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Abstract

Components of promyelocytic leukaemia (PML) nuclear bodies (ND10) are recruited to sites associated with herpes simplex
virus type 1 (HSV-1) genomes soon after they enter the nucleus. This cellular response is linked to intrinsic antiviral
resistance and is counteracted by viral regulatory protein ICP0. We report that the SUMO interaction motifs of PML, Sp100
and hDaxx are required for recruitment of these repressive proteins to HSV-1 induced foci, which also contain SUMO
conjugates and PIAS2b, a SUMO E3 ligase. SUMO modification of PML and elements of its tripartite motif (TRIM) are also
required for recruitment in cells lacking endogenous PML. Mutants of PML isoform I and hDaxx that are not recruited to
virus induced foci are unable to reproduce the repression of ICP0 null mutant HSV-1 infection mediated by their wild type
counterparts. We conclude that recruitment of ND10 components to sites associated with HSV-1 genomes reflects a cellular
defence against invading pathogen DNA that is regulated through the SUMO modification pathway.
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Introduction

Herpesvirus infections are controlled by acquired and innate

defences involving cellular, humoral and cytokine mediated

responses (for reviews, see [1]). In recent years a concept has

emerged of an additional antiviral defence mechanism that

operates within individual cells. Unlike cytokine-mediated re-

sponses, intrinsic antiviral resistance involves the actions of pre-

existing cellular proteins that, in the case of herpesviruses, act to

repress viral transcription [2,3,4]. This defence is counteracted by

viral regulatory proteins, for example the immediate-early (IE)

proteins ICP0 of herpes simplex virus type 1 (HSV-1) [5,6,7], ie1

(IE72) of human cytomegalovirus (HCMV) [8], and HCMV virion

component pp71 [9,10,11,12,13,14]. One aspect of intrinsic

resistance concerns cellular nuclear sub-structures known as

ND10 or promyelocytic leukaemia (PML) nuclear bodies, and a

number of their major components, namely PML itself, Sp100,

hDaxx and ATRX. In HSV-1 infections, ICP0 overcomes the

repressive properties of these proteins by inducing their degrada-

tion or dispersal [7,15,16,17]. ICP0 null mutant HSV-1 exhibits a

greatly reduced plaque forming efficiency, but this defect is

partially reversed in cells depleted of PML, Sp100, hDaxx or

ATRX [5,6,7].

A notable feature of PML and other ND10 components is their

recruitment to novel ND10-like foci that are closely associated

with parental HSV-1 genomes and early replication compartments

during the initial stages of infection [18,19]. The recruitment of

PML to the virus-induced foci is not dependent on de novo viral

protein expression and occurs extremely rapidly, indicating that

the cell responds to the entry of viral genomes into the nucleus

[18,20]. Although the effect can be seen in wild type (wt) HSV-1

infections, it is short lived as the recruited proteins are rapidly

degraded or dispersed through the effects of ICP0. During

infection with ICP0 null mutant HSV-1, however, the ND10

proteins remain in these novel sites in a much longer-lived

manner. The correlation between the biological activity of many

ICP0 mutant proteins and their ability to counteract this

recruitment process [21] suggests that this phenomenon reflects

an aspect of intrinsic antiviral resistance. This model proposes that

the recruited proteins generate a repressive environment that

impedes viral transcription. This paper concerns the molecular

mechanism by which ND10 components are recruited to the virus-

induced foci and tests the hypothesis that the recruitment process

contributes to intrinsic resistance to HSV-1 infection.

The formation of the virus-induced ND10-like structures is

distinct from that of normal ND10 in uninfected cells because it is

not dependent on PML or indeed any of the major ND10

components that have so far been studied [5,6,7,20]. Here, we

have used a depletion/reconstitution approach to analyze the

molecular requirement for the recruitment of PML, Sp100 and

hDaxx to HSV-1 genome-associated sites in newly infected cells.

We found that in all cases the presence of a SUMO interaction

motif (SIM) [22] is required for this property, and that the major

SUMO modification sites of PML, but not Sp100, are also

required. The virus-induced ND10-like foci also contain SUMO-

2/3 conjugates and PIAS2b, a SUMO E3 ligase, even in the

absence of PML. Unlike their wt counterparts, SIM deletion

mutants of PML isoform I and hDaxx are unable to repress ICP0

null mutant HSV-1 infection. These data demonstrate that

SUMO modification pathways play a key role in the recruitment
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of ND10 proteins to HSV-1 genome associated sites. We propose

that this SUMO-dependent cellular response is an important

component of intrinsic cellular defence against foreign DNA that

has entered the nucleus.

Results

Recruitment of PML isoforms to sites associated with
HSV-1 genomes

The recruitment of PML and other proteins to sites associated

with parental HSV-1 genomes and early replication compartments

can be detected by examination of cells at the periphery of

developing viral plaques. The viral genomes enter the nucleus of

newly infected cells in a directional and asymmetric manner, and

remain close to the nuclear envelope. The viral IE transcriptional

regulator ICP4 avidly binds to viral DNA, and therefore forms foci

that, in cells at the early stages of infection, are commonly

distributed along one interior edge of the nucleus. PML and other

ND10 proteins then accumulate at novel sites that are closely

associated with the viral genomes [18,19]. This phenotype allows

the unambiguous identification of proteins that have been

recruited to and accumulate at the virus-induced sites. A typical

example of endogenous PML recruitment in an ICP0-null mutant

HSV-1 (DICP0) infected HepaRG cell expressing a control

shRNA is shown in Figure 1A (left) in comparison with a similarly

infected PML depleted cell (Figure 1A, right).

We investigated the molecular characteristics of PML that are

required for this recruitment by adopting a depletion/reconstitu-

tion approach [23]. All the PML isoforms studied (Figure 1B),

expressed as EYFP fusions, were recruited to sites associated with

ICP4 foci in cells containing endogenous PML (Figure 1C). In cells

depleted of endogenous PML, however, while PML isoforms I to

V were recruited, PML.VI remained entirely in large foci that

were not associated with ICP4 (Figure 1D). The separated

channels of the images in Figures 1C and 1D are shown in

Figures S1 and S2. This assay is not amenable to precise

quantification as the extent of recruitment varies between cells and

is most obvious when the ICP4 foci are small. Nonetheless, when

recruitment occurs it is evident in all cells with ICP4 foci near the

nuclear periphery. A large number of cells were examined in each

experiment, and we have scored a protein as defective in

recruitment only when its behaviour was clearly different from

the appropriate control. As an example, compare PML.VI in the

control and PML depleted backgrounds in Figures 1C and D.

