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Abstract
Consider the first-order linear differential equation with several retarded arguments

m

X0+ pilx(t0) =0, t>1,

=1

where the functions p;, T; € C([ty,00), R) forevery i=1,2,...,m, 7;(t) < tfort > to and
lim 0o Ti(t) = 00. A survey on the oscillation of all solutions to this equation is
presented in the case of several non-monotone arguments and especially when
well-known oscillation conditions are not satisfied. Examples illustrating the results
are given.

MSC: Primary 34K11; secondary 34K06
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1 Introduction

Consider the differential equation with several non-monotone retarded arguments

X(O)+ ) ptx(n(t)) =0, t>to, (L1)

i=1

where the functions p;, 7; € C([£,00), R*) foreveryi=1,2,...,m (here R* = [0, 00)), 7;(¢) <
t for t > ty and lim;_, o, 7;(¢) = 0c0.

Let Ty € [to, +00), T(t) = min{z;(t) : i = 1,...,m} and 7(_1y(¢) = inf{z(s) : s > ¢}. By a solu-
tion of equation (1.1), we understand a function u € C([ty, +00); R) continuously differen-
tiable on [r(_1)(To), +00) that satisfies (1.1) for ¢ > 7(_1)(T,). Such a solution is called oscil-
latory if it has arbitrarily large zeros, and otherwise it is called non-oscillatory.

In the special case where m = 1, equation (1.1) reduces to the equation

& () + p(O)x(() =0, t=>to, (1.2)
where the functions p, T € C([ty,00), R*), T(t) < ¢t for t > ¢y and lim;_, o T(£) = 00.

For the general theory of these equations, the reader is referred to [1-4].
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In this paper we present a survey on the oscillation of all solutions to these equations in
the case of several non-monotone arguments and especially when the well-known oscil-

lation conditions

t t
1
lim sup / p(s)ds>1 and liminf / p(s)ds > -

t>00 Jr(t) t=o0 Jr €

for equation (1.2) are not satisfied.

2 Oscillation criteria for equation (1.2)
In this section we study the delay equation

& () + p(O)x(() =0, t=>to,

where the functions p, T € C([£y,00), R*), t(t) < ¢ for ¢t > £y and lim,_, o, T(£) = 0.

The problem of establishing sufficient conditions for the oscillation of all solutions to the
differential equation (1.2) has been the subject of many investigations. See, for example,
[1, 5-26] and the references cited therein.

The first systematic study for the oscillation of all solutions to equation (1.2) was made
by Myshkis. In 1950 [20] he proved that every solution of equation (1.2) oscillates if

1
lim sup[t - r(t)] <00 and lim inf[t - r(t)] liminfp(t) > -.
t—00 t—00 t—00 e

In 1972, Ladas et al. [27] proved that the same conclusion holds if in addition 7 is a
non-decreasing function and

t
(C) A= limsup/ p(s)ds >1.
t—00 7(t)

In 1979, Ladas [17] established integral conditions for the oscillation of equation (1.2)
with constant delay, while in 1982, Koplatadze and Chanturija [14] established the follow-
ing result. If

t

1
(Cy) a:= liminf/ p(s)ds> -,
t—00 (8) e

then all solutions of equation (1.2) oscillate; if

(N7) lim sup/t p(s)ds < 1,
t—>o0  Jr(t) e
then equation (1.2) has a non-oscillatory solution.

It is obvious that there is a gap between conditions (C;) and (C,) when the limit
limy— o0 f:( 5 p(s)ds does not exist. How to fill this gap is an interesting problem which has
been recently investigated by several authors.

In 1988, Erbe and Zhang [10] developed new oscillation criteria by employing the upper
bound of the ratio x(z(¢))/x(¢) for possible non-oscillatory solutions x(¢) of equation (1.2).
Their result says that all the solutions of equation (1.2) are oscillatory if 0 < a < % and
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2
a
(Cg) A>1—Z.

Since then several authors tried to obtain better results by improving the upper bound for
x(t(2))/x(2).
In 1991, Jian [12] derived the condition
2

a
2(1-a)’

(C4) A>1-

while in 1992, Yu et al. [25] obtained the condition

l1-a-+1-2a-a?

