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INTRODUCTION AND PRELIMINARIES 
 
Let  A   denote   the   class   of   functions   of   the   form 
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which are analytic and univalent in the open disc U = {z: 
|z| < 1} and normalized by 1)0('0)0( −== ff . We 

denote by )(* αS  and )(αK  the subclasses of A 
consisting of all functions which are, respectively starlike 
and convex of orderα . Thus,  
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Hadamard product (or convolution) of Φ  and Ψ by 
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For positive real parameters ll ApAp ,,, 11 �  

and mm BqBq ,,, 11 � , ),3,2,1,( �=∈ Nml such that  
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The Wright generalized hypergeometric function (Wright, 
1946) 
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If At = 1(t = 1, 2... l) and Bt = 1(t = 1, 2, ...,m) we have the 
relationship: 
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)};0{.;1( 0 UzNNmlml ∈∪=∈+≤  is the 

generalized hypergeometric function ( see for details 
(Wright, 1946) ) where N denotes the set of all positive 
integers and n)(λ  is the Pochhammer symbol and 
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By using the generalized hypergeometric function Dziok 
et al., (2003) introduced the linear operator. In 2004 
Dziok et.al (2004) extended the linear operator by using 
Wright generalized hypergeometric function. First we 
define a function: 
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Let  ( ) ( )[ ] AABqApW mttltt →:,, ,1,1  be a linear operator 

defined by: 
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We observe that, for f(z) of the form (1.1), we have 
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For convenience, we write: 

 
 
 
 

[ ] [ ] )(),(),();(),()( 11,1,11,1 zfBqBqApApWzfqpW mmll ��=      (8)                                                                              

introduced by Dziok et al. (2004). In view of the 
relationship (3), the linear operator (6) includes the Dziok-
Srivastava operator (Dziok et al., 2003), so that it 
includes (as its special cases) various other linear 
operators introduced and studied by Bernardi (1969), 
Carlson et al. (1984), Libera (1965), Livingston  (1966), 
Rucheweyh  (1975) and Srivastava et al. (1987). 

Denoted by ),,,,( BAS γβα , the subclass of A 
consisting of functions f(z) of the form (1) and satisfying 
the condition: 
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Where [ ] )(1,1 zfqpW  is given by 

(8), 10,10 ≤<<≤ βα
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For fixed 11 ≤≤≤− BA and 10 ≤< B . We also let  
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A subclass of A introduced and studied by Silverman 
(1975).    . 
 
By suitably specializing the values of 

βα ,,,,,,,,,, 1,1 BAqqppmlBA mltt �  and γ   the 

class ),,,,(* BATS γβα leads to known 
subclasses studied in (Aghalary et al., 2002; Khairanar et 
al., 2008) and (Owa et al., 2002) and various new 
subclasses. In this paper we obtain sharp result for 
coefficient estimates, distortion theorem, radius of 
starlikeness and convexity and other related results.  
 
For convenience we consider:  
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For fixed 11 ≤≤≤− BA , 10,10 ≤<<≤ βα  

and 10 ≤< B , one or otherwise stated. 
 
 
CHARACTERIZATION PROPERTIES 
 
Theorem 1 
 
Let the function f(z) be defined by (10) is in the class 

),,,,(* BATS γβα   if and only  
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Where )( 1pnσ  is given by (7). 
 
 
Proof 
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Therefore ),,,,(* BATS γβα . Conversely, Let 
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As ||)Re( zz ≤  for all z, we have  
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Choosing values of z on real axis such that  
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Corollary 2 
 
Let the function f(z) defined by (1.10) be in the class 

),,,,(* BATS γβα .  Then we have 
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The      equation     (12)    is    attained   for   the   function 
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Where )( 1pnσ  is given by (7). 
 
Let the functions )2,1)(( =jzjf  be defined by:  
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Theorem 2 (Closure theorem) 
 
Let the functions ),2,1)(( mjzjf �= defined by (2.4) 

be in the classes ),,,,(* BAjTS γβα  (j = 1, 2, . . .m) 
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Proof 
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Which in view of Theorem 1, again implies that 

),,,,(* BATSh γβα∈ and so the proof is complete. 
 
 
Theorem 3 (Extreme points) 
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where )1( pnσ  is given by (7). Then f (z) is in the 

class ),,,,(* BATS γβα  if and only if it can be  expressed 
in the form: 
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By Theorem 1, ),,,,(* BATSf γβα∈ .  
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This completes the proof of Theorem 3. 
 
