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Abstract. The paper is concerned with regularization concepts for the inversion of diffusion processes. The
application of the involved evolution operators is based on Dunford integral representations combined with the
adaptive application of resolvents using recent wavelet methods. In particular, this allows us to develop and realize
numerically, to our knowledge for the first time in this context, an SVD projection method which is compared to
several versions of Tikhonov-type schemes. The theoretical findings are complemented by numerical tests shedding
some light on the quantitative performance of the schemes.
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1. Introduction. The notion of “inverse problem” serves as an important conceptual
link between experimental and theoretical sciences. For example, unknown system param-
eters appearing in a model suggested by theory need to be retrieved from typically indirect
measurements. “Given an answer one has to look for the question” perhaps best reflects
the typical ill-posedness of inverse problems. An important class of such even “severely”
ill-posed inverse problems arises in connection with evolution equations of the form

(1.1) ��������
	���
���������	�����

where � is a function in time taking values in some Hilbert space � and � is a positive definite
operator on � ����� � � � � . When �!	#"�$ , the negative Laplacian, � 	&%('���)*� , where),+�-/. is an open domain, this is the classical heat equation describing heat diffusion. The
“solution” operator 0 that assigns to any initial data � � the solution �1�324� at later time 2657�
is given by the operator exponential 0 	�8:9�;3< and is known to define an analytic semigroup.
When �,= � ���>� � �@? � has an unbounded spectrum 0 will be compact. A classical inverse
problem consists in finding the initial data �A� from the solution 0 �3�A�B�C��24�D	78�9E;3<F��� at some
fixed time 2D5G� . Thus one has to “undo diffusion” which is expected to be a delicate task.

A similar situation arises with the inhomogeneous problem����H�I�
	KJ�
L�������/	���

where the solution operator is given by

(1.2) � 0 JM�N�324�@	KOHP; 8 9RQTSU9E;3V3< J1�3WX�4YUWXZ
These are special instances of the following general situation. Let 0 = � ?\[ be a linear

and compact operator between two Hilbert spaces � and [ . We aim at solving

(1.3) 01] 	_^`
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for some given ^Ha_[ . This equation has no solution unless ^Ga_bIcUd�eUfU� 0 � . Even if ^gabIcUd�eUfU� 0 � , the solution is in general neither unique nor continuously depending on ^ . A way
to restore uniqueness is to impose some additional selection criterion. A theoretical tool to
solve (1.3) in this sense is the Moore-Penrose generalized inverse 0Dh = � � 0�h �i�j[k? � ,� � 0 h ��	�b�c�d�e�fU� 0 �Fl�bIcUd�eUf�� 0 �nm , defined by

] h 	 0 h ^�	KO�oqp�osr� tu Y�vxw 0 � ^A

where y v w�z{wU|E� denotes the spectral family of the self-adjoint, compact operator 0 � 0 . The
integral converges if and only if ^ belongs to � � 0 h �n[�� . Thus when bIc�dXeUfU� 0 � is not closed^}a~[ may fail to belong to � � 0@h ��[�� . Equivalently, ]Mh can be defined as the least-squares
solution of (1.3) with minimal norm, i.e.� 01] h "�^ �N� 	���d���B�U� � 0/� "�^ �N�
and ]Ah has minimal norm among all � a � for which the infimum is attained.

Still the unboundedness of the (generalized) inverse prevents a continuous dependence
of the solution on the data so that regularization is necessary. Of course, this subject has been
treated in numerous studies documented in the literature. The two most common regular-
ization strategies are Tikhonov type schemes and projection methods. The numerical imple-
mentation of Tikhonov schemes requires the repeated approximate application of the solution
operator and its dual which is typically done with the aid of time stepping schemes like the
method of lines for the solution of the forward problem. This is computationally rather de-
manding while the so called “qualification” (limiting the attainable order of accuracy in terms
of a decreasing noise level, see [9]) is only � �i	 t . Among the class of projection methods
a prominent role is played by truncated singular value expansions (SVD-expansions) which
yield in some sense “optimal” projection methods, see e.g. [9]. Unfortunately the required
system of singular basis functions is usually not numerically accessible at affordable cost.

The objective of this paper is to develop and analyze certain new variants of both strate-
gies, Tikhonov and projection methods, for the inversion of diffusion processes. Since the
essential algorithmic ingredients for the treatment of operators of the form 0 	�8�9�;3< can
be carried over to those given by (1.2) (see [15]) we shall exemplify matters for 0 	�8:9E;3< .
In Tikhonov schemes the explicit regularization parameter affects the whole spectrum of the
operator. Therefore one might expect improvements from penalizing only the small part of
the spectrum which will lead to one of the variants. This will be facilitated through certain
projections based on representations as contour integrals in the complex plane similar to anal-
ogous representations of the solution operator itself. A central issue in this paper is therefore
the development and analysis of error controlled numerical schemes for the evaluation of such
integral representations which will allow us to completely avoid costly time stepping schemes
in either regularization method. Perhaps more importantly, this will allow us to realize, to our
knowledge for the first time in an efficient way an (approximate) SVD-projection method
for the inversion of (the full infinite dimensional) diffusion processes without ever having to
determine the singular basis functions.

Our schemes are based on a suitable quadrature rule for the contour integrals combined
with an error controlled application of the involved resolvents at the quadrature points. A
computationally attractive feature is that the different resolvent calculations are completely
independent which leads to a trivial but highly efficient parallelization of the schemes. In
principle, the resolvent equations (which are well-posed) can be solved by any discretization
that guarantees a given accuracy tolerance. Here we shall employ recent adaptive wavelet
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schemes for the following reasons: Due to the induced norm equivalences, the wavelet setting
allows us to realize conveniently the relevant topologies arising in this context and to control
errors in the right norms. For instance, involved applications of resolvents can be performed
with optimal complexity in the sense of [2] within desired error tolerances. Consequently, the
application of the true operator exponential (not of 8 9�;3<�� for some given discretization ��� of� and its inherited inaccuracy) can be given with rigorous accuracy bounds. In this sense the
approach allows us to disentangle regularization and discretization of � in favor of transparent
and accurate error bounds. Finally, the complexity results for the adaptive schemes from [2]
will be seen to offer a first rough assessment of the computational complexity of the SVD-
projection regularization. In this context one encounters a number of interesting questions
that remain open but indicate in our opinion a promising potential of this approach.

