthe Cholesky factor of the symmetric positive definiteninad — 7" | L, L?;
thatis,C' — >°0" | L,L% = LoLg, whereC' = C + pul.

Summarizing, thanks to the block-arrow structureAjf, the Cholesky decomposition
of the normal equation system matiixis computed efficiently by means éf + 1 simple
Cholesky decompositions at the inner block level only &triangular inversions and matrix
multiplications for computing each,,. The solution of the system&.2) is then computed
by forward and backward block substitutions, accordindheofollowing scheme:

° U, :L;lbp,forp: 1,..., P,
K P s
vy = Ijo Lb, — szl Lyvp),
hy = Ly vy,
hy = Ly*(v, — Lihy), forp=1,..., P,
whereb = (by, ba, .. .,bp,bX)T andh = (h1,ho,.. .,hp,hX)T. The overall cost of com-
puting in this way is(8P + 1)n® /6 + O(Pn?) multiplicative operations.

3.1.2. Block iterative splitting methods. In the previous subsection, each linear system
of the inexact Newton step&.Q) with Tikhonov regularization is solved by a direct method
based on the Cholesky block decompositidr8). In this subsection, we analyze a different
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approach based on iterative methods, which are often peefer inverse problems thanks to
their good regularization capabilities.

By considering again the linear systdih = b of (3.2), a block splitting decomposition
of E gives rise to an effective iterative method whose numedoatplexity per iteration is
linear with the number of blocks. In particular, startingrfr an initial gues&(?), due again
to the block-arrow structure, each iteration of the simpleobi 3.4) and the Gauss-Seidel
(3.5 block methods12] can be written as

M, ~ i
Moy Vs
RO+ — C A (3.49)
]\;[p VP
C vie Vo8 ..o Ve 0
and
M, . i
Mo Vs
RO+D | A, (3.5)
Mp } Vp
vie v oo Vi O 0
respectively.

Letb = (b1, bo,.. .,bp,bX)T andh = (hy, ha, .. .,hp,hX)T denote again the block
form of the right-hand side and of the solution 8f2), and partition the iterates*) accord-
ingly. Exploiting the simple inverse of triangular arrowidbk) matrices, we can summarize
the two splitting methods as follows:

P = a1, (b, = Vi) (3.6)
forp=1,...,P,and
P
pItD =t <bx -3 v;qg)> : 3.7)
p=1

whereg!?) = ") for the Jacobi iteratiord(4) andq'” = Al for the Gauss-Seidel itera-
tion (3.5).

Provided thatl}, # 0 for all p (otherwise we would obtain a further simplification by
uncoupling some equations), it is straightforward to wetiifat block-arrow matrices are 2-
cyclic and consistently ordered according to the clasgiedihitions of Varga 27]; as an
interesting consequence, the convergence rate of the Blaaks-Seidel method is twice the
convergence rate of the block Jacobi one. Indeed, it candyegithat

p(Bg) = (p(By))?,
wherep(B¢) is the spectral radius of the Gauss-Seidel iteration matrix

- 1
M, Wi

M, Vo
Bg = )
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andp(By) is the spectral radius of the Jacobi iteration matrix
1

My . Vi

M, Va

By =
M P ~ Vp

Ve Vs .. v C 0

On the other hand, the Jacobi method, although slower, cangiemented fully in parallel,
where any one of th€+1 block systems given bya(6) and @3.7) can be solved independently
on a different processor. The same trick for the Gauss-Seidthod would require about
double the computation time, since the computatiorBof)(must follow the computation of
the P independent block system3.¢), forp =1,..., P.

Every step of such iterative methods involves the solutidheinner linear system8(6)
and @.7) at the block level only (notice that the matrix inversesﬁfgl, forp=1,...,P,

andC ', all of themn? x n? matrices), which can be solved either by inner direct or imgin
iterative methods. In the latter case, the regularizatagpabilities of iterative methods can be
very favorable, since early termination of the iteratiogads to a regularized solution of the
system. With this choice, it is possible to solve the (untagzed) system with coefficient
matrix (3.1) instead of the Tikhonov regularized ong ), since now regularization is en-
forced in the innermost iterative method. In particularaswill see in the next subsection,
this is the choice we adopt in the proposed solution methddiae for the numerical tests.