Although recruitment of PML proteins that we have scored as

recruitment positive occurred to some extent in all relevant cells,

we noted some differences in PML isoform behaviour. For

example, PML.I was recruited more extensively than PML.V

(Figure 1D). We have not investigated the basis of these

differences.

The defect in PML.VI recruitment to virus-induced foci also

occurred in analogous human fibroblast (HF) derived cells. PML.I

co-localized with Sp100 in both control and PML depleted HFs

(Figure S3), both PML.I and PML.VI were recruited to the virus-

induced in control HFs (Figure S4A), but PML.VI was not

recruited in PML depleted HFs (Figure S4B).

PML isoform VI includes all the conserved exons present in the

other isoforms, except exon 7a (Figure 1B). Therefore exon 7a

includes sequences that are required for recruitment of PML to the

virally induced foci. The defect in PML.VI recruitment is not

exhibited when endogenous PML is present because PML

interactions mediated through the coiled-coil motif [24,25] enable

the defective protein to be recruited in partnership with the

endogenous isoforms.

PML exon 7a is required for recruitment to sites
associated with HSV-1 genomes

PML exon 7a encodes an 18 amino acid segment containing a

SIM that has been implicated in proper ND10 assembly [26].

Mutants of PML.I and PML.IV that lack exon 7a (Figure 2A).

were expressed at levels similar to their wt versions, with similar

patterns of SUMO modification, and co-localized with Sp100 in

both control and PML depleted cells (Figure 2B and C). While

both mutants were recruited to virus-induced foci in the presence

of endogenous PML, both were defective in recruitment in PML

depleted cells (Figures 2D and S5A). This defect of PML.I.D7a was

confirmed in HF derived cells (Figure S5B and C; the localization

of this protein in uninfected HFs is shown in Figure S3). EYFP-

PML.I with substitution mutations in the SIM (PML.I.mSIM)

exhibited properties very similar to those of PML.I.D7a in

uninfected and ICP0-null mutant HSV-1 infected control and

PML depleted cells (Figure S6). These data confirm that the lack of

recruitment of PML.VI is due to the absence of the SIM in exon

7a.

The role of SUMO modification in the recruitment of PML
to virus-induced foci

SUMO modification of PML is essential for ND10 assembly in

uninfected cells [27]. Therefore we investigated whether this

modification, in addition to the SIM, plays a role in PML

recruitment to the virus-induced foci. Mutants of PML.I or

PML.IV with lysine to arginine substitutions at residues 160 and

490 (PML.I.KK and PML.IV.KK; Figure 3A) exhibit substantial

defects in SUMO modification, but some apparently modified

species remain, especially in cells containing endogenous PML,

and more so with PML.IV than PML.I. Modification of

PML.I.KK in PML depleted cells was almost completely

eliminated (Figure 3B).

PML.I.KK and PML.IV.KK localized to ND10 normally in

cells expressing endogenous PML, probably through interactions

with endogenous PML via their coiled-coil domains (Figure 3C,

Author Summary

Viruses encounter several different defences that impede
infection, including acquired immunity mediated by the
immune system and innate immunity that includes the
synthesis of antiviral proteins through the interferon
pathway. In recent years, a third arm of antiviral defence
has been described, named intrinsic immunity or intrinsic
resistance, that is conferred by constitutively expressed
cellular proteins. In the case of herpesviruses, intrinsic
resistance involves the action of cellular repressors that
restrict viral transcription once the viral genome enters the
nucleus. Several studies have presented evidence that one
aspect of intrinsic resistance involves cellular proteins that
form distinct nuclear structures known as ND10. Several
ND10 components are known to accumulate rapidly at
sites in close association with herpes simplex virus type 1
genomes. Here we report that this cellular response
requires the ability of several of the proteins in question
to interact with a small ubiquitin-like protein known as
SUMO. In two such examples of these proteins, we show
that their ability to interact with SUMO is required for their
roles in repressing viral infection. We suggest that this
SUMO-dependent pathway may underlie a more general
mechanism by which cells protect themselves from
invading foreign DNA.

SIM Dependent Recruitment of PML to HSV-1 Genomes
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upper row). In contrast, and consistent with previous work [27],

PML.I.KK exhibited a drastically altered localization in PML

depleted cells, forming a reduced number of foci of increased size,

some of which were in the cytoplasm. The nuclear foci contained

greatly reduced amounts of Sp100. The aberrant PML.IV.KK foci

were predominantly nuclear, again with little co-localization with

Sp100 (Figure 3C, lower row). Residual co-localization with Sp100

of these PML mutants may be influenced by potential SUMO

modification at other lysine residues. However, it is also affected

by cell type since in the corresponding PML depleted HFs co-

localization of PML.I.KK with Sp100 was more marked (Figure

S9A).

To eliminate any residual SUMO modification of PML.I.KK

we introduced additional mutations at either lysine 65 [28] or at

lysine 616, which lies in a good match (LKID) to the consensus

SUMO modification site (YKXE). Mutant PML.I.K123 (K65R,

K160R, K490R) exhibited similar residual SUMO modification to

that of PML.I.KK in cells expressing endogenous PML, whereas

the K616R mutation virtually eliminated all modified bands in

mutants PML.I.K234 (K160R, K490R, K616R) and PML.I.4KR

(all indicated lysine residues substituted with arginine) (Figure S7).

We conclude that PML.I is not detectably modified at lysine 65,

but that lysine 616 is likely to be a SUMO modification site that is

specific for PML.I and PML.IV (because it lies in exon 8a which is

present in these two isoforms only). We note that lysine 65 is very

close to zinc coordinating cysteine residues in the RING finger, so

SUMO modification here would likely affect both the overall

architecture of the RING and its interaction interfaces.

PML.I.4KR co-localized with Sp100 in control but not PML

depleted cells, in both HepaRG and HF backgrounds (Figures S8A

and S9A). These data support the hypothesis that the sporadic co-

localization of PML.I.KK with Sp100 in PML depleted cells

(Figure 3C) is due to the remaining potential for SUMO

modification.

As in the case of the SIM mutants, both PML.I.KK and

PML.IV.KK could be recruited to virus-induced foci in cells

expressing endogenous PML (Figure 3D, upper row), but

recruitment was either absent or at greatly reduced levels in

PML depleted cells (Figure 3D, lower row, and Figure S8B).

Similar results were obtained in the equivalent HF derived cells

(Figure S9B), and with the 4KR mutant in both HepaRG and HF

backgrounds (Figures S8C and S9B). Therefore, in addition to the

role of the SIM, mutation of the major SUMO modification sites

of PML severely impedes the capacity of the protein to be

recruited to sites associated with viral genomes, providing

endogenous PML isoforms are absent.