It should be mentioned that a direct approximate application of the operator exponential
can be also based on the hierarchical matrix concept, see e.g. [11]. However, this is an
entirely discrete approach approximating 8�9�;3<�� for a given matrix approximation � � of � .
Some comments on the resulting conceptual distinctions can be found at the end of � 2.

The layout of the paper is as follows. In � 2 we collect some basics from regularization
theory and formulate the principal strategies. � 3 is devoted to the concept of separating the
spectrum of closed linear operators which our projection method will be based upon. We
identify a contour integral representation of the boundedly invertible projection of 0 onto the
eigenspace of � corresponding to a bounded part of its spectrum. This will serve later as the
regularized approximation to 0 .

In � 4 we present the main regularization algorithm in terms of several basic routines. At
this stage these routines will be formulated merely in terms of abstract building blocks each
of which describes a numerical task (such as the solution of certain operator equations or
the application of the exponential of an operator) to be performed within a given accuracy
tolerance. As an important ingredient in this context we analyze in addition the quadrature
error arising from the discretization of the integrals and explain how to control this error when
using the discrepancy principle.

In principle one could realize the above routines through any of the standard discretiza-
tion concepts. Here we employ recent adaptive wavelet methods discussed in � 5. More
precisely, our approach is based on an adaptive paradigm developed in [2] for operators with
sparse wavelet representations. The main reasons for this choice can be summarized as fol-
lows. The current understanding of adaptive wavelet concepts allows us to draw first con-
clusions on the complexity of such regularization tasks. Moreover, the norm equivalences
characterizing relevant function spaces in terms of weighted sequence norms for wavelet co-
efficient arrays suggests, as a byproduct, a new regularization scheme employing different
smoothness norms. The resulting computable algorithms for the above building blocks hinge
on suitable wavelet representations of the involved operators and corresponding adaptive eval-
uation schemes for their application within any desired accuracy tolerance. These ingredients
are also derived in this section.

Finally, in � 6 the theoretical findings are quantified and illustrated by numerical experi-
ments.

2. Regularization. We begin with briefly recalling some facts from regularization the-
ory that will guide the subsequent developments, see [9] for details and proofs of the quoted
results.

One way to approximate 0@h by a bounded function is to replace t{� u by a family of
functions �:� � u � , � 5_� , which are bounded and tend to t�� u pointwise if � approaches zero.
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Abbreviating
� 0 � =�	 � 0 �N� Q �D� � V , the regularized solution is then defined as

]�� 	 ��� � 0 � 0 � 0 � ^�	 O o�p�o�r� ��� � u ��Y�v w 0 � ^�

where the integral converges for every ^�a
[ as ��� � u � is bounded on   ��
 � 0 � '¢¡ . In particular,
the operator �:� � 0 � 0 � 0 � =U[£? � is continuous with� ��� � 0 � 0 � 0 � �6¤G¥n¦�§ y�¨ uª© ��� � u � © = u a   ��
 � 0 � ' ¡ z Z
The residual can be explicitly calculated as] h " ]�� 	 ] h " ��� � 0 � 0 � 0 � ^�	j��«¬" ��� � 0 � 0 � 0 � 0 � ] h	7O o�p�o�r� ­ � � u �/Y:v�w ] h
with ­ � � u �@	 t " u ��� � u �®Z
The approximation properties of this method are stated in the following theorem.

THEOREM 2.1. ([9], Theorem 4.1) Let � � � u �~=   ��
 � 0 � ' ¡ ?¯- fulfill the following
assumptions for all � 5�� : �:� is piecewise continuous, there exists a constant °(± 5��
independent of � such that

(2.1)
© u � � � u � © ¤ ° ± and ² ��³�:´ � � � � u �@	 tu¶µ u a~���X
 � 0 � ' ¡ Z

Then ² ��³�:´ � ��� � 0 � 0 � 0 � ^ 	 0 h ^A
 if ^·a � � 0 h �®
(2.2)

and ² ��³�:´ � � � � � 0 � 0 � 0 � ^ � � 	k¸�
 if ^}¹a � � 0 h �®Z(2.3)

Concrete rates of convergence in (2.2) can only be expected when ]Mh belongs to some
compact subset of � usually described in terms of “regularity” properties. A typical as-
sumption leading to convergence rates is that ]�h belongs to the range of some power of 0 � 0 .
Knowing such a convergence rate would be important for dealing with noisy data ^�º which
are usually encountered in realistic applications. In fact, suppose that the noise level is » 5g� ,
i.e. � ^i"¼^ º � � ¤ » Z
Accordingly, one obtains perturbed results] º � 	 ��� � 0 � 0 � 0 � ^ º Z
If a rate for

� ]Ah " ] º � � � was known, in view of� ] h " ] º � � � ¤,� ] h " ]A� � � � � ]�� " ] º � � � 
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it would be sufficient to bound the ‘propagated error’
� ] � " ] º � � � in order to balance both

terms and thereby obtain the right regularization.
THEOREM 2.2. ([9], Theorem 4.2) Let the assumptions of Theorem 2.1 be fulfilled and

set for � 5½� ¾ � 	 ¥4¦X§�¿ © � � � u � © = u a   ��
 � 0 � ' ¡qÀ Z
Then the estimates� 0/] � " 01] º� �N�g¤ ° ± » 
 and

� ] � " ] º � � � ¤7Á ° ±
¾ � » 


hold true with °Â± from (2.1).
Thus, the propagated error stays proportional to the noise level » and a bound for

� ] h "] º � � � would tell us how to choose � .
In practice, the necessary information is typically not available and a reasonable param-

eter value � 	 � � » 
n^�ºN�D5½� has to be chosen for given data ^�º in a different way. A widely
used method is the discrepancy principle which defines

(2.4) � 	 � � » 
n^ º �@	 ¥4¦X§ yBÃ 5½�i= � 01] ºÄ "�^ º � 	_W » z
with some fixed parameterWÅ5 ¥n¦�§ ¿ © ­ � � u � © = � 5½��
 u a   �X
 � 0 � ' ¡ À Z
Under fairly general conditions on � � � u � convergence] º � QTº � ÆNÇ V ? ] h if » ?\�X

of optimal order can be shown ([9], Theorem 4.17).

