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Finite difference methods are often used for analyzing structures governed by complex differential 
equations. The finite difference method, well known as an efficient numerical method, was formerly 
applied to the case of beam and plate problems. The basic disadvantages of this method are the 
requirement of out-of-region points during the solution process and the difficulty of implementing the 
boundary conditions along irregular boundaries. In this study, the variational derivative method was 
proposed to solve the functional of the Euler –Bernoulli beam obtained by Gâteaux differential method. 
The main reason for the preference of this method over the finite difference method was the elimination 
of the need for the out-of-region domain points that complicate the application of the finite difference 
method. The moments and deflections of beams with constant and varying cross-sections and various 
support types were calculated in order to demonstrate the applicability of the method. The performance 
of this formulation is verified by comparing the obtained results with the results of the numerical 
examples in the literature. 
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INTRODUCTION 
 
We should bear in mind that all methods of structural 
analysis are essentially concerned with solving the basic 
differential equations of equilibrium and compatibility, 
although, in some of the methods this fact may be 
obscured. Analytical solutions are limited to the cases 
where the load distribution, section properties and 
boundary conditions can be described by mathematical 
expressions. However, the numerical analysis methods 
are generally more practical for complex structures. 
Moreover, various methods for finding suitable approxi-
mate solutions have been under continuous development 
for decades. Among these methods, Finite Difference 
Method (FDM), Rayleigh- Ritz Method, Galerkin Method, 
Least-Squares Method, Finite Element Methods (FEM) 
have dominated the applications to problems in 
engineering. In FDM, a numerical solution of the 
differential equation for displacement or stress resultant 
is obtained for chosen points on the structure, referred  to 
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as nodes or simply as point of division. During the study 
performed on the finite difference analysis of the systems 
and the comparison of the methods used with finite 
element techniques, we readily recognized a very close 
relationship between finite difference and finite element 
procedures. However, the FEM may appear to be a 
better choice than FDM owing the easier definition of the 
boundary conditions. The FDM has been comprehend-
sively formulated in many studies. We can classify the 
FDM into two groups according to the literature namely, 
Conventional Finite Difference Method (CFDM) and Finite 
Difference Energy Method (FDEM). The solution by the 
CFDM is obtained by applying the finite difference 
expressions on the area equations directly. The dis-
advantages of the method include the difficulties of imple-
menting the boundary conditions on irregular boundaries 
and accurately representing the irregular domains. The 
variational method is a powerful method that can be used 
for both approximate solutions and formulation of 
problems (Reddy, 1986).   

Many researchers have developed the FDEM based on 
variation in order to overcome the difficulty stated 
previously. Houbolt used this method in 1958  to  perform  
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the static analysis of the beams and plates. In 1983, 
Barve and Dey and in 1990 Singh and Dey applied the 
FDEM to the static, vibration and instability tests of the 
plates. Arslan (2004) studied on the functional of the 
Euler-Bernoulli beam obtained by using the Gâteaux 
differential approach to solve the functional by the aid of 
the variational derivative method based on FDM, and 
consequently, the moments and deflections of the beams 
with constant and varying cross-sections and various 
support types were determined by considering the out-of-
region points. Gelfand and Fomin (1963) carried out the 
buckling analysis of the elastic bars using the variational 
derivative method. Gürsoy (2004); Eratli and Gürsoy 
(2005) solved all the buckling problems of elastic bars 
using the methods of variational derivative and finite 
difference and to determined the element matrix of the 
bar element using variational derivative method. As a 
result of this study, the variational derivative method was 
found to be extremely similar but more advantageous 
when compared to FDM; due to not being in need of out-
of-region points that complicate the application of FDM. 

In this work, we consider the solution for the Euler-
Bernoulli beam’s functional obtained by using the 
Gâteaux differential approach. The purpose of this study 
is to solve the functional by the aid of the variational 
derivative method based on FDM. The moment and 
deflection values were selected as the unknowns of the 
functional, modified by Aköz (1985). Some significant 
advantages of the Gâteaux differential approach were 
explained by Özütok (2000). The element matrix for 
Euler-Bernoulli beam is derived based on the variational 
derivative. The performance of the matrix for bending 
analysis is verified with a good accuracy by comparing 
with the numerical examples and analytical solutions 
presented in the literature. 
 