Absence of the SIM does not affect the intrinsic mobility
of PML

The defect of mutant PML proteins in recruitment to virus-

induced foci could be explained by a decrease in intrinsic mobility.

The dynamics of PML isoforms and SUMO modification deficient

mutants in both the presence and absence of endogenous PML

have been reported [18,29,30,31], but the role of the SIM has not

been investigated before. We analyzed the dynamics of all EYFP-

linked PML isoforms, and the D7a and KK mutants of PML.I and

PML.IV, in both control and PML depleted HepaRG cells.

Figure 1. The major nuclear isoforms of PML and their
recruitment to sites associated with HSV-1 genomes. A. Typical
examples of recruitment of endogenous PML (green) to sites associated
with HSV-1 genomes (ICP4: red) in cells at the edges of ICP0 null mutant
(DICP0) plaques in control and PML depleted cells. B. PML isoforms I to
VI, noting the included exons and the translated product length. The
bracketed exons indicate the use of alternative reading frames for these
sequences. (+8) at the end of PML VI indicates an additional 8 residues

following exon 6 as a result of alternative splicing that deletes exon 7a.
Adapted from [23]. C and D. Recruitment of EYFP-PML isoforms in
control (panel C) and PML depleted cells (panel D). Scale bars indicate
5 mm. Analysis of the localization of these proteins in uninfected cells
and their expression levels is presented elsewhere [23].
doi:10.1371/journal.ppat.1002123.g001

SIM Dependent Recruitment of PML to HSV-1 Genomes
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Typical FRAP recovery plots of PML.I and PML.I.KK in control

cells are presented in Figure 4A, confirming previous conclusions

that SUMO modification is required for the normal mobility of

PML [30,32]. The data for all PML isoforms and mutants in both

cell backgrounds are presented as their degree of fluorescence

recovery at the 112-second time point (Figure 4B). The results are

broadly in agreement with previous work, with the exception that

the relatively slow recovery of PML.V [30] was not reproduced

here. The only major differences were between the SUMO

modification deficient mutants and the wt forms. Importantly, the

defect in recruitment to virus-induced foci of PML.VI and the

PML.I and PML.IV mutants lacking exon 7a cannot be explained

simply by reduced mobility, whereas in the case of the SUMO

modification mutants this explanation cannot be excluded.

The role of elements within the TRIM in recruitment of
PML to virus-induced foci

Control and PML depleted cell lines that express EYFP-PML.I

with a deletion of the coiled-coil or point mutations in the RING

finger, B-Box 1 or B-Box 2 (Figure 5A) have been described

previously [23]. Briefly, the RING finger mutant (DRING) co-

localized with endogenous ND10 in control cells but was mostly

nuclear diffuse in cells lacking endogenous PML, the coiled-coil

deletion mutant (DCC) was nuclear diffuse in both cell

backgrounds, the B-Box 2 mutant (DBB2) formed foci in both

types of cell but in neither case were these co-localized with Sp100,

and the B-Box 1 mutant (DBB1) co-localized with Sp100 in

aberrant ND10-like structures in control cells and formed foci in a

proportion of PML depleted cells, none of which co-localized with

Sp100. SUMO modification of all tripartite motif (TRIM) mutants

was highly compromised in both cell backgrounds [23].

The DRING and DBB2 mutants were recruited efficiently to the

virus-induced foci in cells expressing endogenous PML, whereas

the DBB1 and DCC mutants were not (Figures 5B and S10A). The

DBB2 mutant was also efficiently recruited in PML depleted cells

(Figure 5B), even though this mutant was not well SUMO-

modified and did not efficiently co-localize with Sp100 in

uninfected cells in either cell background [23]. Therefore the

characteristics of PML required for nucleating an ND10-like

structure in uninfected cells are distinguishable from those

involved in recruitment to the novel virus-induced structures. As

in cells expressing endogenous PML, the DBB1 and DCC mutants

were not recruited into virus-induced foci in PML depleted cells

(Figure 5B). The most variable results were obtained with the

DRING mutant in PML depleted cells. In most cells infected with

ICP0 null mutant HSV-1 this mutant remained nuclear diffuse,

but in some cells it was recruited with variable efficiencies

(Figure 5B). We conclude that whereas B-Box 1 and the coiled-coil

are essential for PML recruitment to virus induced foci, B-Box 2 is

dispensable, and inactivation of the RING greatly diminishes but

does not always eliminate recruitment.

The SIM of Sp100 is required for recruitment to HSV-1
induced foci

Given that recruitment of PML to sites to HSV-1 induced foci is

dependent on its SIM, we investigated whether recruitment of

other ND10 proteins is also SIM dependent. Sp100A is the

smallest and most abundantly expressed Sp100 isoform. It includes

a SIM (residues 323–326), a major SUMO modification site at

Figure 2. SIM deletion mutants of PML are defective in
recruitment to sites associated with HSV-1 genomes. A. Maps
of PML isoforms I and IV and derivatives lacking exon 7a. B. Western
blot of the EYFP-linked proteins in control and PML depleted cells using
an anti-EGFP antibody. The major unmodified bands of the EYFP-PML
proteins are indicated by asterisks. C. Localization of EYFP-PML proteins
(green) and endogenous Sp100 (red) in uninfected control and PML
depleted cells. D. Typical assays of recruitment of EYFP-proteins (green)
to sites associated with HSV-1 genomes (ICP4; red) in ICP0 null mutant

(DICP0) infected control and PML depleted cells. Scale bars indicate
5 mm.
doi:10.1371/journal.ppat.1002123.g002

SIM Dependent Recruitment of PML to HSV-1 Genomes
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lysine 297, and a region near the N-terminus that is required for

localization to ND10 the HSR domain (Figure 6A) [33,34].

Control and Sp100-depleted HepaRG cells [6] were transduced

with lentivirus vectors expressing EYFP-linked Sp100A and

mutants lacking the HSR domain (DHSR), the SUMO modifica-

tion site (K297R) or the SIM (mSIM), or a combination of both

K297R and mSIM mutations (DSSIM). Consistent with previous

studies [33,34], none of the mutant proteins exhibited the SUMO

modification pattern characteristic of wt Sp100A (Figure 6C). The

mSIM mutant of Sp100A at least partially co-localized with PML

in control cells, and also in Sp100 depleted cells expressing higher

levels of the recombinant protein (Figure 7B, leftmost panels),

although it was nuclear diffuse when weakly expressed in Sp100

depleted cells (not shown).