3.2. A three-level inexact-Newton Method.The inexact-Newton algorithm we pro-
pose is an iterative regularizing method for nonlinear ¢équa, where each linearized step
is regularized by means of an iterative regularization sehbased on a block splitting. The
method is useful for all the nonlinear functional equatia®se linearization leads to block
matrices, as is the case for our modzg with linearization 2.9).

The method can be introduced as follows, where, for the sbsienplicity, we explicitly
refer to the modelZ.6).

1. Setk = 0. Choose the initial guess) = (u1 0, .., up,, Xo), Where:
e Yo is an approximation of the target distributign If no information is avail-
able, setyg = 0.
® Upo= u;, forp =1,..., P (notice that the initial guess of the unknown total
fields are simply initialized to be the known incident fieltljstis the basic
choice of the widely used first order Born approximation scador inverse
scattering T]).
2. Linearize equation2(6) at the pointr, = (u1%,...,upk, xx) by means of the
Fréchet derivatived!, of the operatord, as shown inZ.9), obtaining the Gauss-
Newton linear equation

A AL he = AT (b — A(a)), (3.8)

Wherehk = (hk,la ey hkyp, hk-,X) andA;: (b — A(xk)) = (bk,la ey bkyp, bk-,X)'
3. Consider the block splitting methods4) or (3.5 without Tikhonov regularization
(i.e., with x = 0) for the solution of equatior(8).
Setﬁ,(f; =0 andﬁ,(f; =0.Fort=0,1,2,...,T(k):
(i) Compute a regularized solutidivf;’”, p=1,..., P, of the first P diagonal
system blocks ’

Mph\Y = by — ViR (3.9)
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by means of a fixed numbéf; = K (k,t,p) of iterations of the Landweber
regularization iterative method for linear systems (ortheoiterative regu-
larization method). For the Landweber method applied toptheequation,

settingfo = 0, we have

forr = fo + TM} (b — ViR, — M, fy), (3.10)

wherer = 1/||M,||2 is a fixed convergence parameter, chosen according to the
discussion of SectioR.2, and}, is the system matrix. Hence, the regularized

solution ishy " = fx,.
i) Compute a regularized solutidgr’ ™" of the last row system block
p g X Yy

cpitth = V*q , (3.11)
k,x k,p

whereq| ; t; for the Jacobi iteration3(4) and ¢." = h(t;fl) for the
Gauss-Seidel iteratior8(5), by means of a fixed numbédt, = Ks(k,t,x)
of iterations of the Landweber iterative regularizationtinogl for linear sys-
tems (or another iterative regularization method). Forltedweber method,
settingfo = 0, we have

P
for1 = Fo - 7C by — Y Vi) — CF.), (3.12)
p=1

wherer = 1/||C||2 is a fixed convergence parameter, chosen again accord-
ing to the discussion of Sectich?2, beingC the system matrix. Hence, the

regularized solution |3(t+1) fK,-

4. Settinghy, = ( Ee W+ . ,h,ﬁ%’“”l), h,(cigk)ﬂ)). update the solution by
Tkl = Tk + Ek. (3.13)

5. Check a stopping rule farn,,1: if it is satisfied, terminate; otherwise set— &k + 1

and go to step.

The proposed algorithm can be summarized as a three-levatiite method:
Level l. The outer level of iterations is related to the GalNssvton method %.8), and the

Level Il.

Level 111,

iterations are related to the indéx The stopping rule can be the discrepancy prin-
ciple [23], based on the knowledge of the amount of noise in the data.

The firstinner level of iterations is related to thleck splitting, either.4) or (3.5),

and the iterations are related to the indes shown by%.9) and @3.11). A suitable
number of iterationd’(k) can be estimated by means of preliminary numerical tests
and then fixed.