 
DISTORTION BOUNDS 
 
Theorem 4 
 
Let the function f (z) defined by (1.10) belong 

to ),,,,(* BATS γβα . Then 
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where )1(2 pσ  is given by (7). 
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In the view of (11) and the fact that )1( pnσ is non-
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RADIUS OF STARLIKENESS AND CONVEXITY 
 
Next we obtain the radii of close-to-convexity, star-

likeness and convexity for the class ),,,,(* BATS γβα . 
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Where )1( pnσ  is given by (1.7). The result is sharp, with 
external function f (z) given by (15). 
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Where )1( pnσ  is given by (7).  Each of these results 
are sharp for the external function f(z) given by (15). 
 
 
Proof 
 
Given  ,Tf ∈   and f is starlike of orderη , we   have 
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We can say (24) is true if 
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or, equivalently, 
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This yields the starlikeness of the family which completes 
the proof.  
 
(ii) Using the fact that f (z) is convex if and only if 

)(' zzf is starlike, we can prove (ii), on lines similar to the 
proof of (i). 
 
 
MODIFIED HADAMARD PRODUCTS 
 
Let the functions )2,1)(( =jzjf  be defined by (14). The 

modified Hadamard product of f1(z) and f2(z) is defined 
by: 
 

�−=
∞

=2
2,,21 .))(*(

n

n
njn zaazzff  

 
Using the techniques of Schild et al. (1975), we prove the 
following results. 
 
 
Theorem 7 
 
For functions )2,1)(( =jzf j

 defined by (14), let 
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and  
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where )( 12 pσ  is given by (7).  
 
 
Proof 
 
In view of Theorem 1, it suffice to prove that 
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Where ξ  is defined by (25). On the other hand, under 
the hypothesis, it follows from (11) and the Cauchy’s-
Schwarz inequality that 
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where  
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Thus we need to find the largest ξ  such that 
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or, equivalently that: 
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In view of (26) it is sufficient to find largest ξ  such that 
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which yields 
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for 2≥n is an increasing function of n ( 2≥n ) and letting 
n = 2 in (29), we have 
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Where [ ])2,,,,,(1 BAγβαΛ  and [ ])2,,,,,(2 BAγβµΛ  as 

defined in (27), where )1(2 pσ  is given by (7). 
 
 
Theorem 8 
 
Let the functions )2,1)(( =jzjf  defined by (14), be in 

the class ),,,,(* BATS γβα . Then 

),,,,(*)2*1( BATSff γβρ∈  , where 

)1(2 pσ  is given by (7). 
 
 
Proof 
 
By taking µ =α , in the above theorem, the result follows. 
 
 
Theorem 9 
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it follows that ),,,,(*)*( BATSgf γβα∈ , by the view of 
Theorem 1. 
 
 
Theorem 10 
 
Let the functions )2,1)(( =jzjf  defined by (14), be in the 

class ),,,,(* BATS γβα .  Then the function h(z) defined by 
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where )( 12 pσ  is given by (7). 
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where ),,,,(* BATSjf γβα∈  we find from  (2.4)  and  

Theorem 1, that: 
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this yields 
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On comparing (30) and (31), it is easily seen that the 
inequality (29) will be satisfied if 
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since 
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is an increasing function of n ( 2≥n ). Taking n = 2 in 
(32), we have: 
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this completes the proof. 
 
 
INCLUSION RELATIONS INVOLVING N δ (E) 
 
Following (Goodman, 1957; Rucheweyh, 1981), we 
define    the  δ - neighbourhood   of    function  ,Tf ∈  by 
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Particularly for the identity function e (z) = z, we have 
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Now we obtain inclusion relations of the 
class ),,,,(* BATS γβα . 
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where )( 12 ασ  is given by (7). Then 
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For ),,,,(* BATSf γβα∈ , Theorem 2.1 immediately 
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On the other hand, from (11) and (36) that 
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which, in view of (33) completes the proof of Theorem 11. 

Next we determine the neighborhood for the class 

),,,,()(* BATS γβαρ which we define as follows;  
 
A function Tf ∈ is said to be in the class 
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Proof 
 
Suppose that )(hNf δ∈ , we then  find  from  (33)  that 
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provided that ρ   is given precisely by (40). Thus by 

definition, ),,,,()*( BATSf γβαρ∈ for ρ  given by (40), 
which completes the proof. 
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