(C5)A>1— 5

In 1990, Elbert and Stavroulakis [8] and in 1991 Kwong [16], using different techniques,
improved (Cs), in the case where 0 < a < %, to the conditions

1 2
(C6) A>1—<1—«/—)L_1>

and

Ini +1
(C) A> 2112
A

respectively, where A, is the smaller real root of the equation A = %,
In 1998, Philos and Sficas [21] and in 1999, Zhou and Yu [26] and Jaro$ and Stavroulakis
[11] derived the conditions

2 02
Cy) A>l—— — —,
(Cg) A> 20—a) 2 1
l-a-+1-2a-a? 1\*
(Co) A>1-—2 a-a _(1__),
2 N
and

Ini;+1 l1-a-+1-2a—a?
> p—

Cp) A
(Cro) )\1 5

’

respectively.

Consider equation (1.2) and assume that 7(¢) is continuously differentiable and that there
exists 0 > 0 such that p(z(£))t’(£) > Op(t) eventually for all £. Under this additional as-
sumption, in 2000, Kon et al. [13] and in 2003, Sficas and Stavroulakis [22] established
the conditions

2
(Ch) A>2a+— -1,
A

and

InA; =1+ 4/5-27 +2ai;
Cp) A> )
(Ci2) )~1
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respectively. In the case where a = %, then A; = e, and (C}5) leads to

V7 —2e

e

A > ~ 0.459987065.

It is to be noted that for small values of a (a — 0), all previous conditions (C3)-(Cy;)

reduce to condition (Cy), i.e., A > 1. However, condition (Cj,) leads to
A>+/3-1~0732,

which is an essential improvement. Moreover, (C;2) improves all the above conditions for
all values of a € (0, %]. Note that the value of the lower bound on A cannot be less than
% ~ 0.367879441. Thus, the aim is to establish a condition which leads to a value as close
as possible to %

For illustrative purpose, we give the values of the lower bound on A under these condi-
tions when (i) a = 1/1,000 and (ii) a = 1/e.

(i) (ii)
(C3): 0.999999750 0.966166179
(Ca): 0999999499 0.892951367
(Cs): 0.999999499 0.863457014
(Ce): 0999999749 0.845181878
(C7): 0.999999499 0.735758882
(Cg): 0999998998 0.709011646
(Co): 0.999999249 0.708638892
(Cio): 0999998998 0.599215896
(Cn): 0999999004 0.471517764
(Ci2):  0.733050517  0.459987065

We see that condition (Cj;) essentially improves all the known results in the literature.

Moreover, it should be pointed out that in 1994, Koplatadze and Kvinikadze [15] im-

proved (Cs) as follows: Assume

o(t):=supt(s), t=>0.

s<t

Clearly o (¢) is non-decreasing and 7(¢) < o (¢) for all £ > 0. Define

Y (t) =0, Yi(2) :exp{/()p(é)wil(é)dé}, i=23,..., fort e R".

Then the following theorem was established in [15].

Theorem 2.1 ([15]) Let k € {1,2,...} exist such that

t—00 (s

t o(t)
limsup/( )p(s) exp{/ | pE)Yk(§) dé
ot o

}ds> 1-c(a),

(2.1)

(2.2)

(2.3)

Page 4 of 15
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where o, Yy, a are defined by (2.2), (2.4), (C,), respectively, and

ifa>?1,

0
s0-a-v1-2a-a?) if0<a<i.

c(a) =

Then all solutions of equation (1.2) oscillate.

Concerning the constants 1 and % which appear in conditions (Cy), (C3) and (), in

2011, Berezansky and Braverman [6] established the following theorem.

Theorem 2.2 ([6]) For any o € (1/e,1), there exists a non-oscillatory equation
X)) +pt)x(t-1)=0, T>0

with p(t) > 0 such that

t
lim sup/ pls)ds =a.
t-1

t—00

Also in 2011, Braverman and Karpuz [7] investigated equation (1.2) in the case of a gen-

eral argument (7 is not assumed monotone) and proved the following.

Theorem 2.3 ([7]) There is no constant K > 0 such that

t
lim sup/ p(s)ds >K (2.4)

t—00 (g)

implies oscillation of equation (1.2) for arbitrary (not necessarily non-decreasing) argument
()<t

Remark 2.1 Observe that, because of condition (Np), the constant K in (2.4) makes sense
for K > 1/e.

Moreover, in [7] the following result was established.