The second and nested inner level of iterationselated to the computation of
(small) numberskK; and Ko of steps of an iterative regularization method, such
as Landweber, for each system blo8kd) and (3.11) of (i) and(ii). These iterations
are related to the indek as shown by .10 and @3.12, and the valued<; and

K, can be estimated by numerical tests. We notice that, ustiadige numbers are
small since, due to the severe ill-posedness of the prolilemegularization effects
of the inner iterative method have to be high.
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The overall cost of each outer iterationZigk) -+ 1 times the operations required by the

following n x n matrix-vector products:
e 2 products involving each,, forp =1,..., P;
e 2K products involving eachif,, forp =1,..., P;
e 2K products involving_.

A comparison with the computational cost of the Choleskgdimethod of Sectio8.1.1
shows that the iterative approach is cheaper whgt) andK; are small compared to. Of
course, the inner structure of the blocks can be helpfulte &ather computations; this issue
will be discussed in Sectiob.3.

It is interesting to notice that some other approaches appea the literature 23]
correspond to a very simplified choice of the parametersaébove scheme. More precisely,
the two-level Gauss-Newton method with Landweber inneulaaigation described ird] is
equivalent to the three-level scheme obtained by sefting- K5 = 1.

3.3. Exploiting the inner structure of the Fréchet derivative. As already notedA’,
is a sparse and block structured matrix. Moreover, evergiotd A’ is given by the dis-
cretization of a particular linear operator of the tyBé.(r) = [, s(r,7) h(7) dr, where the
integral kernels is known and is given by the product of the shift invariantiehG times
a fixed function (eithery or u?, p = 1,..., P). If each observation domaiﬁgM) were
equal to the rectangular x n investigation domaifi?, then the discretization of all of these
integrals would lead to Toeplitz-times-diagonal block$iose matrix-vector products cost
O(n?logn) by using a fast trigonometric transform, such as the clak&ET (or, better, a
different trigonometric transform related to a particuthoice of the boundary conditions,
such as reflective or antireflectived]). Unfortunately this does not happen in real applica-
tions, sinceQ;()M) is disjoint (and far) from). Then, although the? x n? blocks A, and
Aup,p=1,...,P,of A, are always Toeplitz-times-diagonal so that the 2D FFT carsee

for the related matrix-vector product, in real applicai@achn x n? blockA%,) andASf}f,),
p=1,..., P, is a small lower rank extracted matrix (that is, a principabmatrix p4]) of

a full Toeplitz-times-diagonal matrix. If we consider adar rectangular discretizedx ¢
domain2.,; which contains both the x n investigation domai2 and all them detectors
of each observation domaml(jM), p=1,..., P, then every bIockA%,) can be embedded
in a largerg® x ¢* Toeplitz-times-diagonal matrig, , which is associated with the integral
operator

Quh(r) = /Q G(r,7) () X(F) dF

ext
foranyr € Q... In this way, it is possible to factorim%) as

AM = RMQ. T,

xX>pP

where the matri>R§)M) is am x ¢? restriction matrix fromt,, to QZE)M) and the matrix” is a

¢*> x n? canonical injection fronf to Q.. (similarly forAq%)). According to this trick, the

matrix-vector product for any block%,) anqu%) costsO(q? log q) instead ofO(mn?).

In practice, the appropriate computation procedure fotrmlA%,) andA%) matrix-
vector products depends on bdththe number and the position of the detectorﬂé%
and (ii) the dimension and the discretization ste@dbf Suppose, for example, thet.., is
k times larger tha, so thaty = kn, and assume that@x ¢ 2D FFT requiresSq? log q
multiplications; see48] for the 1-D FFT. Then the matrix-vector product with, is cheaper
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than the matrix-vector product witd"}) when3 - 8 - k2n2(log(k) + log(n)) < mn? (the
factor 3 is given by the fact that a matrix product involves fierward FFTs and one inverse
FFT, and we ignore the contribution of thé pointwise matrix product). That is, the approach
using@, is cheaper when

24k*(log(k) + log(n)) < m.