The strict condition (2.4) can be relaxed to finding the largest � such that� 01] º� "¼^ º � � ¤ W » ¤,� 01] º' � "�^ º � �
holds which eases the use of the discrepancy principle.

Clearly, ] º � is generally again the solution of an operator equation. Thus, in practice,
neither ] º � nor the residual

� 01] º� "i^�º � � can be calculated exactly. Aiming at a rigorous error
control we have to analyze the behavior of the discrepancy principle when both quantities are
replaced by approximations È] º � and bIf ¥ � .

LEMMA 2.3. Let È] º � be a numerical approximation to the regularized solution ] º � satis-
fying

(2.5)
� È] º � " ] º � � � ¤ WÊÉ � 0 � 9 É » Z

Moreover, suppose that the approximation to the true residual 0�È] º � "�^�º has norm b*f ¥ �
satisfying

(2.6) ËË b*f ¥ � " � 0�È] º � "¼^ º � � ËË ¤ WN' » 

where the positive constants W É 
4W ' are chosen such that

(2.7) W�"�WÊÉD"�WN'¬5GÌ}=�	 ¥n¦�§ ¿ © ­ � � u � © = � 5G��
 u a   �X
 � 0 � ' ¡ À Z
Now let � 	 � � » 
4^�ºB� be chosen such that

(2.8) b*f ¥ � ¤ W » ¤ bIf ¥ ' � Z
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Then the numerical approximations È] º � to the regularized solutions ] º � corresponding to the
method � � � � 0 � 0 � 0 � 
 � � converges in � to ]Ah for » ?Í� for all ^ÎaHbIc�dXeUfU� 0 � . In fact, it
has optimal order » rsÏr�ÏCÐ�Ñ when ]Ah aHbIcUd�eUf�� 0 � 0 �ÓÒ for � a�����
 � � " t{��Ô ¡ , where � � is the
“qualification” of the regularization method, see [9, Chapter 4.1].

Proof. We refer to the proof of Theorem 4.17 in [9] were the analogous statement is
shown for the discrepancy principle with exact values of ] º � and

� 01] º� "g^�º � � . A careful
inspection reveals that the claim is reduced to verifying the two estimates

(2.9)
� 01]A� "¼^ � � ¤gÕ É » and

� 01] ' � "�^ � � 5 Õ ' »
for some constants

Õ É�
 Õ '�5G� .
We infer the first part of (2.9) from the assumption bIf ¥ � ¤ W » as follows. One has� 01] � "¼^ �B�g¤7� 0/] º� "�^ º �N� �ÎÌ » ¤ª� 0�È] º � "¼^ º �B� � � 0 �U� ] º � " È] º � � � �ÎÌ »¤ b*f ¥ � ��WN' » ��WÊÉ » �ÎÌ » ¤ �3Wi��WÊÉ���WN'Â�ÎÌM� » 


where the first inequality results from the properties of ­ � � u � and the definition of Ì .
To see the second estimate of (2.9) we observe that� 01] º' � "�^ º �N�gÖª� 0�È] º' � "�^ º �N� " � 0 �U� ] º' � " È] º' � � � ¤ b*f ¥ ' � "½�3W É ��W ' � »5,�3W�"¼W É "¼W ' � » Z

This implies
� 01] ' � "~^ �N�½Ö ��W "�W É "~W ' "�Ì�� » 
 where W "~W É "�W ' "�Ì is positive due to

the choice of W , W É , and W ' .
Loosely speaking, it is sufficient to keep the discretization errors proportional to the noise

level. It should be noticed that this result is purely asymptotic for » ?×��Ø . In particular, the
constants WX
4W{É�
 and WN' which heavily influence the outcome of numerical experiments can be
chosen freely as long as (2.7) is satisfied.

It remains to specify the regularization method ��� . Setting ��� � u ��	#� � � u �¢9 É yields
the well-known Tikhonov regularization which reads

(2.10) � � «6� 0 � 0 � ] º � 	 0 � ^ º Z] º � can equivalently be defined as solution of the minimization problem� � ] � � � � 01] "�^ º �N� ?Ù³���dÚU�U� 

which can be interpreted as compromise between the size of

� ] � � and the residual error� 0/] "¼^�º � � . It is well-known that in this case the qualification is � � 	 t .The penalization imposed by the Tikhonov scheme affects the whole spectrum of 0 � 0 .
This raises the question whether the resulting bias could perhaps be diminished by making
the penalization dependent on the spectrum. In fact, it should be active only on the small
eigenvalues of 0 � 0 . Thus, a first alternative is

(2.11) �:� � u �(=�	j� �FÛ�Ü � � ��Ý � u �F� u � 9 É Z
This gives rise to what may be called “modified” Tikhonov regularization.

The second alternative deviates in a more essential way from the Tikhonov concept by
taking

(2.12) �:� � u �*=�	�Þ Éw 
 u Ö � ���
 uàß � �
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simply clipping the small eigenvalues of 0 � 0 . This corresponds to setting the small singular
values of 0 to zero and thus to a truncated singular value expansion which is known to be in
some sense an “optimal” regularization method by projection. Moreover, in this case one has� � 	K¸ , see e.g. [9, Example 4.8]. We refer to this regularization scheme as SVD-projection.
But of course, in practice the issue is to realize this projection method at affordable cost.