 
The functional for Euler-Bernoullı beam 
 
The equations involving the boundary conditions for 
Euler-Bernoulli beam which can be written in the operator 
form as: 
 

0= − =Q L y f                                   (1) 
                                                                            
Having obtained the field equations, one needs a method 
to obtain the functional. We believe that the Gâteaux 
differential method is suitable for this aim. Since this 
method was extensively used and explained in other 
studies (Aköz et al., 1991), for the sake of simplicity, the 
basic steps and definitions will be summarized briefly. 
The Gâteaux derivative of an operator is defined as  
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Where, � is a scalar. A necessary and sufficient  condition 

 
 
 
 
for Q to be a potential is (Oden and Reddy, 1976) 
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Where, parentheses indicate the inner products. If the 
operator Q is a potential, then the functional which 
corresponds to the field equations is given by  
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Where, s is a scalar quantity. The clear form of the 
functional corresponding to the field equations are 
obtained as in the following (Arslan, 2004), 
 

( ) [ ] [ ] [ ]

( ) ( )

1 ˆ, , , ,
2

ˆ ˆ ˆ        , , ,

M
I M v q v M v M

E I

v T M M v v v T

ε

εσ σ

� �′ ′ ′= − − −� �� �

� �� � ′− − − + −� �� �� � � �

y  

                                                                                     (5) 
 
Where, the subscripts ε and σ indicate the geometric and 
dynamic boundary conditions, respectively. As seen in 
Equation (5), the moment and deflection values selected 
as unknowns of the functional are integrated 
simultaneously into the functional and are obtained easily 
without needing the boundary conditions to be known.   
 
 
Variational derivative 
 
For a function with multiple arguments, 1 2( , ,... )nf x x x , if 
the differential df can be written as 

1 2
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=

=� , then 1 2( , ,.. )i n ig x x x dx  is 

called the derivative of f with respect to ix , for 
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Notice that the derivative of function 1( ,,.. )nf x x  with 

respect to ix  will be another function named 

as 1( ,,.. )i ng x x . Similarly, if the first variational derivative 
of a functional 
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Figure 1. Nodal points and the elements. 

 
 
 
is written as  
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Then, the functional derivative of I will be  
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The functional derivative of a functional [ ]( )I y x  is 

another function ( )g x . Imagine that we approximate the 

function ( )y x by a piece-wise linear curve that passes 

through a set of points ( , ), 0,..., 1i ix y i n= + , where 

, ( ),i i ix i x y y x= ∆ = 0x a= and 1nx b+ = . Let ( )y x  
be subjected to essential boundary conditions, so that 

0 ( )y y a= and 1 ( )ny y b+ = are fixed. Then, the 

functional [ ]( )I y x  can be approximated by a sum. 
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The partial derivative of nI with respect to one of its 
arguments is,  
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Comparing this with the definition of the functional 
derivative, the following equation is written 
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Then,    the    above   expression   is   called   “variational 
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derivative” (Kang et al., 2006), and the first condition for 
y(x) to make I [y(x)] functional maximum is �I = 0. Using 

this condition, the nI
y

δ
δ

 expression will be equal to zero 

at every point. Variational derivative method differs from 
FDM by not needing to use the out-of-region points (Eratlı 
and Gürsoy, 2005). A formulation based on variational 
derivative method that does not require any out-of-region 
points is developed to calculate the bending moments 
and deflections of the bars making use of the functional 
obtained here. Then, the element matrix can be written 
as   
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by using this equation [ ]( )I y x . Here, 1i ix x+∆ = −  and 

e is element number. If the following relationships are 
replaced with the derivative expressions in the functional 
 

1 1,i i i iv v M M
v M+ +− −′ ′= =

∆ ∆
                    (14) 

 
and the derivatives are taken with respect to the 
moments and deflections defined as the unknowns at 
each nodal point of ith element of the bar system shown 
in Figure 1 and are equalized to zero, as follows 
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then, the element matrix is obtained as  
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Where, 
2

2

EI
λ ∆=  . 

 
 
Numerical examples 
 
Several problems of beams with various boundary 
conditions have been studied in the past. In order to 
check the performance of variational derivative method, 
various problems are solved and the results are 
compared with those of similar examples in the  literature. 
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Figure 2. The simply supported beam to be analyzed under 
uniformly distributed transverse loading. 

 
 
 

Table 1. Comparison of the VD and exact solutions. 
 