Theorem 2.4 ([7]) Assume that

t a(t)
B:=lim sup/ )p(s) exp{/ p(“g‘)dé} ds>1, (2.5)

t—>00 (t (s)

where o () is defined by (2.1). Then all solutions of equation (1.2) oscillate.

Observe that condition (2.5) improves (C;).
Using the upper bound of the ratio % for possible non-oscillatory solutions x(¢) of
equation (1.2), presented in [8, 11, 13, 22], the above result was recently essentially im-

proved in [23].
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Theorem 2.5 ([23]) Assume that 0 <a < % and

t a(t)
B:= limsup/ p(s)exp{/ p(E)dé}ds>1—%(l—a—«/l—Za—aZ), (2.6)

t—>o00 ® (s)

where o (t) is defined by (2.1). Then all solutions of equation (1.2) oscillate.

Remark 2.2 ([23]) Observe that as a — 0, then condition (2.6) reduces to (2.5). However,

the improvement is clear as a — 1. Actually, when a = %, the value of the lower bound on

e

Bis equal to ~ 0.863457014. That is, (2.6) essentially improves (2.5).

Remark 2.3 ([23]) Note that, under the additional assumption that 7(¢) is continuously
differentiable and that there exists 8 > 0 such that p(t(¢))t/(¢) > 6p(¢) eventually for all ¢
(see [13, 22]) condition (2.6) of Theorem 2.5 reduces to

1
B>1—5(1-a—,/(1—a)2—4M), (2.6")

where M is given by

et —\0a -1
(26)?

and A is the smaller root of the equation A = ¢**. When 6 = 1, then from [22] it follows that

1 1
5(1—a— (1—a)2—41\/1):1—a—X

and in the case that a = %, then A = e and (2.6') leads to

2 2
B>1- (1 - —) = —~0.735758882.
e e

That is, condition (2.6") essentially improves (2.6) but of course under the additional

(stronger) assumptions on 7(£) and p(£).
The following example illustrates the significance of Theorem 2.5.
Example 2.1 (¢f [7, 23]) Consider the equation
&)+ pt)x(c(0) =0, £>0, (2.7)
where p(t) = %, and
t-1, t€[3n,3n+1],

t(t):=1-3t+(12n+3), te[3n+1,3n+2], (2.8)
5t—-(12n+13), te[3n+2,3n+3].
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We see that
t-1, te3n3n+1],

o(t) = 1 3n, te€[3n+1,3n+2.6], (2.9)
5t—(12n+13), t€[3n+2.6,3n+3].

Observe that
. £ 0.93 0.93 1
a = liminf ——ds=——~0.34212788 < -,
t=oo Jop e e e

£ 0.93 0.93
lim supf ——ds=2.6—— =0.889532488 < 1.

t—00 © € e

Moreover, for n > 0, we have

3n+3 o (3n+3)
0.93 0.93
/ —_— exp{ / —d& } ds
o(3n+3) € 7(s) €
3n+3 3n+2
0.93 0.93
=/ —exp{/ —dé}ds
3n+2 € 5s—(12n+13) €

31+3.0.93 4.65
=/ —exp{—[3n+3—s]}ds
3 e

n+2 €

1 4.65

=z |:exp{ —} - 1] ~0.906499566 < 1. (2.10)
e

That is, conditions (C;), (C;) and (2.5) are not satisfied. Observe, however, that for a ~
0.34212788,

1
1- 5(1 -a-+1-2a-a?)~0.893938766

and from (2.10) we see that

t o(t) 1
limsup/ p(s)exp{/ p(é)d“;‘}ds>0.90>l—E(l—a—vl—za—c@)mo.89,
o(z) T

t—00 (t (s)

that is, the conditions of Theorem 2.5 are satisfied and therefore all the solutions of equa-

tion (2.7) with the general argument (2.8) are oscillatory.

3 Oscillation criteria for equation (1.1)
For equation (1.1) with several arguments, the following results have been established.