Both strategies (2.11), (2.12) hinge on the ability to realize projections á � = � ? �
taking � into an eigenspace corresponding to â � 0 � 0 �Âã   �X
 � � . Then (2.11) gives rise to
solving

(2.13) � ��á � � 0 � 0 � ] º � 	 0 � ^ º 

while (2.12) leads to

(2.14) ä �� 0 � 0/ä6��] º� 	 ä �� 0 � ^ º 
 ä6� =�	�«>" á>� Z
We shall show below that for 0 	£8:9�;3< , � as in � 1, such projections can be efficiently

realized numerically which to our knowledge is new. Before addressing this in a systematic
fashion, a few comments are in order. Of course, discretizations of � lead to approximations�x� of � defined on a finite dimensional subspace of � being now bounded with a norm
depending on the discretization parameter å . Hence the spectrum of 0 ��	�8U9�;3<�� is bounded
away from zero so that solving

(2.15) 0 �� 0 � ] º � 	 0 �� ^ º
has a similar effect as (2.14) where e.g. the mesh size å of the underlying discretization acts
as a regularization parameter. Solving (2.15) (which becomes increasingly ill-conditioned
for å ?æ� ) iteratively, the termination of the iteration adds another bias. Each application
of 0 � or 0 �� (either by approximately solving evolution equations or by employing ç -matrix
techniques, [11]) is inaccurate. For ç -matrix concepts the problem is posed now in Euclidean
metric which hampers somewhat taking the topological requirements of the original problem
into proper account. So several sources of inaccuracies are mixed. We shall therefore pursue
here a different line separating regularization and discretization. In particular, this will allow
us to apply � ä �� 0 � 0/ä6� �¢9 É for the “true” 0 within any desired tolerance. This will be based
on two conceptual pillars: (a) the actual numerical realization of projections of the form á � as
well as of 8�9�;3< within any desired target accuracy; (b) the involved application of resolvents�èÌM«�"G�6�¢9 É appearing in the Dunford integral is based on adaptive wavelet schemes again
realizing proper target accuracies without ever fixing any discretization of � beforehand.

We shall now fix our assumptions on the operator � which, of course, relates to the
topologies of � and the image space [ under 0 . � will always be assumed to be sectorial
and normal with spectrum in the right complex half plane. In particular, this covers selfadjoint
positive definite operators. Moreover, it will be important to specify the mapping properties
of � . To this end, we shall always assume to be given a Gelfand triple of Hilbert spacesé 
�ê@
 éìë satisfying

(2.16)
éîí ?ïê í ? é ë 


where
éìë

is the dual of
é

represented through the inner product ð4ñ 
 ñ ò =ó	 ð4ñ 
 ñ ò®ô(õXô of the
pivot space ê . In these terms we require that there exist bounded positive constants

Õ < 
 ° <
such that

(2.17)
Õ < �®öM�C÷,¤ª� � öA�N÷Âø1¤ ° < �CöA�N÷ 
 �àa é 
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i.e. �£= é ? é}ë is a norm-isomorphism from
é

onto
é¼ë

. A typical case is ê£	�% ' ��)*� andé 	 é É� �s)*�®
 éìë 	 é 9 É ��)*� which fits to the heat equation with �&	î"�$ , say. This will
serve as a guiding example in the selfadjoint positive definite case.

In most part of the subsequent developments we shall have

(2.18) ê£	 � 	�[@

which accounts for the fact that noise should not be measured in too strong a norm. Never-
theless, an alternative would be � 	 é ë , so that � ���>� � �x	 é 	�[ , and later in � 5.5 we
shall encounter intermediate cases.

REMARK 1. An analogous mapping property to (2.17) does not hold for 0 	ù8:9E;3< ,
i.e. we cannot find a pair of spaces for which an analogous estimate like (2.17) holds. There-
fore, the concepts used e.g. in [3] do not apply in the present situation.

3. Separation of Spectrum. We return to problems of the form (1.1). When � is a
Hilbert space and � is self adjoint and positive definite there exists an orthonormal basis of
eigenvectors yB]Aú z ú ��û of � with associated eigenvalues

u ú 5�� , sorted by decreasing size.
Then, the operator exponential can be written as8 9�;3< � � 	ýüþúCÿ É 8 9�; w�� ð � � 
 ] ú ò � õ � ] ú 
 2 Ö ��Z
From this representation, it is immediately clear that� 8 9�;3< � � � � ¤ 8 9E; w Ñ � � � � � and â ��8 9�;3< ��� y � z 	�8 9E;��:QT<MV 
�2D5G��Z
Moreover, the eigenvector of 8:9�;3< to the eigenvalue 8�9�; w�� coincides with the eigenvector of� to the eigenvalue

u ú . This close relationship can be carried over to a more general situation
as stated in the following theorem. To make that more precise, let us recall the following facts
relating the spectrum of � to that of 8:9E;3< even for the wider class of sectorial operators.

THEOREM 3.1. (Spectral mapping theorem, [10, 14]) Let � be a sectorial operator on
a Banach space � . For every 2D5G�â ��8 9�;3< ��� y � z 	�8 9�;��:QT<MV =ó	 y 8 9E; w = u a â ���6� z 

and â	� ��8 9E;3< ��	�8 9�;���
�Q�<MV 

where â	� denotes the point spectrum, i.e. the set of eigenvalues. Moreover, the eigenspaces
of � and 8:9E;3< are related by� ��8 9�; w «>"�8 9E;3< ��	 lin ú ��
 ����� u � Ô������2�� «¬"~� �
for each 2D5½� and

u a�� .
A representation of projections needed in (2.13), (2.14) can be based on the following

principle, known as separation of the spectrum, that projects � as well as 8�9E;3< onto the
eigenvector spaces of � associated with a bounded subset of â ���x� .

To this end, assume that â ���6� is split into two disjoint, nonempty sets â É and â ' such
that â É lies in the interior of some Jordan curve � É and â ' in the exterior part. Then,

(3.1) � =�	 ��� Ñ =�	 ��� Ñ ���6�(=ó	 tÔ���� O � Ñ �3ÌA«�"��6� 9
É Y�Ì
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defines a bounded linear operator. Its basic properties can be summarized as follows.
THEOREM 3.2. (Theorem III.6.17 of [12]; � 2.3 of [14]) The operator � is a projection

with b�c�d�e�fU� � �D� � ��� ú � � � for every � a�� . Moreover, setting[AÉ*	 � � � �C
�[�'�	j��«>" � �C� � �®
� É =�[ É ?\[ É = ]��?\� ] for all ] aÅ[ É 
��'�= � ����'{�@	 � ���>� � �Mã
[�'x?\[�'�= ] �?\� ] for all ] a � ����'{�®

the operator � É =U[ É ?\[ É is linear and bounded, andâ ���6ÉÊ��	 â É{
 â ����'���	 â '�
�3ÌA«>"���ÉC� 9 É 	j�èÌM«¬"��6� 9 É © � Ñ 
 Ììa !����x�®
�3ÌA«>"��x'B� 9 É 	j�èÌM«¬"��6� 9 É © � r 
 Ììa !����x�®Z

If, in addition, � is a Hilbert space and � is normal, then � is the orthogonal projection
onto [ É .