In real applications, the number of detectors is about two to three hundred, and so the FFT
is not useful for smalk and small discretization parametersin the simplified case where
the detectors are equispaced on the perimeter of the redtéarpmaint.,., with the same
step size of2, we have thain = 4kn, so that the previous inequality becomes

6k(log(k) +log(n)) < n.

In this case, witm = 1024, the matrix-vector products using 2D FFTs is betterkor 13;
with n = 256, for £ < 5; and withn = 35, as in our numerical tests, fér < 2. This
shows that, at least in our configuration where the investigalomain is much smaller and
far from the measurement one, the FFT does not reduce theutatigmal complexity of
matrix-vector products for all the bloc (]ff,) anqu%),p =1,...,P.

We mention that a similar idea of embedding the discretirafioints of a general do-
main into a larger rectangular domain in order to obtain adk) Toeplitz matrix was also
used in P6] to describe the spectral properties of a class of strudtoratrices; the related
information also could be important for tuning appropriegularizing methods.

3.4. Post-processing enhancement by super-resolution tedques. A significant dif-
ficulty in microwave imaging is that the reconstructed inmfave fairly low resolution.
To obtain higher resolution images we consider a post psitggechnique calleduper-
resolution which is essentially an example of data fusion; see, fomple, [3, 6, 11, 21].
The aim is to reconstruct a high resolution image from a sétafvn low resolution im-
ages, each shifted by subpixel displacements. In our aifgit we reconstruct images,
each reconstructed independently by shifting slightlyrtherowave tomographic apparatus.
Letx1, x2, - - -, X be the reconstructed low resolution images (e.g., usingtidously de-
scribed three-level inexact Newton method). It is assurhatl éach low resolution image
is shifted by subpixel displacements from a particularneriee image. These subpixel dis-
placements suggest that each low resolution image cordédfesent information about the
same object. The aim is to fuse this different informatido ione high resolution image. To
describe the mathematical model of super-resolution, weras each low resolution image
can be represented as

Xj = DS(yj)x+mn;, j=1,...,m

wheren; is additive noise is a decimation matrix that transforms a high resolutiongema
into a low resolution image, anfl is a sparse matrix that performs a geometric distortion
(e.g., shift) of the high resolution image, The geometric distortion, and hengegis defined

by the parameter vectar;,. The reconstruction problem amounts to computinfjom the
inverse problem

= . X+ .- (3.14)
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Note that if we assume that each of the low resolution imageslifted horizontally and
vertically, then eacly; contains only two values (the horizontal and vertical dispiments).
If we want to consider more complicated movements (suchtasion), then eacly; might
contain up to six values that define general linear affinestcamations. In either case, clearly
there are significantly fewer parameters defining. . . , y,. than the number of pixel values
definingy.

In many cases, the parametgfsan be accurately determined from the imaging system;
that is, the subpixel shifts can be measured during a céliiorarocess. In this case, equa-
tion (3.14) is a linear inverse problem, and standard techniques ssichrgugate gradients
with Tikhonov regularization can be used to compute an appration of y. However, if the
parameter vectay; is not known, then an optimization scheme must be used tdyasti-
matey andy;. In this case, since there are relatively few parameternidgfi/;, an efficient
separable nonlinear least squares approach can be usé@l,. see

4. Numerical Experiments. In this section, a first implementation of the proposed
method has been developed and tested on two different ratt® provide some numer-
ical results. A set of low resolution reconstructions redhto the microwave imaging model
(2.6) in a tomographic configuration are computed by the algorith Section3.2 on several
data sets related to subpixel linear shifts of the apparaiiier that, the super-resolution
enhancement technique of Sectid is applied in order to improve the accuracy.