�  Values (
45

384exact

q L
v

EI
α ×= × ) 

Number of members CFD† FDEM† VD† of (Arslan, 2004) VD† of this study Exact 
2 1.2 1.2 1.058 1.2 1 
4 1.05 1.05 1.02 1.05 1 
8 1.01 1.01 1.011 1.012 1 
16 1.003 1.003 1.009 1.003 1 
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Figure 3. The distribution of moment and deflection along the beam obtained with VD and 
MFEM. 

 
 
 
Simply-supported beam with uniform loading 
 
First of all, we decided to consider the accuracy and 
convergence of the variational derivative element matrix 
on a simply supported beam subjected to a uniform 
vertical loading of q = 10 kN/m as shown in Figure 2. The 
material properties and dimensions are E = 2x107 kN/m2, 
L = 10 m, h = 0.5 m and b = 0.2 m. The maximum 
deflections obtained from various types of analyses 
including CFD, FDEM and VD of  Arslan  (2004)  given  in 

the literature and the current study are presented in Table 
1 to allow comparison with the exact solution. As it is 
seen, the deflections found from the current study 
converge to the exact results. † CFD: conventional finite 
difference method; FDEM: finite difference energy 
method, VD: Variational derivative. 

In addition to the maximum deflection values, the 
distribution of moment and deflection along the beam 
axis from VD of this study and MFEM is plotted and 
shown in Figure 3. The  effect  of the number of elements  
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Figure 4. Deflection and moment convergence vs. number of elements. 

 
 
 

q 

L 
 

 
Figure 5. A cantilever beam with uniform distributed loading. 

 
 
 
used   in   beam   discretization   on   the   deflection  and 
moment are shown in Figure 4, where the nondimen-

sionalized maximum deflection 4v v EI qL=  and 

moment 2M M qL=  of a simply supported beam 
subjected to a uniformly distribitued load is plotted. 
 
  
Cantilever beam with uniform distributed loading: 
Constant cross-section case 
 
Considering the problem of finding the transverse 
deflection of a cantilever beam under a uniform 
distributed loading by using variational derivative method 
in Figure 5; the deflection and moment of the free tip 
versus the number of elements are plotted as shown in 
Figure 6. In the figure, the deflection and moment 
converge to the exact solution results with an error 
proportional to the number of elements used. 
 
 
Cantilever beam with uniform distributed loading: 
Variable cross-section case 
 
In order to test the effect  of   height   variation   on   the 

Table 2. Comparison of VD results with the literature and exact 
results. 
 

 
 
m = hb/hs 

(v x 10) Deflection 
Gul, 2003 

MFEM 
VD of this study Exact 

1 1.252 1.266 1.250 
1.25 - 1.433 - 
1.667 1.667 1.664 - 
2.5 - 2.00 - 
5 2.677 2.618 - 

 
 
 
deflection and moment, a cantilever beam subjected to a 
uniform distributed loading as shown in Figure 7 was 
analyzed for different heights.  In Figure 7, hb and hs are 
the height of beam cross-section at the left and right hand 
sides of the beam, respectively. The variation of the 
moment of inertia along the beam can be defined for 
element i by  
 

3
3 1i

z
I bh n

L
� �= +� �� �

                                             (17) 

 
Where, n = m-1, m = hb/hs and z is the length of element 
i. The maximum deflections for four cases with different 
height ratios are shown in Table 2. In the table, results of 
the study by (Gul, 2003) and exact results are given for 
comparison. 
 
 
DISCUSSION AND CONCLUSION 
 
In this study, the solutions of Euler–Bernoulli beams of 
constant and varying cross-sections under uniformly 
distributed loading are carried out using variational 
derivative method without the need of out-of-region points 
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Figure 6. Deflection and moment convergences with respect to number of elements. 
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Figure 7. A cantilever beam with variable cross-section under uniformly 
distributed loading. 

 
 
 
of FDM. The element matrix of the beam is obtained by 
applying the functional (Arslan, 2004) to the variational 
derivative method which was derived for straight-axis 
bars using Gâteaux differential method. Besides, 
observing the similarity of the proposed element matrix to 
that of FDM, the obtained matrix is superior in beam 
problems since it does not require any out-of-region 
points. A computer code is developed in Fortran to 
compute the proposed element matrix by considering the 
boundary conditions. Using this computer code, the 
unknown moments and the displacements at the nodal 
points are calculated and found to be in agreement with 
the results of the previous studies in the literature and the 
exact results. In the entire example problems considered, 
the proposed approach converges to the exact solution 
as long as the number of members is increased. 
Therefore, it is expected that the method will provide a 
better approach to the case of higher degree beam 
problems. 
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