In 1982, Ladas and Stavroulakis [28] (see also in 1984, Arino et al. [5]) studied the equa-
tion with several constant retarded arguments of the form

K@)+ Y pltxt-1) =0, t>1, (11)

Page 7 of 15
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under the assumption that liminf;_, ftt—r,' P(8)ds>0,i=1,2,...,m, and proved that each
one of the following conditions

¢ 1
liminf/ pi(s)ds> - forsomei,i=1,2,...,m, (3.1)
t—00 t-1; e
t m
.. 1 .
hmmf/ Zp"(s) ds>—, wheret =min{t;7y,..., T}, (3.2)
t—00 t—t 5 e

1/m
|:H<th1nf/ p,(s)ds):| > 2, (3.3)

or

— Z(hmmf / pi(s) ds)

m

1
2 t t b 1
+ — Z liminf pi(s)ds || liminf pi(s)ds > - (3.4)
m “— t—00 t-7; t—00 -1 e

i<j
ij=1

implies that all solutions of equation (1.1’) oscillate. Later in 1996, Li [19] proved that the
same conclusion holds if

llmmfZ/ pi(s) ds> - (3.5)

In 1984, Hunt and Yorke [29], considered the equation with variable coefficients of the
form

KO+ piox(t-®) =0, t>to, (1)

i=1
under the assumption that there is a uniform upper bound ty on the ;s and proved that
if
m
llgégle T (H)p;i(t) > -
i

then all solutions of equation (1.1”) oscillate.
In 1984, Fukagai and Kusano [30], for equation (1.1), established the following theorem.

Theorem 3.1 ([30, Theorem 1'(i)]) Counsider equation (1.1) and assume that there is a
continuous non-decreasing function t*(t) such that 7;(t) < t*(t) <tfort >ty, 1 <i<m.lIf

litm inf/ Zp,(s) ds > (3.6)
— 00 t) 1

then all solutions of equation (1.1) oscillate. If, on the other hand, there exists a continuous
non-decreasing function t,(t) such that t.(t) < ©;(¢) for t > to, 1 <i < m, limy, o T«(t) = 00

Page 8 of 15
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and

t m
| Yorass
74(t)

i=1

for all sufficiently large t,

Q| =

then equation (1.1) has a non-oscillatory solution.
In 2000, Grammatikopoulos et al. [31] improved the above results as follows.

Theorem 3.2 ([31, Theorem 2.6]) Assume that the functions t; are non-decreasing for all
iefl,...,m},

o0
/ |p,»(t)—p,-(t)|dt<+oo, Lj=1,...,m
0

and

t
litminf/ pi(s)ds=8;>0, i=1,...,m.
=0 Jo @

it

If

m

t
Z(liminf / pils) ds) > 1, (3.7)
t—00 %) e

i=1 i(t
then all solutions of equation (1.1) oscillate.

Observe that all the above mentioned oscillation conditions (3.1)-(3.7) involve liminf
only and coincide with condition (C,) in the case of equation (1.2). It is obvious that there
is a gap between conditions (C;) and (C;) when the limit lim;_, f:(t) p(s)ds does not ex-
ist. Moreover, in view of Theorem 2.3, it is an interesting problem to investigate equation
(1.1) with non-monotone arguments and derive sufficient oscillation conditions, involv-
ing limsup (as condition (C;) for equation (1.2) with one argument), which is the main

objective in the following.

Theorem 3.3 ([32]) Assume that there exist non-decreasing functions o; € C([to, +00))
such that

) <ot)<t (i=L...,m), (3.8)

and

mo|mo oi(t) ™
lim supl_[|:l_[/ pi(s)exp (/ Zpi(f)
=1 Li-1 aj(t) 7;(s) i=1

t—>+00

¢ b
X exp (/r,-(s) ;pi(u) du) d%‘) dsi| > ol (3.9)

Then all solutions of equation (1.1) oscillate.
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When m =1, that is, in the case of equation (1.2) with one argument, from Theorem 3.3
we have the following corollary.

Corollary 3.1 ([32]) Let

t a(t) §
C:=1lim sup/ p(s)exp (f p(é)exp(/ pu) du) df;‘) ds>1. (3.10)
t—+00 Jo(t) 7(s) 7(£)

Then all solutions of equation (1.2) oscillate.
In the case of monotone arguments we have the following.

Theorem 3.4 ([32]) Let t; be non-decreasing functions and

mo oot Ti(e) "
l1msup1_[|:1_[/()195(s)exp(/() ZP;‘(’E)
=1 Li=1 V5 L) =1

t—>+00 .

1
£ m m 1
X exp / Zp,»(u) du|d§ )ds| >—.
7;(£) i=1 m

Then all solutions of equation (1.1) oscillate.

