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1 Introduction
Now it is well-known that the variational inequality of finding x* ∈ C such that

〈
Ax*,x – x*

〉 ≥ , ∀x ∈ C, (.)

where C is a nonempty closed convex subset of a real Hilbert space H and A : C →H is a
givenmapping, is a fundamental problem in variational analysis and, in particular, in opti-
mization theory. For relatedworks, please see [–] and the references contained therein.
Especially, Yao, Marino and Muglia [] presented the following modified Korpelevich
method for solving (.):

yn = PC[xn – λAxn – αnxn],

xn+ = PC
[
xn – λAyn +μ(yn – xn)

]
, n≥ .

(.)

Recently, Aoyama, Iiduka and Takahashi [] extended the variational inequality (.) to
Banach spaces as follows:

Find x* ∈ C such that
〈
Ax*, J

(
x – x*

)〉 ≥ , ∀x ∈ C, (.)

where C is a nonempty closed convex subset of a real Banach space E. We use S(C,A) to
denote the solution set of (.). The generalized variational inequality (.) is connected
with the fixed point problem for nonlinear mappings. For solving the above generalized
variational inequality (.), Aoyama, Iiduka and Takahashi [] introduced the iterative
algorithm

xn+ = αnxn + ( – αn)QC[xn – λnAxn], n ≥ , (.)
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where QC is a sunny nonexpansive retraction from E onto C and {αn} ⊂ (, ), {λn} ⊂
(,∞) are two real number sequences. Motivated by (.), Yao and Maruster [] pre-
sented a modification of (.) as follows:

xn+ = βnxn + ( – βn)QC
[
( – αn)(xn – λAxn)

]
, n ≥ . (.)

Motivated and inspired by the above algorithms (.), (.) and (.), in this paper, we
suggest an extragradient-type method via the sunny nonexpansive retraction for solving
the variational inequalities (.) in Banach spaces. It is shown that the presented algorithm
converges strongly to a special solution of the variational inequality (.).

2 Preliminaries
Let C be a nonempty closed convex subset of a real Banach space E. Recall that a mapping
A of C into E is said to be accretive if there exists j(x – y) ∈ J(x – y) such that

〈
Ax –Ay, j(x – y)

〉 ≥ 

for all x, y ∈ C. A mapping A of C into E is said to be α-strongly accretive if for α > ,

〈
Ax –Ay, j(x – y)

〉 ≥ α‖x – y‖

for all x, y ∈ C. A mapping A of C into E is said to be α-inverse-strongly accretive if for
α > ,

〈
Ax –Ay, j(x – y)

〉 ≥ α‖Ax –Ay‖

for all x, y ∈ C.
Let U = {x ∈ E : ‖x‖ = }. A Banach space E is said to uniformly convex if for each ε ∈

(, ], there exists δ >  such that for any x, y ∈U ,

‖x – y‖ ≥ ε implies
∥∥∥∥x + y



∥∥∥∥ ≤  – δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. A Banach
space E is said to be smooth if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

(.)

exists for all x, y ∈ U . It is also said to be uniformly smooth if the limit (.) is attained
uniformly for x, y ∈U . The norm of E is said to be Frechet differentiable if for each x ∈U ,
the limit (.) is attained uniformly for y ∈U . Andwe define a function ρ : [,∞)→ [,∞)
called themodulus of smoothness of E as follows:

ρ(τ ) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x, y ∈ X,‖x‖ = ,‖y‖ = τ

}
.

It is known that E is uniformly smooth if and only if limτ→ ρ(τ )/τ = . Let q be a fixed real
number with  < q ≤ . Then a Banach space E is said to be q-uniformly smooth if there
exists a constant c >  such that ρ(τ )≤ cτ q for all τ > .
We need the following lemmas for the proof of our main results.
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Lemma . [] Let q be a given real number with  < q ≤  and let E be a q-uniformly
smooth Banach space. Then

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ ‖Ky‖q

for all x, y ∈ E,where K is the q-uniformly smoothness constant of E and Jq is the generalized
duality mapping from E into E* defined by

Jq(x) =
{
f ∈ E* : 〈x, f 〉 = ‖x‖q,‖f ‖ = ‖x‖q–}, ∀x ∈ E.