Both wt and K297R mutant EYFP-Sp100A were recruited to

the virus-induced foci in both control and Sp100 depleted cells

Figure 3. SUMO modification mutants of PML are defective in
recruitment to sites associated with HSV-1 genomes. A. Maps of
PML isoforms I and IV and derivatives with lysine to arginine
substitutions at residues K160 and K490. B. Western blot of these
proteins in control and PML depleted cells, using an anti-EGFP antibody.
The major unmodified bands of the EYFP-PML proteins are indicated by
asterisks. C. Localization of the EYFP-PML proteins (green) and
endogenous Sp100 (red) in uninfected control and PML depleted cells.
D. Typical assays of recruitment of these PML proteins (green) to sites

associated with HSV-1 genomes (ICP4; red) in ICP0 null mutant (DICP0)
infected control and PML depleted cells. Scale bars indicate 5 mm.
doi:10.1371/journal.ppat.1002123.g003

Figure 4. FRAP analysis of wt PML isoforms and SUMO
modification and SIM deletion mutants of PML.I and PML.IV
in control and PML depleted cells. A. Examples of the original data
of PML.I and PML.I.KK in control HepaRG shLuci cells.B. The means and
standard deviations of the percentage recoveries at the final time point
for each of the proteins in both cell backgrounds. Statistical significance
between the indicated data sets was calculated by Student’s two-tailed
t-Test, p = ,0.0001.
doi:10.1371/journal.ppat.1002123.g004

SIM Dependent Recruitment of PML to HSV-1 Genomes
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(Figure 7A and C), indicating that, unlike PML, the major SUMO

modification site is not required for Sp100A recruitment. Although

the HSR deletion mutant was not so recruited (Figure 7C, right-

most panels, and Figure S10B), it is possible that this deletion

causes major structural defects because this mutant does not

localize to ND10 in uninfected cells (Figure 7B). The Sp100A.m-

SIM and DSSIM mutants were recruited to virus-induced foci in

cells containing endogenous Sp100, but not in its absence

(Figure 7C, leftmost panels, and Figure S10B; data not shown

for DSSIM). These results indicate that the SIM of Sp100, like that

of PML, is required for recruitment, but in its absence the mSIM

mutant can be recruited through an interaction with endogenous

Sp100, most likely through the HSR domain [34].

The SIM of hDaxx is required for its recruitment to HSV-1
induced foci

Like PML and Sp100, hDaxx includes a SIM (at its C-terminus;

Figure 8A) and is also recruited to HSV-1 induced ND10-like foci

[18,35]. Both wt and mSIM mutant versions of hDaxx were

expressed in control (data not shown) and hDaxx depleted cells

(Figure 8B). The wt protein co-localized with PML in ND10

(Figure 8C, upper row, left), but the mSIM mutant was diffusely

distributed in the nucleus (Figure 8C, upper row, right). As with

PML and Sp100, wt but not SIM mutant EYFP-hDaxx was

recruited to the virus-induced foci in hDaxx depleted cells

(Figures 8C and S10C).

PIAS2b and SUMO isoforms are present at HSV-1 induced
foci

The requirement of the SIMs of PML, Sp100 and hDaxx for

recruitment to the HSV-1 induced foci suggests that these proteins

may be interacting with components of the SUMO conjugation

pathway at these locations. Therefore we examined the behaviour

of SUMO isoforms and the SUMO E3 ligase PIAS2b in this

experimental system. We found that PIAS2b, as detected by an

antibody that recognizes the endogenous protein, is an ND10

component (Figure 9C, upper left). This suggests that PIAS

proteins could be involved in ND10 assembly, consistent with the

observation that ectopically expressed tagged PIAS1 localizes to

ND10 in Vero cells [36]. In ICP0-null mutant HSV-1 infected

Figure 6. Expression and analysis of mutants of Sp100A and
their recruitment to sites associated with HSV-1 genomes. A.
Map of Sp100A and mutations introduced into EYFP-Sp100A fusion
proteins. The sequence targeted by the anti-Sp100 shRNA and the silent
mutations that render the mRNA resistant is marked (shSp100). B.
Western blot of wt EYFP-Sp100A in control and Sp100 depleted cells,
with anti-Sp100 and anti-EGFP antibodies (upper and lower parts,
respectively). The bands are as follows: a - double modification of EYFP-
Sp100A; b - single SUMO modification of EYFP-Sp100A; c - double
modification of endogenous Sp100; d - unmodified EYFP-Sp100A; e -
single SUMO modification of endogenous Sp100A; f - unmodified
endogenous Sp100A. C. Western blot of wt and mutant Sp100 proteins
in control and Sp100 depleted cells. The mutant DSSIM deletes residues
289–327 encompassing both the K297 SUMO modification site and the
SIM.
doi:10.1371/journal.ppat.1002123.g006

Figure 5. Most TRIM mutants of PML are defective in
recruitment to sites associated with HSV-1 genomes. A. Map
of the conserved PML.I showing the TRIM elements and the mutations
introduced into EYFP-PML.I, adapted from [23]. Analysis of the
localization of these proteins in uninfected cells and their expression
levels is presented elsewhere [23]. B. Typical assays of recruitment of
these PML proteins (green) to sites associated with HSV-1 genomes
(ICP4; red) in cells at the edges of ICP0 null mutant (DICP0) plaques in
control and PML depleted cells (left- and right-hand sets of images,
respectively). Scale bars indicate 5 mm.
doi:10.1371/journal.ppat.1002123.g005

SIM Dependent Recruitment of PML to HSV-1 Genomes
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cells, SUMO-1, SUMO-2/3 and PIAS2b were clearly recruited to

the virus-induced foci (Figure 9A–C, right-hand panels). It could

be argued that the presence of SUMO isoforms would be expected

because both PML and Sp100 are recruited to the foci, and both

are heavily SUMO modified. However, recruitment of SUMO-2/

3 was readily evident in PML depleted cells (in which SUMO

modification of Sp100 is highly compromised) (Figure 9B), and

although recruitment of SUMO-1 and PIAS2b was very weak at

best in PML-depleted HepaRG cells (Figures 9A, 9C and S11D),

recruitment of PIAS2b remained strong in PML-depleted HFs

(Figure S11C). The presence of a SUMO E3 ligase in the virus-

induced foci suggests that the recruited SUMO-2/3 signal could

include newly generated SUMO conjugates, and it is possible that

this activity drives the PML-independent but SIM-dependent

recruitment of proteins such as hDaxx. Consistent with this

hypothesis, we have found that the recruitment of PML and

SUMO isoforms requires Ubc9 (the sole SUMO E2 conjugating

enzyme), and that the overall level of high molecular weight

SUMO conjugates increases in ICP0 null mutant HSV-1

infections (C. Boutell, D. Cuchet-Lourenço, E. Vanni, A. Orr,

and R.D. Everett, unpublished data).