Thus, � is split into a bounded part � É and an unbounded one � ' . As the projection �
is defined by a curve integral similar to the definition of the operator exponential 8�9�;3< , both
are compatible in the following sense.

PROPOSITION 3.3. ([14], Prop. 2.3.3) The projection � commutes with 8�9E;3< , which
implies 8�9E;3<(��[AÉN� �&[MÉ and 8�9E;3<(��[�'{� �&[�' , i.e. [MÉ and [�' are invariant subspaces of �
with respect to the semigroup. �¬É and �x' generate semigroups in [MÉ and [�' , respectively,
with 8 9�;3< Ñ 	�8 9E;3< © � Ñ 	�8 9E;3< � © � Ñ 
8 9�;3< r 	�8 9E;3< © � r 	�8 9E;3< ��«�" � � © � r Z

As � É is bounded, y 8�9�;3< Ñ z ; |�� extends to a group y 8:9E;3< Ñ z ; ��" . In particular, 8:9E;3< Ñ ,2Â5½� , is boundedly invertible with inverse��8 9�;3< Ñ � 9 É 	_8 ;3< Ñ 	 tÔ���� O � Ñ 8 ;$# �3ÌA«�"��6� 9
É Y�Ì1Z

Moreover, for every â 5 ¥4¦�§ y�% �èÌ��Â=�Ììa â É z there exists a constant & � Ö t such that

(3.2)
� 8 ;3< Ñ � � ¤ & � 8 �{; 
 2 Ö �XZ

To see how this relates to an SVD-projection for 0 	ù8�9E;3< , suppose that the Jordan
curve � É encloses all (positive) eigenvalues of the operator ' 	_� � �}� that are smaller thanËË É ; ²)( e É� ËË . Recall that when � is normal the product 0 � 0 takes the form

(3.3) 8 9E;3<�* 8 9E;3< 	_8 9E;�+ 
 ' 	��G�H� � 

a single exponential. Since by Theorem 3.1, any , a â � 0 � 0 � has the form , 	#8:9E; w , u
an eigenvalue of ' , we infer from Proposition 3.3 and (2.14) that with the projection ä¬� 	� � Ñ 	 � � Ñ � ' � with respect to ' one has

(3.4) ] º � 	ª� � � Ñ 0 � 0-� � Ñ � h 0 � ^ º 	�8 ;�+ Ñ 8 9�;3<�* ^ º Z
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Hence the SVD-projection reduces here to the application of an exponential and a projected
exponential.

Things simplify when � is selfadjoint and positive definite, so that singular values and
eigenvalues coincide. Now one needs a curve enclosing all eigenvalues of � up to the sizeËË É' ; ².( e É� ËË and a projection � � Ñ ���6� to obtain from (3.4), again in view of the properties stated
in Proposition 3.3,

(3.5) ] º � 	�8 ;3< Ñ ^ º Z
Thus regularization along this line amounts to just applying the inverse of a projected semi-
group (and in the general case of an exponential) as opposed to solving operator equations of
the type (2.10) or (2.13).

Of course, (3.5) can always be used in this form as long as the separation of spectrum is
feasible, even when � is not selfadjoint. The regularization scheme (3.5) does then, however,
not necessarily agree with an SVD-projection. For simplicity, we shall concentrate in what
follows on (3.5), remarking that with the tools developed below, we could realize (3.4) as
well.

We close this section with the following observation.
REMARK 2. The projected semigroup provides also an efficient way for long time inte-

gration, i.e. to apply 8:9E;3< for 2-/×� . Due to Proposition 3.3, one has� 8 9�;3< � � "�8 9�;3< � � � � � 	 � ��«¬" � �Ó8 9�;3< � � � � ¤ 8 9�;�0 1�2�3�Q)� r V � � � � � Z
Thus, for ��d�� % � â 'Ê�·5!� and 2�? ¸ , the semigroup 8:9�;3< is closely approximated by the
projected semigroup and it is sufficient to apply 8�9E;3< � instead of 8�9E;3< . Moreover, when �
is a suitable open curve separating the spectrum of � from the rest of the complex plane we
have formally the same Dunford integral representation

(3.6) 8 9E;3< ö 	�8 9E;3< � ö 	 tÔ���� O � 8 9�;$# �3ÌA«¬"~�x� 9
É Y�Ì1
L2 Ö ��


of the full exponential which is valid for sectorial operators.

4. Algorithmic Concepts. In this section we shall formulate the main algorithm, which
realizes an appropriate regularization scheme based on a version of the discrepancy principle
that accounts for numerical errors in a theoretically sound way.

To this end, we shall first identify the main building blocks of this scheme which we
formulate at this point as abstract routines that perform certain tasks within any prescribed
accuracy tolerance.

The first ingredient is the solution of an operator equation

(4.1) ' ��	 ö 

where either ' = é ? éìë

or ' =Xê&? ê is invertible and where in either case accuracy is
to be controlled in ê , recall (2.18). Thus we require a routine

(4.2) 465 SOLVE � ' 
87A
 ö �®
 such that
� 4 " ' 9 É öM� ô ¤ 7AZ

In view of (2.10) and (2.13), we will have to use this routine for instance with

(4.3) ' 	 � «6� 0 � 0 or ' 	 �1á>� � 0 � 0 
 ö 	 0 � ^ º 
 0 	�8 9�;3< 
�2Â5½��Z
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Note that in both cases the right hand side is the result of the application of 0 � while the
regularization (3.5) requires the application of 8{;3< Ñ . In both cases the integrals (3.6) and
(3.2) involve the application of resolvents which corresponds to (4.1) with

(4.4) ' 	gÌM«¬"���
 ö 	_� � Z
Thus the second main building block (which in turn will invoke the SOLVE-routine) is the
approximate application of operators of the form 8�9�;3< , 2Å5î� , or 8Ê;3< Ñ , 2Åaª- . We shall
formalize this as a routine

(4.5) 465 APPLY �32®
 � 
87�
 ö � such that
� 4 "~8 9�;3< ��� öM� � ¤ 7AZ

Recall that when � separates the complete spectrum we have 8�9�;3< � � 	K8�9E;3< and 2 must be
positive.