Let D be a subset of C and let Q be a mapping of C into D. Then Q is said to be sunny if

Q
(
Qx + t(x –Qx)

)
=Qx,

whenever Qx + t(x –Qx) ∈ C for x ∈ C and t ≥ . A mapping Q of C into itself is called a
retraction if Q = Q. If a mapping Q of C into itself is a retraction, then Qz = z for every
z ∈ R(Q), where R(Q) is the range of Q. A subset D of C is called a sunny nonexpansive
retract of C if there exists a sunny nonexpansive retraction from C onto D. We know the
following lemma concerning sunny nonexpansive retraction.

Lemma . [] Let C be a closed convex subset of a smooth Banach space E, let D be a
nonempty subset of C and Q be a retraction from C onto D. Then Q is sunny and nonex-
pansive if and only if

〈
u –Qu, j(y –Qu)

〉 ≤ 

for all u ∈ C and y ∈D.

Lemma . [] Let C be a nonempty closed convex subset of a smooth Banach space X.
Let QC be a sunny nonexpansive retraction fromX onto C and let A be an accretive operator
of C into X. Then for all λ > ,

S(C,A) = F
(
QC(I – λA)

)
,

where S(C,A) = {x* ∈ C : 〈Ax*, J(x – x*)〉 ≥ ,∀x ∈ C}.

Lemma . [] Let C be a nonempty closed convex subset of a real -uniformly smooth
Banach space X. Let the mapping A : C → X be α-inverse-strongly accretive. Then we have

∥∥(I – λA)x – (I – λA)y
∥∥ ≤ ‖x – y‖ + λ

(
Kλ – α

)‖Ax –Ay‖.

In particular, if  ≤ λ ≤ α

K , then I – λA is nonexpansive.

Proof Indeed, for all x, y ∈ C, from Lemma ., we have

∥∥(I – λA)x – (I – λA)y
∥∥ =

∥∥(x – y) – λ(Ax –Ay)
∥∥

≤ ‖x – y‖ – λ
〈
Ax –Ay, j(x – y)

〉
+ Kλ‖Ax –Ay‖

http://www.journalofinequalitiesandapplications.com/content/2013/1/76


Wu et al. Journal of Inequalities and Applications 2013, 2013:76 Page 4 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/76

≤ ‖x – y‖ – λα‖Ax –Ay‖ + Kλ‖Ax –Ay‖

= ‖x – y‖ + λ
(
Kλ – α

)‖Ax –Ay‖.

It is clear that if  ≤ λ ≤ α

K , then I – λA is nonexpansive. �

Lemma . [] Let C be a nonempty bounded closed convex subset of a uniformly convex
Banach space E and let T be a nonexpansive mapping of C into itself. If {xn} is a sequence
of C such that xn → x weakly and xn – Txn →  strongly, then x is a fixed point of T .

Lemma . [] Assume {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, n≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence in R such that
(a)

∑∞
n= γn = ∞;

(b) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

3 Main results
In this section, we present our Korpelevich-like algorithm and consequently we will show
its strong convergence.

3.1 Conditions assumptions
(A) E is a uniformly convex and -uniformly smooth Banach space with a weakly

sequentially continuous duality mapping;
(A) C is a nonempty closed convex subset of E;
(A) A : C → E is an α-strongly accretive and L-Lipschitz continuous mapping with

S(C,A) �= ∅;
(A) QC is a sunny nonexpansive retraction from E onto C.

3.2 Parameters restrictions
(P) λ, μ and γ are three positive constants satisfying:

(i) γ ∈ (, ), λ ∈ [a,b] for some a, b with  < a < b < α

KL ;
(ii) λ

μ
< α

KL where K is the smooth constant of E.
(P) {αn} is a sequence in (, ) such that limn→∞ αn =  and

∑∞
n= αn = ∞.

Algorithm . For given x ∈ C, define a sequence {xn} iteratively by
⎧⎨
⎩
yn =QC[( – αn)xn – λAxn],

xn+ = ( – γ )xn + γQC[xn – λAyn +μ(yn – xn)], n≥ .
(.)