Figure 7. Immunofluorescence analysis of Sp100 reconstructed
cells. A. Typical images of wt EYFP-Sp100A (green) in uninfected
control and Sp100 depleted cells co-stained for endogenous PML (red),
and its recruitment to sites associated with HSV-1 genomes (ICP4; red)
in cells at the edges of ICP0 null mutant (DICP0) plaques. B. Typical
images of the mSIM, K297R and DHSR mutant proteins (green) in
uninfected control and Sp100 depleted cells co-stained for endogenous
PML (red). C. Assays of recruitment of these mutant proteins to sites
associated with HSV-1 genomes (ICP4; red) in cells at the edges of ICP0
null mutant (DICP0) plaques. Scale bars indicate 5 mm.
doi:10.1371/journal.ppat.1002123.g007

Figure 8. Recruitment of hDaxx to sites associated with HSV-1
genomes is dependent on its SIM. A. Map of hDaxx and its major
features (PAH1 and PAH2 – paired amphipathic helices 1 and 2; D/E –
aspartic and glutamic acid rich region; S/P/T – serine, proline and
threonine rich region). The position and sequence of the SIM and the
changes in the mSIM mutant are indicated. B. Western blot of control
and hDaxx depleted cells, and depleted cells reconstituted with the wt
and mSIM mutant EYFP-hDaxx, using anti-hDaxx (upper panel) and
anti-EGFP (lower panel) antibodies. C. Typical images of wt and mSIM
mutant EYFP-hDaxx (green) in uninfected hDaxx depleted cells
co-stained for endogenous PML (red) (upper panels), and assays of
their recruitment to sites associated with HSV-1 genomes (ICP4; red) in
cells at the edges of ICP0 null mutant (DICP0) plaques (lower panels).
Scale bars indicate 5 mm.
doi:10.1371/journal.ppat.1002123.g008
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Recruitment of hDaxx and PML.I to HSV-1 induced foci
correlates with their antiviral properties

We investigated the biological significance of the recruitment of

PML and hDaxx to sites associated with HSV-1 genomes by

comparing the plaque formation efficiencies of wt and ICP0 null

mutant HSV-1 in various control and reconstituted cells.

Depletion of either PML or hDaxx increases the plaque formation

efficiency of ICP0 mutant HSV-1 while not affecting that of the wt

[5,6,7]. As expected, the plaque forming efficiency of the wt virus

was not significantly different in any of the cell lines tested here

(Figures 10A and 10B, upper histograms). Increased plaque

formation of ICP0 null mutant HSV-1 was observed in cells

depleted of either PML or hDaxx, and reintroduction of PML.I

and hDaxx reversed these phenotypes partially and completely,

respectively (Figures 10A and 10B, lower histograms), confirming

previous work [7,23]. However, reintroduction of the mSIM

mutants of PML.I and hDaxx had no effect on ICP0 null mutant

HSV-1 plaque formation (Figures 10A and 10B, lower histo-

grams). It may be relevant that mutation of its SIM reduces the

transcriptional repression activity of hDaxx [35]. We have

reported previously that PML.I.KK, PML.I.D7a are unable to

reproduce the repressive effect of PML.I on ICP0 null mutant

HSV-1 plaque formation [23]. The analogous experiments with

Figure 9. Recruitment of SUMO family members and PIAS2b to
HSV-1 induced foci. Left-hand images show uninfected cells and the
co-localization of SUMO-1 (A), SUMO-2/3 (B) and PIAS2b (C) (green) with
PML (red) in control (upper rows of each block of 4 images) and PML
depleted (low rows of each block of 4 images) HepaRG cells. Right-hand
images show typical examples of recruitment of the indicated proteins
to sites associated with HSV-1 genomes (ICP4; red) in cells at the edges
of ICP0 null mutant (DICP0) plaques in control and PML depleted
HepaRG cells. Scale bars indicate 5 mm.
doi:10.1371/journal.ppat.1002123.g009

Figure 10. The SIMs of PML and hDaxx are required for
repression of ICP0 null mutant HSV-1 plaque formation. A.
Relative plaque forming efficiencies of wt (upper histogram) and ICP0-
null mutant (lower histogram) HSV-1 in control and hDaxx-depleted
cells and in cells reconstituted with the wt and mSIM mutant proteins.
The data show means and standard deviations from 3 independent
experiments. The statistical significance between the ICP0 null mutant
plaque forming efficiencies in wt and mSIM mutant reconstituted cells
is marked (Student’s two-tailed t-Test, p = ,0.05). B. As in A, except
using control, PML-depleted and the indicated PML reconstituted cell
lines. The data show means and standard deviations from 5
independent experiments. Statistical significance shown as in A
(Student’s two-tailed t-Test, p = ,0.001).
doi:10.1371/journal.ppat.1002123.g010
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Sp100 were not informative because reintroduction of Sp100A

into Sp100 depleted cells did not reverse the effect of Sp100

depletion (data not shown), possibly because it is the longer

isoforms of Sp100 (Sp100B, -C and -HMG) that are thought to act

as repressors, rather than Sp100A [37,38,39]. There is therefore a

correlation between the recruitment of PML and hDaxx to foci

associated with HSV-1 genomes and their involvement in intrinsic

resistance to virus infection.

Discussion

The recruitment of ND10 components to sites that are closely

associated with parental HSV-1 genomes and early replication

compartments is a dramatic cellular response to entry of the viral

genome into the nucleus. It occurs very rapidly, being detectable

as early as 30 minutes after addition of virus to a cell monolayer

[20], and it occurs independently of de novo viral protein synthesis,

implying that it is the viral DNA itself (perhaps in association with

viral tegument proteins) that signals the response [18]. These

observations raise several important questions, including the

nature of the mechanism underlying the recruitment, the

biological significance of the response, and the wider implications

of these events.

We found that endogenous PML and Sp100 have dominant

influences on the behaviour of introduced mutant forms of these

proteins, obscuring the role of the mutated motifs (Figures 1–3, 5

and 7). Expression of the reintroduced proteins at close to

endogenous levels is also important, as when expressed in excess a

protein may be unable to interact efficiently with limiting binding

partners in the cell. With these issues overcome, we found that the

recruitment of PML to the virus-induced foci depends on its SIM,

despite the fact that the mSIM mutant is indistinguishable from

the wt in terms of localization and SUMO modification in

uninfected cells (Figure S6). Recruitment of PML to the virus-

induced sites is also compromised by mutation of the major

SUMO modification sites (K160 and K490) and by alterations in

the B-Box 1, coiled-coil and RING motifs (Figures 3 and 5). It is

unsurprising that elements of the TRIM are important for PML

behaviour because these mutations greatly reduce SUMO

modification [23] and are likely to have major consequences on

PML structure and interactions.