Corollary 3.2 ([32]) Let t; be non-decreasing functions and

hmsupl_[<l—[/ pi(s) ds) > %, (3.11)

t—+00

then all solutions of equation (1.1) oscillate.

Corollary 3.3 ([32]) Let t; be non-decreasing functions, p;(t) > p(t) (i=1,...,m) and

lim supl_[/ s)ds > — (3.12)

t—+00

then all solutions of equation (1.1) oscillate.

Corollary 3.4 ([32]) Let t; be non-decreasing functions, p;(t) > p = const and

1
p" lim supl_[ (t- () > ot (3.13)

—+00 i-1
then all solutions of equation (1.1) oscillate.

Remark 3.1 It should be pointed out that condition (3.9) of Theorem 3.3 presents for the
first time sufficient conditions (in terms of limsup) for the oscillation of all solutions to
equation (1.1) with several non-monotone arguments. They are also independent and es-
sentially improve all the related oscillation conditions in the literature. Even in the case
where m = 1, the improvement is substantial. Observe that (3.10) essentially improves
(2.5).
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Remark 3.2 Observe that when s = 1, the above condition (3.11) [(3.12)] reduces to the

(classical) condition (Cy).
The following examples illustrate the significance of our results.

Example 3.1 (¢f [7, 32]) We consider a generalization of an example presented in [7],

where the equation
, 1
& (t) +-x(t(t)) =0, t=0,
e
with the retarded argument

t-1, te3n3n+1],
()= -3t+(12n+3), te[3n+1,3n+2],
5t—(12n+13), te€[3n+2,3n+3],

was studied. Here we discuss the more general equation
&' () + px(t(t)) =0, t=0,p>0, (3.14)

and illustrate how our methodology can be utilized to prove the existence of oscillatory
solutions for some range of the parameter p. In this case, as in [7], one may choose the

function

t-1, te3n3n+1],
o(t) =14 3mn, te[3n+1,3n+2.6],
5t—-(12n+13), te€[3n+2.6,3n+3].

Now note that, since 7(¢) <t -1,

t t
/ pdu> / pdu=p.
T(t) t-1

The choice as in [6] of t, = 3n + 3 gives

t a(t) §
C= limsup/ pexp(/ pexp(/ pdu) d&) ds
t—>+00 Jo(t) 7(s) 7(§)

3n+3 3n+2 1
> lim pexp <f pexp(p) dé) ds = A (e5pep - l)e’p.
5

=100 J3y42 —(12n+13)

The inequality
1
: (e7 ~1)e? >1

is satisfied for (the numbers that follow are rounded to the third decimal place unless exact)
p € [0.303,0.358]. Thus, for p € [0.303,0.358], condition (3.10) of Corollary 3.1 is satisfied,

Page 11 of 15
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and therefore all solutions to the above equation (3.14) oscillate. Observe, however, that
when p € [0.303,0.358] in (3.14), we find

t
A :limsup/ pds=p-(2.6) <1,
o)

t—00 (@

t
1
a:= liminff pds=p< -
. e

t—00 ([)

and
3n+3 o (3n+3) 3n+3 3n+2
/ pexp{/ pd&}ds:/ pexp{/ pdé}ds
o (3n+3) 7(s) 3n+2 5s—(12n+13)
1
= —(65”—1) <1
5

That is, none of the known oscillation conditions (C;), (C3) (and also conditions (2.5),
(3.1)-(3.6)) is satisfied.

Remark 3.3 ([32]) Itis obvious thatif for some iy € {1,...,m} all solutions of the equation
®(8) + pi, (0)x(7;, (£)) = 0
oscillate, then all solutions of equation (1.1) also oscillate.