Theorem . The sequence {xn} generated by (.) converges strongly to Q′(), where Q′ is
a sunny nonexpansive retraction of E onto S(C,A).

Proof Let p ∈ S(C,A). First, from Lemma ., we have p = QC[p – δAp] for all δ > . In
particular, p =QC[p – λAp] =QC[αnp + ( – αn)(p – λ

–αn
Ap)] for all n≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/76
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Since A : C → E is α-strongly accretive and L-Lipschitzian, it must be α

L -inverse-
strongly accretive mapping. Thus, by Lemma ., we have

∥∥(I – λA)x – (I – λA)y
∥∥ ≤ ‖x – y‖ + λ

(
Kλ –

α

L

)
‖Ax –Ay‖.

Since αn →  and λ ∈ [a,b] ⊂ (, α

KL ), we get αn <  – KLλ
α

for enough large n. Without
loss of generality, we may assume that for all n ∈ N, αn <  – KLλ

α
, i.e., λ

–αn
∈ (, α

KL ).
Hence, I – λ

–αn
A is nonexpansive.

From (.), we have

‖yn – p‖ =
∥∥∥∥QC

[
( – αn)xn – λAxn

]
–QC

[
αnp + ( – αn)

(
p –

λ

 – αn
Ap

)]∥∥∥∥
≤

∥∥∥∥αn(–p) + ( – αn)
[(

xn –
λ

 – αn
Axn

)
–

(
p –

λ

 – αn
Ap

)]∥∥∥∥
≤ αn‖p‖ + ( – αn)

∥∥∥∥
(
I –

λ

 – αn
A

)
xn –

(
I –

λ

 – αn
A

)
p
∥∥∥∥

≤ αn‖p‖ + ( – αn)‖xn – p‖. (.)

By (.) and (.), we have

‖xn+ – p‖ ≤ ( – γ )‖xn – p‖ + γ
∥∥QC

[
xn – λAyn +μ(yn – xn)

]
– p

∥∥
= ( – γ )‖xn – p‖ + γ

∥∥∥∥QC

[
( –μ)xn +μ

(
yn –

λ

μ
Ayn

)]

–QC

[
( –μ)p +μ

(
p –

λ

μ
Ap

)]∥∥∥∥
≤ ( – γ )‖xn – p‖

+ γ

∥∥∥∥( –μ)(xn – p) +μ

[(
yn –

λ

μ
Ayn

)
–

(
p –

λ

μ
Ap

)]∥∥∥∥
≤ ( – γ )‖xn – p‖ + ( –μ)γ ‖xn – p‖

+μγ

∥∥∥∥
(
yn –

λ

μ
Ayn

)
–

(
p –

λ

μ
Ap

)∥∥∥∥
≤ ( –μγ )‖xn – p‖ +μγ ‖yn – p‖
≤ ( –μγ )‖xn – p‖ +μγαn‖p‖ +μγ ( – αn)‖xn – p‖
= ( –μγαn)‖xn – p‖ +μγαn‖p‖
≤ max

{‖xn – p‖,‖p‖}
...

≤ max
{‖x – p‖,‖p‖}. (.)

Hence, {xn} is bounded.

http://www.journalofinequalitiesandapplications.com/content/2013/1/76
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Set zn = QC[xn – λAyn + μ(yn – xn)]. From (.), we have xn+ = ( – γ )xn + γ zn for all
n≥ . Then we have

‖yn – yn–‖ =
∥∥QC

[
( – αn)xn – λAxn

]
–QC

[
( – αn–)xn– – λAxn–

]∥∥
≤

∥∥∥∥( – αn)
(
xn –

λ

 – αn
Axn

)
– ( – αn–)

(
xn– –

λ

 – αn–
Axn–

)∥∥∥∥
≤ ( – αn)

∥∥∥∥
(
xn –

λ

 – αn
Axn

)
–

(
xn– –

λ

 – αn
Axn–

)∥∥∥∥
+ |αn – αn–|‖xn–‖

≤ ( – αn)‖xn – xn–‖ + |αn – αn–|‖xn–‖,

and thus

‖zn – zn–‖ =
∥∥QC

[
xn – λAyn +μ(yn – xn)

]
–QC

[
xn– – λAyn– +μ(yn– – xn–)

]∥∥
≤ ( –μ)‖xn – xn–‖ +μ

∥∥∥∥
(
yn –

λ

μ
Ayn

)
–

(
yn– –

λ

μ
Ayn–

)∥∥∥∥
≤ ( –μ)‖xn – xn–‖ +μ‖yn – yn–‖
≤ ( –μαn)‖xn – xn–‖ + |αn – αn–|‖xn–‖.