To make our approach as transparent as possible, we shall indicate first how to realize
(4.5) given (4.2) and how to realize the discrepancy principle given (4.5) postponing the
concrete realization of (4.2) to the next section, see � 5.

4.1. Applying Projections. We are now prepared to formulate algorithms for comput-
ing the application of operators of the form8 9�;3< � � Ñ ö 	 tÔ���� O � Ñ 8 9E;$# �3ÌA«>"��6� 9

É ö YUÌ1
 2Da
-D

or as the special case 2�	�� , of the projection

� � Ñ ö 	 tÔ���� O � Ñ �èÌM«>"~�x� 9
É ö Y�Ì1


to some fixed
ö a � . We emphasize that in connection with projected semigroups 2 may

attain negative values as well. Aside from being able to apply resolvents within a given
accuracy tolerance (see (4.4)) we shall need a suitable quadrature scheme.

Our convention will be that when writing � 	 � É we assume that the Jordan curve � É
encloses some bounded subset of â ���x� , as described in � 3, and that an analytic and Ô�� -
periodic parameterization 9 �? Ì1� 9 �®
 9 a   �X
 Ô�� �C

is given. Then, the integrand: � 9 ��	£" � Ì ë �

9 �Ó8 9E;$#:Q.;qV �3Ì1� 9 �Ó«>"~�x� 9 É ö 
 9 a   ��
 Ô�� �®

is also Ô�� -periodic and analytic in the topology of � so that the following theorem applies.

THEOREM 4.1. ([13], Theorem 12.6) Let
: =@-#? � be analytic and Ô�� -periodic.

Then, there exists < 5�� such that
:

extends to an analytic, bounded, and Ô�� -periodic func-
tion on the strip �>= 	 yÊ] � � ^·= ] aÅ-Â
 © ^ ©�ß < z . Moreover, the quadrature error of the
trapezoidal rule

á@? � : �@	 tÔ�A
' ? 9 ÉþúCÿ � : � ���A � 
 A a��D


is bounded by

(4.6)
� tÔ�� O

'CB� : � 9 ��Y 9 " á@? � : � � � ¤ª� : �EDGF QIHKJ � � V t8 ' =L? " t Z
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Analogous statements hold when replacing � É by an open curve � to represent the full
exponential (for 2I5K� ). For corresponding details on suitable analytic parameterizations we
refer e.g. to [16] and will make use of these results without further elaboration.

Since we are lacking any estimate for < and
� : �MD F QIH J � � V it seems reasonable to use� á@? � : �1" á ' ? � : � � �6N � á@? � : �1"~8 9�;3< � � Ñ öA� �

as error estimator. This is certainly true when (4.6) holds with
¤

replaced by O . To ensure
convergence of the upcoming algorithm we therefore make the following

ASSUMPTION 1. There exist constants
ÕEP 
 ° P 5G� and A � Ö t such thatÕ�P6� á@? � : �1" á ' ? � : � � � ¤7� á@? � : �1"�8 9�;3< � � Ñ öA� �

and � á@? � : �1"�8 9�;3< � � Ñ öA� � ¤ ° Px� á@? � : �1" á ' ? � : � � �
for all A Ö A � .To formulate the following algorithm, we define ARQ 	 Ô Q A � , S aT� . The quadrature
points associated with A>Q are

9
Q � ú 	 ú B?VU , � 	 ��
 t 
NZBZNZ®
 ÔWAXQ " t . Obviously, the sequences

of quadrature points are nested, i.e.

9
Q Ø É � ' ú 	

9
Q � ú . Therefore, á ? U � : � can be improved toá ' ? U � : � by evaluating the integrand

:
at the nodes

9
Q Ø É � ' ú Ø É , � 	���
 t 
NZBZNZC
 A Q " t .ALGORITHM 1. w 5 APPLY ��2®
 � É�
n��
Y7A
 ö �Z Fix some � ß\[ ¤ É]C^`_Z For � 	��X
 t 
NZNZBZC
 ÔWA � " t 
4 � � ú 5 SOLVE �3Ì1� 9 � � ú �Ó«>"~�>
 aGb 0 1�c É �edr�fhg]Mi # ø Qj;lkLm � VEnpo�q�Q�9E;$#:Q.;lkYm � V3V i 
 ö �Z 4 � 5 9sr' ? kut ' ? k 9 Éú®ÿ � Ì ë � 9 � � ú �48 9E;$#:Q.; kYm � V 4 � � úZ For S 	 t 
 Ô 
NZBZNZ– for � 	 t 
8v�
BZNZBZ®
 Ô�A>Q " t4 Q � úX5 SOLVE �èÌ/� 9 Q � ú �4«>"~�>
 aGb 0 1�c É � d r fhg]Mi # ø Qj; U m � V�npo�q�Q�9E;$#:Q.; U m � V3V i 
 ö �

– � Q 5 9sr' ? U t ? U 9 Éú®ÿ � Ì ë � 9 Q � ' ú Ø É �48�9E;$#:Q.; U m r � Ð�Ñ V 4 Q � ' ú Ø É– Y Q 5 É' 4 Q 9 É "�� Q– 4 Q 5 É' � 4 Q 9 É ��� Q �– If
� Y Q � � ¤ [ 7 then return 4 	 4 Q 9 É .

REMARK 3. To remain consistent with the theory the algorithm returns 4 Q 9 É . In prac-
tice, 4 Q should be returned as it is the more accurate approximation.