Scatterer

Source

FIGURE 4.1. Microwave tomographic apparatus

The tomographic arrangement is shown in Figlileand can be summarized as follows:

e the scattering object under test is contained in a squaesiigation are& centered
at the origin, whose edge is 1m (meter) for the first test, f@nthe second one,
and the (low resolution) discretization sizenis<c n = 31 x 31;

e there aren = 241 receiving antennas equispaced on an a@oﬂ%\dians belonging
to a circumference centered at the origin, whose diameteBdsn;

e the number of rotations of the whole tomographic apparaus i= 8, each one
equispaced by radians;

e for each rotation, the scattering object is illuminated tsiregle incident plane mi-
crowave, i.e.F' = 1, with a frequency of 0.3 GHz (wavelength—3m) for the first
test and 0.8 GHz (waveleng#6 - 10~3m) for the second one.

With this setting, for thejth rotation, theith receiver is placed at the positidp, 6) =
(1.67,(j — 1) + 3 + -=L47) in polar coordinates, for = 1,...,mandj = 1,..., R.
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The total fieldu measured by the receiving antennas is characterized byaltimnoise ratio
(SNR) of 25 dB; that is, the relative noise on the measuretiesed fields is about.6%.

In this firstimplementation of the proposed three-levebalpm, we use the block Jacobi
splitting (3.4) and the Landweber method for the innermost block level,hasva by the
schemes3.10 and @.12. It is important to remark that for all the simulations theale
algorithm is initialized by an empty scene, i.e., for theialiguessry = (u1,0,---,up0, X0)
we simply setyo, = 0 (as if no scatter were involved) ang o = u;, p=1,...,P(asifno
scattered field were produced). In this way, in our tests poiori information is used and
needed.

The three-level algorithm requires the choicéibthe number of outer Newton iterations
related to the index of (3.9), (ii) the numbefT'(k) of block splitting iterations, related to
the indext of (3.9) and @.11), for any Newton iteratiort, and(iii) the numberd<; (k, ¢, p)
and K»(k, t, x) of Landweber iterations respectively related to the indeof Landweber
iterations 8.10 and @.12, for any Newton iteratiork, any splitting iteratiort, and any
incident wavep.

In real applications, the outer Newton iteratioBs3j can be stopped by means of a dis-
crepancy principle rule very similar to the classical onedufor linear inverse problemg]
That is, the iteration is terminated as soorj|agzy) — b|| < 77, wherer > 1 is an exper-
imentally estimated small constant ands an estimate of the noise in the datasee P3]
for details about the discrepancy principle for nonlineserse problems. In these prelim-
inary tests with simulated data, we stop the Newton methaat 80 iterations, a number
that was chosen experimentally by comparing the outputwars¢ different tests. The num-
ber of block Jacobi iteratiori5(k) is fixed equal to 10, and the number of inner Landweber
iterations isK; (k, t,p) = Ka(k,t,x) = 1.

For the computation of the right-hand side 8f§), the investigation domaif? is parti-
tioned into35 x 35 square subdomains, and the forward operdta computed by applying
the method of moments with pulse-basis functions and poatthing to every instance of
the equationsa.2) and @.3), as explained at the end of Sectidr2.

After the restorations provided by the three-level aldomt the super-resolution tech-
nigue has been applied. The super-resolution leads to a-tage ill-posed linear prob-
lem which requires a regularization algorithm. In our impéntation, this linear problem is
solved by a small number of projected Landweber iteratibhsfarting with an initial guess
which is the low resolution restoration in the basic centssifion. Specifically, five low res-
olution (LR) images from the three-level algorithm for nerave inverse scattering are the
input data that allow us to retrieve the one high resolutldR) output image. The five LR
images are the reference image at the center of the cocedinad the four images shifted
by 1/3 of a pixel respectively to the right, to the left, to the topgddo the bottom. With this
enhancement technique, we obtéx 62 images fron81 x 31 microwave restorations, with
a reduction of the restoration error which is often larganti0%.