It follows that

lim sup
n→∞

(‖zn – zn–‖ – ‖xn – xn–‖
) ≤ .

This together with Lemma . implies that

lim
n→∞‖xn+ – xn‖ = .

From (.), we have

‖yn – p‖ ≤
∥∥∥∥αn(–p) + ( – αn)

[(
xn –

λ

 – αn
Axn

)
–

(
p –

λ

 – αn
Ap

)]∥∥∥∥


≤ αn‖p‖ + ( – αn)
∥∥∥∥
(
xn –

λ

 – αn
Axn

)
–

(
p –

λ

 – αn
Ap

)∥∥∥∥


≤ αn‖p‖ + ( – αn)‖xn – p‖ + λ
(

Kλ

 – αn
–

α

L

)
‖Axn –Ap‖. (.)

From (.), (.) and (.), we obtain

‖xn+ – p‖

≤ ( – γ )‖xn – p‖ + γ

∥∥∥∥( –μ)(xn – p) +μ

[(
yn –

λ

μ
Ayn

)
–

(
p –

λ

μ
Ap

)]∥∥∥∥


≤ ( – γ )‖xn – p‖ + γ ( –μ)‖xn – p‖ + γμ

∥∥∥∥
(
yn –

λ

μ
Ayn

)
–

(
p –

λ

μ
Ap

)∥∥∥∥

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≤ ( – γμ)‖xn – p‖ + γμ

[
‖yn – p‖ + λ

μ

(
Kλ

μ
–

α

L

)
‖Ayn –Ap‖

]

≤ γμ

[
αn‖p‖ + ( – αn)‖xn – p‖ + λ

(
Kλ

 – αn
–

α

L

)
‖Axn –Ap‖

]

+ ( – γμ)‖xn – p‖ + γ λ

(
Kλ

μ
–

α

L

)
‖Ayn –Ap‖

= αnγμ‖p‖ + ( – γμαn)‖xn – p‖ + γ λμ

(
Kλ

 – αn
–

α

L

)
‖Axn –Ap‖

+ γ λμ

(
Kλ

μ
–

α

L

)
‖Ayn –Ap‖.

Therefore, we have

 ≤ –γ λμ

(
Kλ

 – αn
–

α

L

)
‖Axn –Ap‖ – γ λμ

(
Kλ

μ
–

α

L

)
‖Ayn –Ap‖

≤ αnγμ‖p‖ + ‖xn – p‖ – ‖xn+ – p‖

= αnγμ‖p‖ + (‖xn – p‖ + ‖xn+ – p‖)(‖xn – p‖ – ‖xn+ – p‖)
≤ αnγμ‖p‖ + (‖xn – p‖ + ‖xn+ – p‖)‖xn – xn+‖.

Since αn →  and ‖xn – xn+‖ →  , we obtain

lim
n→∞‖Axn –Ap‖ = lim

n→∞‖Ayn –Ap‖ = .

It follows that

lim
n→∞‖Ayn –Axn‖ = .

Since A is α-strongly accretive, we deduce

‖Ayn –Axn‖ ≥ α‖yn – xn‖,

which implies that

lim
n→∞‖yn – xn‖ = ,

that is,

lim
n→∞

∥∥QC
[
( – αn)xn – λAxn

]
– xn

∥∥ = .

It follows that

lim
n→∞

∥∥QC[xn – λAxn] – xn
∥∥ = . (.)

Next, we show that

lim sup
n→∞

〈
Q′(), j

(
xn –Q′()

)〉 ≥ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/76
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To show (.), since {xn} is bounded, we can choose a sequence {xni} of {xn} converging
weakly to z such that

lim sup
n→∞

〈
Q′(), j

(
xn –Q′()

)〉
= lim sup

i→∞

〈
Q′(), j

(
xni –Q′()

)〉
. (.)