It has been reported that the SIM of PML is required for

normal ND10 assembly [26]. Our finding that PML.I.mSIM and

PML.I.D7a co-localize with Sp100 in PML depleted cells is not

inconsistent with the data in this previous study, since the effect of

removal of the SIM was observed only when the PML isoform

used (PML.III) also lacked SUMO modification sites. Thus the

SIM mutant of PML.III still co-localized with hDaxx and SUMO,

even in PML (2/2) mouse fibroblasts [26]. That the SIM is not

essential for ND10 localization is also consistent with previous

studies utilizing PML.VI in PML depleted cells [8,23], because this

is a natural SIM deletion mutant.

The SIMs of both Sp100 and hDaxx are also important for their

recruitment to the virus-induced foci (Figures 7 and 8). Given that

SUMO modification of Sp100A is not required (Figures 6 and 7),

and hDaxx appears not to be detectably SUMO modified in our

system (Figure 8), we conclude that it is the SIM rather than SUMO

modification that is the common essential feature for recruitment of

these proteins to the virus-induced foci. The conclusion that SUMO

modification of Sp100A is not required for this behaviour is

supported by the observation that Sp100 is not SUMO modified in

PML depleted cells, yet is still recruited to the viral foci [5,6].

The importance of the SIM in recruitment to the virus-induced

foci implies that PML, hDaxx and Sp100 are responding to an

earlier SUMO-dependent event at these sites. This conclusion is

supported by our recent data demonstrating that Ubc9 is required

for efficient recruitment of PML to the virus induced foci (C.

Boutell, D. Cuchet-Lourenco, E. Vanni, A. Orr, and R.D. Everett,

unpublished data). This raises the question of which factors these

ND10 components are interacting with, through their SIMs, to

enable their recruitment to the virus-induced foci. Recruitment of

PML is not dependent on de novo viral gene expression [18],

implying that the initial event involves cellular proteins and their

recognition of the viral genomes. Because the viral DNA is not

chromatinized at the time of entry into the nucleus, its

conformation is entirely different from cellular chromatin. It

would be expected that many cellular proteins would become

associated with the initially naked viral DNA, and one or more of

these could initiate the SUMO-dependent recruitment process.

The detection of PIAS2b in the novel foci implies that SUMO E3

ligases are involved in the assembly of the novel foci. This is the

first report that PIAS2b is involved in ND10 biology, and it is

intriguing that the protein has also been implicated in DNA

damage and interferon pathways [40,41].

The mechanisms that underlie formation of the virus-induced

structures are distinct in a number of respects from those required

for normal ND10 assembly. For example, PML is not required for

recruitment of Sp100 and hDaxx to the virus-induced foci

[5,6,20], and depletion of any one of these three proteins does

not eliminate recruitment of the remaining two [6,7]. Some of the

PML mutants also illustrate the differences between normal and

virus-induced ND10 related structures: PML.I.DBB2 does not

colocalize with Sp100 in uninfected cells [23] but is recruited very

efficiently to the virus-induced foci (Figure 5). On the other hand,

recruitment of ATRX to both normal and virus-induced ND10

structures is dependent on hDaxx [7], illustrating that both specific

protein-protein interactions and SIM dependent interactions are

involved in building the virus-induced foci. PML-PML interac-

tions through the coiled-coil and Sp100-Sp100 interactions

through the HSR motif also influence assembly of the virus-

induced structures (Figures 2, 3 and 7). A picture emerges that the

building of these foci involves multiple interactions between

distinct proteins, protein dimerization events, and SIM-SUMO

interactions.

Our data imply a general importance for SUMO related

pathways in the nucleation of the HSV-1 induced ND10-like foci.

Because SUMO-2/3 and PIAS2b can also be recruited into these

structures in a PML-independent manner (Figures 9 and S11), it is

attractive to speculate that these events reflect ongoing SUMO

conjugation events. We note that the genomes and replication

compartments of many DNA viruses are closely associated with

PML and ND10-like structures (reviewed in [42,43]). It would be

surprising if the principles revealed here concerning HSV-1

infection were not involved in ND10 association with other viral

genomes, and there is evidence that this is the case in human

cytomegalovirus infected cells [8,44]. Therefore the events

reported here are likely to reflect a more general cellular response

to foreign DNA entering the nucleus. It is possible that the cell is

responding to viral genomes in a manner related to that of the

DNA damage response. Recent evidence demonstrates that

SUMO modification is intimately involved in the assembly of

DNA damage response foci, and SUMO conjugates are present at

these locations [45,46]. ICP0 inhibits the formation of these

structures by inducing the degradation of RNF8 and RNF168

[47], but it is possible that ICP0 might also impede any

recruitment of SUMO conjugated proteins to DNA damage foci,

as it does in regard to the viral genome associated ND10-like foci

(see below). These observations raise the intriguing possibility of
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commonalities between the DNA damage response, the assembly

of HSV-1 induced ND10-like foci, and intrinsic resistance to

HSV-1 infection.

The observations that the SIM mutants of PML.I and hDaxx

are unable to reproduce the repression of ICP0 null mutant HSV-

1 infection conferred by the wt proteins (Figure 10) imply that the

recruitment of these proteins to the virus-induced foci is

biologically significant and contributes to the repression of ICP0

null mutant HSV-1 infection. Recruitment of all ND10 compo-

nent proteins so far studied is counteracted by ICP0 [7,18,20].

ICP0 inhibits PML recruitment by inducing its degradation

[15,17]. This simple mechanism does not, however, explain why

recruitment of all ND10 proteins is inhibited by ICP0. Although

ICP0 promotes the loss of SUMO modified Sp100 [16] this

cannot explain why Sp100 recruitment is inhibited because the

K297R mutant is still recruited (Figure 7). Furthermore, ICP0

does not promote the degradation of either hDaxx or ATRX [7].

Previous work has demonstrated that ICP0 induces the widespread

degradation of SUMO conjugated proteins [15]. This activity

provides an attractive explanation of how ICP0 inhibits recruit-

ment of this group of proteins to virus-induced foci, since

degradation of SUMO conjugates would eliminate SIM depen-

dent interactions.