LEMMA 4.2. If Assumption 1 holds the algorithm APPLY �32®
 � É�
n�>
87A
 ö � terminates after
a finite number of steps for every 7�5g� and its output 4 satisfies� 4 "�8 9�;3< ��� Ñ öM� � ¤ 7AZ

Proof. Let È4 Q � ú denote the exact solution of�3Ì1� 9 Q � ú �Ó«�"��6� È4 Q � ú 	 ö 
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and define È� Q , ÈY Q and È4 Q as the corresponding quantities from the algorithm. According to the
error bounds guaranteed by SOLVE �èÌ/� 9 Q � ú �®
87A
 ö � we have� 4 Q 9 É " È4 Q 9 É � � ¤ tÔ�A Q 9 É

' ?VU)w Ñ 9 Éþú®ÿ � © Ì ë � 9 Q 9 É � ú �48 9�;$#:Q.; U)w Ñ m � V © ñ � 4 Q 9 É � ú " È4 Q 9 É � ú � �¤ tÔ�A>Q 9 É
' ? U)w Ñ 9 Éþú®ÿ � 7 v ³���d y t 
 v Ô [ z ¤ tv 7Â³���d y t 


v
Ô [ z Z

The same argument yields� � Q " È� Q � � ¤ tx 7D³��Td y t 
 v Ô [ z 
 � Y Q " ÈY Q � � ¤ tv 7D³��Td y t 

v
Ô [ z Z

First, the termination criterion is shown to be met for sufficiently large S ay� . From
Theorem 4.1 and Assumption 1 the estimate� Y Q � � ¤,� ÈY Q � � � � Y Q " ÈY Q �{z r Q.|/V¤ � Õ�P � 9 É � : �ED F QIH J � � V t8 ' . ?VU " t � tÔ [ 7
follows. Since the first summand tends to zero for S ?æ¸ there exist S �Åa}� such that the
termination criterion

� Y Q k � � ¤ [ 7 is indeed met.
In a second step, the error bound is shown to hold for 4 	 4 Q k 9 É . Obviously, one has� 4 Q k®9 É("�8 9E;3< � � Ñ öM� � ¤7� 4 Q kN9 ÉÂ" È4 Q kN9 É � � � � È4 Q kN9 ÉÂ"~8 9�;3< � � Ñ öA� �¤ tv 7¬� � È4 Q k 9 É "�8 9�;3< ��� Ñ öA� � Z

The second summand is bounded with the aid of Assumption 1,� È4 Q kC9 ÉD"~8 9E;3< � � öM� � ¤,� á@? U k w Ñ � : �1"~8 9E;3< � � öA� �¤ ° P�� á@? U k w Ñ � : �/" á@? U k � : � � �¤ ° P�� È4 Q kC9 ÉÂ" È4 Q k � �¤ ° P � � Y Q k � � � � ÈY Q k "�Y Q k � � � Z(4.7)

Since the termination criterion is met the first summand in the parenthss is bounded by� Y Q k � � ¤ !~7 ¤ 7v ° P Z
The second one can be estimated by� ÈY Q k®9 ÉÂ"~Y Q kC9 É � � ¤ tÔ [ 7 ¤

7� ° P Z
Inserting both estimates in (4.7) yields� È4 Q k 9 É "�8 9E;3< ��� öA� � ¤ Ôv 7AZ
Thus, the overall error of the output 4 is bounded by 7 .
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It should be noted that the explicit knowledge of the constant
Õ P

is not needed in the
algorithm. Its existence is merely needed to show that the algorithm terminates (i.e. it is
actually an algorithm).

REMARK 4. An analogous scheme APPLY ��2®
 � 
n�>
87A
 ö � can be constructed when � is a
suitable open curve separating the spectrum â ���x� from the rest of the complex plane and 2 is
positive, see [16]. We shall use the same notation for this version as well.

Since the constants in the quadrature rule are not numerically accessible, one might think
of extrapolation techniques to overcome this handicap. But extrapolation is useless for ana-
lytic periodic functions since all constants in the asymptotic error expansion of the trapezoidal
rule vanish.

4.2. Approximate Regularized Inversion of 8�9E;3< . We shall use next the tools devel-
oped in the preceding section in order to regularize the inversion of the operator 0 	�8�9E;3<
for some fixed time 2�5L� . Since 0 is one-to-one and compact the operator fulfills the as-
sumptions made in � 2. We shall work in the setting (2.18).

The following algorithm comes in three variants each of which is based on Lemma 2.3.
We assume that the three parameters W�
nW{É�
4WN'�5_� are given such that W "�W{É("�WN'�5 t holds
(cf. (2.7)). Moreover, we fix

Õ a   t���Ô 
 t � and test the stopping criterion� 01] � � Ð:Ñ "�^ º � ô ¤ W » ¤,� 01] º� � "¼^ º � ô
for �1ú 	 Õ ú � � . Recall that we have here ê#	 � 	 [ . The choice of

Õ
permits a certain

tuning of the algorithm, as the search for the optimal � becomes more thorough and more
expensive for

Õ
closer to one.

The three ways of determining a sequence of regularized solutions ] º � � are based on the
two variants (2.10), (2.13) of the Tikhonov method or on the projection method (3.5). As a
core ingredient of the main scheme we shall provide for each variant a routine]�5 REG � � 
Y7A
4^ º � satisfying

� ] " ] º � � ô ¤ 7AZ
In the cases (2.10), (2.13) the realization of REG is given by the scheme SOLVE for

solving the operator equations (4.1) corresponding to the choices (4.3).
The third method is quite different and uses the fact that, by Proposition 3.3, the projec-

tion of 0 	�8 9E;3< onto the eigenspaces associated with a bounded subset of â ���x� becomes
boundedly invertible.

To fix ideas we briefly specify the discussion in � 3 and assume that â ���6�Â	 y u ú = � a�� zwith % � u ú � ¤ % � u ú Ø ÉÊ� and % � u ú �}? ¸ for � ? ¸ . Then, by the spectral mapping
theorem, 8�9E;3< has the eigenvalues 8:9E; w�� which tend to zero if � ? ¸ . Thus, we discard
the eigenvalues for large � by projection. Fix a � � a�� and set â É�	 y u ú = t ¤ � ¤� ��z . According to the notation of � 3, the projection onto the eigenspaces associated withâ É is denoted by � � Ñ . The projected semigroup � � Ñ 8�9E;3<_	�8�9E;3< Ñ =Mê¶? ê is boundedly
invertible with inverse 8 ;3< Ñ 	 tÔ���� O � Ñ 8 ;$# �3ÌA«¬"~�x� 9

É Y�Ì
and � 8 ;3< Ñ �C� Q � V ¤ ° 8 ;e3�Q w�� k V 

for some constant ° 	 ° � � ��� Ö t . Here we take again ê�	 � 	ª[ . Thus, the regularized
solution defined as ] º ú k 	�8 ;3< Ñ ^ º 
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depends continuously on ^�º , and � 	 t���� � plays the role of the regularization parameter, see
(3.5). Clearly, if � ��?æ¸ (i.e. � ? � ) and ^ is given exactly the regularized solution ]Mú k
will tend to ]Ah if � has a complete system of eigenvectors.