We first prove z ∈ S(C,A). It follows that

lim
i→∞

∥∥QC(I – λA)xni – xni
∥∥ = . (.)

By Lemma . and (.), we have z ∈ F(QC(I – λA)), it follows from Lemma . that z ∈
S(C,A).
Now, from (.) and Lemma ., we have

lim sup
n→∞

〈
Q′(), j

(
xn –Q′()

)〉
= lim sup

i→∞

〈
Q′(), j

(
xni –Q′()

)〉

=
〈
Q′(), j

(
z –Q′()

)〉
≥ .

Noticing that ‖xn – yn‖ → , we deduce that

lim sup
n→∞

〈
Q′(), j

(
yn –Q′()

)〉 ≥ .

Since yn =QC[(–αn)(xn– λ
–αn

Axn)] andQ′() =QC[αnQ′()+(–αn)(Q′()– λ
–αn

AQ′())]
for all n ≥ , we can deduce from Lemma . that

〈
QC

[
( – αn)

(
xn –

λ

 – αn
Axn

)]
–

[
( – αn)

(
xn –

λ

 – αn
Axn

)]
, j
(
yn –Q′()

)〉 ≤ 

and
〈[

αnQ′() + ( – αn)
(
Q′() –

λ

 – αn
AQ′()

)]

–QC

[
αnQ′() + ( – αn)

(
Q′() –

λ

 – αn
AQ′()

)]
, j
(
yn –Q′()

)〉 ≤ .

Therefore, we have

∥∥yn –Q′()
∥∥

=
∥∥∥∥QC

[
( – αn)

(
xn –

λ

 – αn
Axn

)]

–QC

[
αnQ′() + ( – αn)

(
Q′() –

λ

 – αn
AQ′()

)]∥∥∥∥


≤
〈
αn

(
–Q′()

)
+ ( – αn)

[(
xn –

λ

 – αn
Axn

)

–
(
Q′() –

λ

 – αn
AQ′()

)]
, j
(
yn –Q′()

)〉
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≤ –αn
〈
Q′(), j

(
yn –Q′()

)〉
+ ( – αn)

∥∥∥∥
(
xn –

λ

 – αn
Axn

)

–
(
Q′() –

λ

 – αn
AQ′()

)∥∥∥∥∥∥yn –Q′()
∥∥

≤ –αn
〈
Q′(), j

(
yn –Q′()

)〉
+ ( – αn)

∥∥xn –Q′()
∥∥∥∥yn –Q′()

∥∥
≤ –αn

〈
Q′(), j

(
yn –Q′()

)〉
+
 – αn


(∥∥xn –Q′()

∥∥ +
∥∥yn –Q′()

∥∥),
which implies that

∥∥yn –Q′()
∥∥ ≤ ( – αn)

∥∥xn –Q′()
∥∥ + αn

〈
–Q′(), j

(
yn –Q′()

)〉
. (.)

Finally, we will prove that the sequence xn → Q′(). As a matter of fact, from (.) and
(.), we have

∥∥xn+ –Q′()
∥∥

≤ ( – γ )
∥∥xn –Q′()

∥∥

+ γ

∥∥∥∥( –μ)
(
xn –Q′()

)
+μ

[(
yn –

λ

μ
Ayn

)
–

(
Q′() –

λ

μ
AQ′()

)]∥∥∥∥


≤ ( – γμ)
∥∥xn –Q′()

∥∥ + γμ

∥∥∥∥
(
yn –

λ

μ
Ayn

)
–

(
Q′() –

λ

μ
AQ′()

)∥∥∥∥


≤ ( – γμ)
∥∥xn –Q′()

∥∥ + γμ
∥∥yn –Q′()

∥∥

≤ ( – γμαn)
∥∥xn –Q′()

∥∥ + γμαn
〈
–Q′(), j

(
yn –Q′()

)〉
.

Applying Lemma . to the last inequality, we conclude that xn converges strongly toQ′().
This completes the proof. �
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