These arguments suggest a direct link between SUMO-

dependent pathways and the mechanism of intrinsic cellular

resistance to HSV-1 infection that is counteracted by ICP0. We

propose that the cell responds to foreign DNA that enters the

nucleus by stimulating SUMO conjugation events at sites

associated with the introduced DNA, leading to recruitment of

other proteins in a SIM dependent manner and resulting in a

repressive environment. We note that there are several examples

of factors involved in transcriptional repression that are regulated

by SUMO modification [48], and that SUMO modification

pathways have been linked to a general cellular response to

pathogens [49]. This concept is strengthened by our related studies

(C. Boutell, D. Cuchet-Lourenço, E. Vanni, A. Orr, and R.D.

Everett, unpublished data) that demonstrate the involvement of

Ubc9 in intrinsic antiviral resistance, and that ICP0 has SUMO-

targeted ubiquitin ligase activities that play an important role in its

ability to counteract this resistance.

Materials and Methods

Cells
U2OS, HEK-293T and human fibroblast cells were grown in

Dulbecco’s Modified Eagles’ Medium with 10% fetal calf serum

(FCS). Baby hamster kidney (BHK) cells were grown in Glasgow

Modified Eagles’ Medium with 10% new born calf serum and

10% tryptose phosphate broth. HepaRG cells [50] were grown in

William’s Medium E with 10% fetal bovine serum Gold (PAA

Laboratories Ltd), 2 mM glutamine, 5 mg/ml insulin and 0.5 mM

hydrocortisone. All cell growth media contained 100 units/ml

penicillin and 100 mg/ml streptomycin.

Lentivirus expression vectors and cells
Lentivirus vector plasmids expressing shRNAs, EYFP-hDaxx,

and EYFP-PML isoforms I to VI, mutants of PML.I with lesions in

the RING finger (DRING), B-Box 1 (DBB1), B-Box 2 (DBB2), the

coiled-coil motif (DCC) and at SUMO modification sites K160

and K490 were as described [6,7,23]. The following PML mutants

were constructed using PCR splicing with mutagenic oligonucle-

otides: PML.I.D7a and PML.IV.D7a (precise deletions of exon 7a

in PML.I and PML.IV cDNAs); PML.IV.KK (K160R, K490R

mutations in the PML.IV background); PML.I.mSIM (residues

566–569 VVVI mutated to VGGG); PML.I.K123 (mutations

K65R, K160R, K490R); PML.I.K234 (K160R, K490R, K616R);

PML.I.K1-4 (lysine residues K65, K160, K490 and K160 mutated

to arginine). Lentivirus transduced HepaRG cells expressing

EYFP-linked proteins were sorted by FACS, as described [23].

HFs expressing control and anti-PML shRNAs [5] and EYFP-

PML.I, PML.VI, PML.I.D7a, PML.I.KK and PML.I.K1-4 were

isolated using the same methodology.

Sp100 and hDaxx expression vectors and cells
Lentivirus vectors expressing EYFP-Sp100 isoform A (using a

cDNA resistant to the anti-Sp100 shRNA) and derivatives lacking

the HSR region (Sp100.DHSR, deletion of residues 68–146), the

major SUMO modification site and the SIM combined

(Sp100.DSSIM, deletion of residues 289–327), the major SUMO

modification site alone (Sp100.K297R) and with point mutations

in the SIM alone (residues 323 to 326 IIVI changed to IGAG;

Sp100.mSIM) were constructed using PCR splicing. A lentivirus

vector expressing EYFP- hDaxx with lesions in the SIM (residues

733 to 736 IIVI changed to IGAG) was constructed by PCR

directed mutagenesis. HepaRG cells expressing wt and mutant

hDaxx were enriched by FACS.

Lentivirus transduction
Lentivirus vector plasmids were co-transfected into HEK-293T

cells with helper plasmids pVSV-G and pCMV.DR.8.91, then the

supernatants were used to transduce HF or HepaRG cells. All

shRNA vectors express puromycin for selection (initially 1 mg/ml,

then reduced to 0.5 mg/ml during subsequent passage), and all

expressing a protein of interest confer G418 resistance (selection

initially 1 mg/ml, then reduced to 0.5 mg/ml during subsequent

passage).

HSV-1 strains and plaque assays
Wild type HSV-1 strain 17syn+ and its ICP0 null mutant

derivative dl1403 [51] were grown in BHK cells and titrated in

U2OS cells. Derivatives of wt and ICP0-null mutant HSV-1 that

include a b-galactosidase gene linked to the human cytomegalo-

virus immediate-early promoter/enhancer (in1863 and dl1403/

CMVlacZ) were used for plaque assays, as described [5].

Western blot analysis and antibodies
Cells in 24-well dishes at 16105 cells per well were washed with

phosphate buffered saline PBS) before harvesting in SDS-PAGE

loading buffer. Proteins were resolved on 7.5% SDS-gels, then

transferred to nitrocellulose membranes by western blotting. The

following antibodies were used: anti-actin mAb AC-40 (Sigma-

Aldrich); anti-PML mAb 5E10 [52]; anti-Sp100 rabbit serum

SpGH [53]; anti-hDaxx rabbit polyclonal D7801 (Sigma-Aldrich);

anti-EGFP rabbit polyclonal ab290 (Abcam).

Immunofluorescence and confocal microscopy
Cells on 13 mm glass coverslips were fixed using 1.5% (v/v)

formaldehyde in PBS containing 2% sucrose then treated with

0.5% Nonidet P40 substitute (EuroClone S.p.A.) in PBS/10%

sucrose. PML was detected with mAb 5E10 and ICP4 with mAb

58S. Rabbit polyclonal antibodies were used for Sp100 (SpGH),

hDaxx (07-471, Upstate), SUMO-1 (ab32058, Abcam), SUMO-2/

3 (ab3742-100, Abcam), PIAS2b (gifted by Mary Dasso). The

secondary antibodies were FITC conjugated goat anti-mouse IgG

(Sigma), Alexa 488 and Alexa 633 conjugated goat anti-rabbit and

anti-mouse IgG, and Alexa 555 conjugated donkey anti-rabbit and

anti-mouse IgG, (Invitrogen). A glycerol-based mounting medium
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was used (Citifluor AF1). The samples were examined using a

Zeiss LSM 510 confocal microscope with 488 nm, 543 nm and

633 nm laser lines and a 663 Plan-Apochromat oil immersion

lens, NA 1.40. Exported images were processed using Adobe

Photoshop with minimal adjustment, then assembled for presen-

tation using Adobe Illustrator.

Fluorescence recovery after photobleaching
Cells were seeded into modified 35 mm dishes with the central

area replaced by coverslip glass (MatTek Corporation). Fluores-

cence recovery after photobleaching (FRAP) was conducted using

an LSM 510 META microscope with full environmental control.