The relative restoration error of the output imagef the scatterer is evaluated by com-
puting||x — x|l #/||X|l= wherey is the known true configuration of the scatterer, §nd »
is the Frobenius norm of matrices. In the figures, the plotsvstne values of the relative
refractive index(r)/e, = x(r) + 1, as described in Sectichl

Test 1. The first test concerns the reconstruction of a homogenaatieser satisfying
the hypotheses of Sectidty whose shape is similar to the digit “eight” and is shown in
Figure4.2(top left). The boundary of the scatterer has the paranfetmic given by formulas

x(t) = \/COSQ(t) + 8sin®(t) cos(t)/6.6 and y(t) = \/cosz(t) + 8sin?(t) sin(t) /6.6,
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True object Low Resolution Restoration
|t—4 7:1/||A||2 Itf2
Impr._ 6.4% Impr=1.7%
It.= 10 7_1/ 5||A|| It.— 28
Impr.— 1.2% Impr.= 1.2%

FIGURE4.2.Test 1 — True object and best reconstructions.

with ¢ € [0, 27|, and with a 1m square investigation domain. The contragtfom of the
scatterer is constant and equal to 0.3. The LR referenceeirofithe contrast function is
shown in Figuret.2 (top right); some HR reconstructed distributions of thetcast function
are reported in Figurd.2 (second and third row) for different values of the convermen
parameter- of the projected Landweber method used in the super-résolstep (recall the
discussion of the role of in Section2.2). For each HR image, we show the number of
projected Landweber iterations and the improvement betvwlee LR and HR restorations,
that is, the difference between the relative restoratiooraf the LR image and the relative
restoration error of the HR image.

Figure4.3shows the pointwise difference between the true and thensteated objects.
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T =1/(0.3]|A]]*) T=1/[A|]”
T=1/(2]|Al]*) T =1/(5]A]]?)

FIGURE 4.3.Test 1 — Absolute restoration errors.
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FIGURE4.4.Test 1 — Super-resolution convergence history.

These restoration error results show that the localizaifdhe object and the reconstruction
of the permittivity are good, although the edges are smabdie to the regularization effects
of the algorithm.

The convergence history of the projected Landweber metbodhe super-resolution
technique, illustrated by a plot of the relative restonataoror versus the iteration number, is
shown in Figuret.4.

Test 2. The second simulation is related to a circular homogeneoniglas centered at
the origin, with external diameter of 0.4m and internal déen of 0.2m, and two smaller
homogeneous disks with diameter of 0.1m centered at25m, 0.25m) and (0.25m, 0.25m),
where the size of the square investigation domain is 0.8rs ddnfiguration with a hole can
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FIGURE4.5. Test 2 — True object and best reconstructions.

be of interest for nondestructive evaluation purposesiih@ngineering.

The contrast functiory of the scatterer is constant and equal to 0.3. As in Test 1, the
LR reference image of the contrast function is shown in Fegus (top right) and some HR
reconstructed distributions of the contrast function aeorted in Figuret.5 (second and
third row) for different values of the convergence parametef the projected Landweber
method used in the super-resolution step. Figufesshows the pointwise restoration errors,
and the convergence history for the super-resolution igaleris shown in Figurd.7.

For small values of, the convergence is slow and more regular (see the imagd®on t
third row of Figure4.5); whereas for larger values af the convergence is faster and the
restorations are better, but it is much more difficult to sto Landweber iteration for the
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FIGURE 4.6. Test 2 — Absolute restoration errors.
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FIGURE 4.7.Test 2 — Super-resolution convergence history.

super-resolution technique (see the images on the secandfrBigure4.5and the conver-
gence histories of Figuré.7). As can be seen, the localization of the objects in the HR
restoration is good and much better than in the LR image. Wiare that, from a qualitative
point of view, the improvement is much more evident than teeentage quantities would
show. In addition, although the estimate of the values otresiy is quite satisfying, the
shape of the scatterer is not estimated very accuratelyubea# the severe ill-posedness of
the problem and the required regularization.
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