Example 3.2 ([32]) Let p, A1, A € (0, +00) and consider the sequences {£;}72, such that
tx 1 +00 for k 1 +00, tx + 2A < txy1 (k=1,2,...), where A = max{A;,i =1,2}. Choose p, A;
and A, such that

1
PPALA, > 2 (3.15)
and
pA; <1 (i=1,2). (3.16)

Let p(t) =p for t € [ti, tx + A] (k=1,2,...) and p(¢) = 0 for t € R\ U2, [, t + Al

According to (3.15), it is obvious that condition (3.13) is fulfilled, where m = 2 and 7;(£) =
t — A; (i =1,2) a.e., and therefore all solutions to equation (1.1) are oscillatory. However,
for the equations

@) +pt)x(t-A)=0 (i=1,2)

by (3.16), we have

t
lim sup/ p(s)ds<1 (i=1,2)
t—-A;

t—+00

and

L
liminf/ ps)ds=0 (i=1,2).
t=-A;

t—>+00
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Remark 3.4 ([32]) In the above mentioned Example 3.2, by a solution we mean an abso-
lutely continuous function which satisfies the corresponding equation almost everywhere.

Example 3.3 ([32]) Consider the equation

®'(8) + prx(n(t) + pox(r2(t)) =0, = 0,p1,p2 >0, (3.17)
where

t-1, te3n3n+1],
n(t)={-3t+12n+3), te[3n+1,3n+2],
5t-(12n+13), t€[3n+2,3n+3],

t-2, t€[3n,3n+1],
Ta(t) = { -t + 61, te3n+1,3n+2],
3t—(6n+8), te[3n+2,3n+3].

We can take

t-1, t € [3n,3n+1],
o1(t) = { 3n, te[3n+1,3n+2.6],
5t—(12n+13), te€[3n+2.6,3n+3],

t-2, te3n3n+1],
oy(t)=13n-1, te3n+1,3n+2.3],
3t—(6n+8), te[3m+23,3n+3].

Note that, since 7,(¢) <t -1 and 17,(¢) < ¢ — 2, we have

t t t t
/ duzf du=1, / duz/ du = 2.
71(¢) t-1 72(8) t-2

Set P = pyexp(p1 + p2) + p2exp(2p1 + 2p,). The choice of t,, = 3n + 3 gives

2 2 t O'l‘(t) 2 S %
lim supl_[ Hf piexp / Zpi exp([ (71 +p2)du) dé | ds
i—>+00 j=1 \i=1 ”j(t) 7i(s) i=1 7i(§)
2

ﬁ ﬁ 3n+3 0;(3n+3) Z & %
> lim / piexp / Piexp (/ (71 +p2)du) dé | ds
400 j=1 \i ”j(3"+3) 7i(s) i=1 7;(§)

-1 i=

2 3n+3 3142 3
> lim H(/ J 21 exp(/ Pdé) ds)
=400 j=1 \J0j(3n+3) 71(s)

3n+3 3n+1 3
X (/ mexp(/ Pdé) ds)
0j(3n+3) 72(s)
3n+3 3n+2 % 3n+3 3n+l %
= lim (/ P exp(/ Pd§> ds) X </ P2 exp(/ Pdé) ds)
n—>+00 3n+2 71(8) 3n+2 72(s)
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3n+3 3n+2 % 3n+3 3n+l %
X (/ pwxp(/. Pdf)ds) X (/ pzexp(/ Pd;-‘) ds)
3n+1 71(8) 3n+1 72(s)
3n+3 3n+2 %
= lim (/ plexp</ Pd“;‘) ds)
n=>+0\J3n+2 55—(121+13)
3n+3 3+l 3
X (/ pzexp</ Pdé)ds)
3n+2 3s—(61+8)
342 342 3143 342 3
X (/ pmxp(f Pdé) ds+/ pﬁ:xp(/ Pdé) ds)
3n+l —3s+(121+3) 3n+2 5s—(12n+13)
3n+2 3n+l 3n+3 3n+l %
X (f pzexp(/ Pdé)ds+f pzexp(/ Pdé) ds)
3n+l —s+6n 3n+2 3s—(61+8)

= D(pl,pz).

Let p; = 0.1. Then, by direct computation, we get

1
D> —
4

if po > 0.158. That is, when p; = 0.1 and p, > 0.158 in equation (3.17), condition (3.9) of
Theorem 3.3 is satisfied, and therefore all solutions to this equation oscillate.

Note that since the delays are not monotone, Theorem 3.2 cannot be applied to this
example. We now compare our result with Theorem 3.1. Note that

7(t), 1a(t) < o1(t) foreveryt>O0.

The choice p; = 0.1, p, = 0.158 gives

L
1
liminf/ (pr +p2)ds=p1 + pr =0.258 < —,
o1(8) €

t—00

that is, condition (3.6) is not satisfied.
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