In each experiment, 3 PML foci in 10 different cells were subject

to bleaching (100% power of the 514 nm laser, 10 reiterations),

then 20 images were captured over a period of approximately two

minutes during the recovery phase. Regions of interest were

analyzed by subtracting the average pixel intensity in unbleached

background areas and normalizing to any changes in overall

intensity of a similar unbleached PML structure to control for any

bleaching of the scanned areas during image acquisition. The data

for each protein were assembled into an Excel file for graphical

representation of the average plus standard deviation at each time

point.

Supporting Information

Figure S1 Recruitment of PML isoforms I to VI in control

shLuci HepaRG cells. The separated channels (shown in greyscale)

and the merge of the images in Figure 1C are shown. The

background cell type, the identity of the EYFP-linked PML

isoform proteins and the colours used for the merged channels are

indicated on each set of panels. For comparison, the upper left two

rows of the upper left block of images show typical examples in

which recruitment does occur. Scale bars indicate 5 mm.

(PDF)

Figure S2 Recruitment of PML isoforms I to VI in PML

depleted HepaRG cells. The separated channels (shown in

greyscale) and the merge of the images in Figure 1D are shown.

The background cell type, the identity of the EYFP-linked PML

isoform proteins and the colours used for the merged channels are

indicated on each set of panels. For comparison, the upper left two

rows of the upper left block of images show typical examples in

which recruitment does occur. Scale bars indicate 5 mm.

(PDF)

Figure S3 Confocal microscopy analysis of control and PML

depleted HFs expressing EYFP-PML.I and EYFP-PML.I.D7a. A.

Control shLuci expressing transduced HFs and derivatives

expressing EYFP-PML.I and the PML.I.D7a mutant. The upper

row shows HF-shLuci control cells stained for endogenous PML

and Sp100. The introduced PML.I and PML.I.D7a proteins were

detected by EYFP autofluorescence and staining for Sp100 (red).

B. As A, but in the PML-depleted HF-shPML background. The

background cell type, the identity of the detected proteins and the

colours used for the merged channels are indicated on each set of

panels. Scale bars indicate 5 mm.

(PDF)

Figure S4 Comparative data on recruitment of PML.I and

PML.VI in HFs. A. HF-shLuci cells infected with ICP0 null

mutant HSV-1 (DICP0). The images are of cells at the periphery

of developing plaques, showing assays of recruitment PML

proteins to sites associated with viral genomes (ICP4, red). Upper

row; endogenous PML; middle row, introduced EYFP-PML.I;

lower row, introduced EYFP-PML.VI. B. As in A, but in the

PML-depleted HF-shPML background. The background cell type,

the identity of the detected proteins and the colours used for the

merged channels are indicated on each set of panels. Scale bars

indicate 5 mm.

(PDF)

Figure S5 PML.I.D7a is not recruited to virus-induced foci in

the absence of endogenous PML. A. The separated greyscale and

merged channels from Figure 2D. B and C. Comparative data in

the HF background. Recruitment of EYFP-PML.I.D7a to virus-

induced sites in the HF-shLuci (B) but not the HF-shPML (C)

reconstituted cells. The background cell type, the identity of the

detected proteins and the colours used for the merged channels are

indicated on each set of panels. Scale bars indicate 5 mm.

(PDF)

Figure S6 Analysis of mutant protein PML.I.mSIM. A. Map of

PML.I showing the location and nature of the mSIM mutation. B.

Western blot analysis of EYFP-PML.I and EYFP-PML.I.mSIM in

control and PML depleted backgrounds, detected with an anti-

EGFP antibody. The locations of the unmodified PML bands are

indicated by asterisks. C. Immunofluorescence analysis of EYFP-

PML.I.mSIM in uninfected control and PML depleted cells

stained for Sp100 (red). The images are single plane projections

from short z-stacks. D. Immunofluorescence analysis of EYFP-

PML.I.mSIM in developing ICP0-null mutant HSV-1 plaques in

control and PML depleted cells. Scale bars indicate 5 mm.

(PDF)

Figure S7 Analysis of SUMO modification site mutants of

PML.I. A. Map of PML.I showing the four lysine residues of

interest and nomenclature of the mutant proteins. B. Western blot

analysis of PML.I SUMO modification site mutants in control and

PML depleted cells.

(PDF)

Figure S8 Confocal microscopy analysis of SUMO modification

mutants of PML.I and PML.IV. A. Immunofluorescence analysis

of EYFP-PML.I.4KR in uninfected control and PML depleted

HepaRG cells. B. The separated greyscale and merged channels

from the images of Figure 3D. C. EYFP-PML.I.4KR is not

recruited to viral foci in ICP0 null mutant infected PML depleted

cells. The images are single plane projections from short z-stacks.

Scale bars indicate 5 mm.

(PDF)

Figure S9 Comparative confocal microscopy analysis of SUMO

modification mutants of PML.I in HFs. A. Immunofluorescence

analysis of EYFP-PML.I.4KR in uninfected HF-shLuci cells and

of EYFP-PML.I.KK and EYFP-PML.I.4KR in uninfected HF-

shPML cells stained for Sp100. B. Immunofluorescence analysis of

EYFP-PML.I.4KR in ICP0-null mutant HSV-1 infected HF-

shLuci cells and of EYFP-PML.I.KK and EYFP-PML.I.4KR in

ICP0-null mutant HSV-1 infected HF-shPML cells. The images

are single plane projections from short z-stacks. Scale bars indicate

5 mm.

(PDF)

Figure S10 Separated channels of images depicting failure of

TRIM mutants of PML.I (A), Sp100 (B) and hDaxx (C) to be

recruited to sites associated with HSV-1 genomes and early

replication compartments. The two colour images are taken from

the indicted figures in the main text, with the greyscale images of

their separated channels. The background cell type, the identity of

the detected proteins and the colours used for the merged channels

are indicated on each set of panels. Scale bars indicate 5 mm.

(PDF)
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Figure S11 Recruitment of SUMO family members and

PIAS2b to HSV-1 induced foci in control and PML-depleted

HFs. Left-hand images of each block of 4 in parts A–C show

uninfected cells and the co-localization of SUMO-1 (A), SUMO-

2/3 (B) and PIAS2b (C) (green) with PML (red) in control (upper

rows of each block of 4 images) and PML depleted (lower rows of

each block of 4 images) HFs. Right-hand images show typical

examples of recruitment of the indicated proteins to sites

associated with HSV-1 genomes (ICP4; red) in cells at the edges

of ICP0 null mutant (DICP0) plaques in control and PML depleted

HFs. Panel D shows the separated channels of the images of

Figure 9 panels A and C, illustrating SUMO-1 and PIASb in

infected PML depleted HepaRG cells. Scale bars indicate 5 mm.

(PDF)
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