When dealing with noisy data, � � has to be chosen properly. This can be done again with
the aid of the discrepancy principle, i.e. we pick

� � 	½��d�� y � a A = � 8 9�;3< ] º ú "¼^ º � ô ¤ W » z
for some fixed parameter W Ö t .In summary, the three variants of the main algorithm arise from the choice of the corre-
sponding auxiliary routine REG � � 
Y7A
4^XºB� which can be any one of the following three:

1. SOLVE � � «�� 0 � 0 
87�
 0 � ^�ºB� ,
2. SOLVE � �1á>� � 0 � 0 
87�
 0 � ^ º � , c.f. (4.3),
3. APPLY �Ó"*2®
 � É�� � �®
n��
Y7A
4^�º{� .

Each of these routines returns a regularized solution of the ill-posed equation 0/] 	½^�º .
Of course, embedded in the routines SOLVE is a way for evaluating the given data ^�º

(depending on the format in which they are given). This is explicitly used when computing
residuals. We refer to a corresponding routine�465 EVAL ��7A
 4 � satisfying

� �4 " 4 � ô ¤ 7AZ
The realization of the discrepancy principle for either of these three choices reads now

as follows.
ALGORITHM 2. x 5 DISCREPANCYPRINCIPLE ��^�ºU
 » 
 � � , REG �
For k = 0, 1, . . .Z ��ú =�	 Õ ú � �Z ]�ú�5 REG � �1ú 
4W É � 0 � 9 É » 
n^�ºC�Z 4Iú\5 APPLY �32®
 � 
��G��� � 
 É' W ' » 
 ]�ú �Z ­ ú�5�4Iú " EVAL � É' W ' » 
n^�ºC�Z If

� ­ ú �hz r Qj|/V ¤ W » then return ]�5�]Aú .
THEOREM 4.3. Algorithm DISCREPANCYPRINCIPLE defines a regularization scheme of

optimal order for � ß � ¤ t���Ô for the Tikhonov-type schemes (cases t Z and Ô Z ) and for any
positive � for the projection scheme. More precisely, the output ] of DISCREPANCYPRINCI-
PLE �3^ º 
 » 
 � �Ê� satisfies

(4.8)
� ] " ] h � ô ¤ °�» rsÏrsÏCÐ:Ñ ! ÑrsÏCÐ�Ñ

for all ^�º6a
[ with
� ^�º@"¼^ � ô ¤ » and all ]Ah 	£� 0 � 0 �4Ò 4 with

� 4 � ô ¤ ! , under the above
restrictions on � .

Proof. From the target accuracy in REGSOLVE, APPLY, and EVALRHS it is immediate
that the conditions (2.5) and (2.6) of Lemma 2.3 are satisfied for ]Aú and b*f ¥ � 	 � ­ ú � � . The
algorithm terminates if and only if (2.8) is satisfied. Therefore we infer from Lemma 2.3 the
validity of (4.8), recalling that � �6	 t for the Tikhonov scheme.

As pointed out at the end of � 3 the version 3. becomes an SVD-projection when � is
selfadjoint and positive definite. In this case the qualification is � �6	�¸ , i.e. the range of the
smoothness index � that can be exploited is now unbounded.

Of course, in principle, the projection method is a familiar concept in regularization
theory. But, to our knowledge, it has not been implemented yet in the present context with
a rigorous error control since the eigenvalues and eigenspaces are in general not numerically
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accessible. By the techniques developed in [15] and � 4.1 the scheme becomes for the first
time realizable in a fairly general setting.

A rough comparison already indicates at this point that, aside from the fact that higher
order regularity can be exploited better, the projection method is computationally more effi-
cient than the Tikhonov scheme. In our setting, for some fixed positive 2�5,� the algorithm
APPLY( "*2®
 � ÉÊ
n��
Y7A
4^ º ) will be called for some 7�� » until the discrepancy principle is met.
Each call will need A elliptic subproblems to be solved within a prescribed tolerance where
we observed A to be well below � � in our experiments. In contrast, the Tikhonov method re-
quires several calls of SOLVE( � «x� 0 � 0 
87�
 0 � ^�º ). Any linear solver applied to this problem
will perform an application of APPLY( 2®
 � 
n�¼��� � 
Y7A
 4 ) once per step and will need several
steps to solve the linear problem within the desired tolerance. In fact, it will need more and
more steps as � decreases. As APPLY( "*2®
 � É 
��>
Y7A
n^�º ) and APPLY( 2®
 � 
��H�H� � 
Y7A
 4 � need
at least for small 2 roughly the same amount of work the projection method is significantly
faster than the Tikhonov scheme.

Of course, it is crucial to come up with suitable curves � É separating the spectrum accord-
ing to the needs of the discrepancy principle. Moreover, Assumption 1 needs to be validated.
These issues will be addressed in � 6 for a simple test case.

5. Realization of Computational Routines. So far we have left open how to realize the
algorithmic building blocks SOLVE, APPLY as well as EVAL numerically. We shall address
this issue now for the canonical choice � 	Kê (e.g. % ' ��)*� ). The main tool will be a suitably
chosen wavelet basis. This leads to computable routines with guaranteed error bounds and
some information on the computational complexity of SOLVE for (4.3) and (4.4).

Moreover, as an interesting byproduct, the fact that wavelet bases allow us to characterize
the spaces

é ;��s)*� by simple rescaling, a new regularization method which measures the
residual 01] º� "½^�º in the norm of

é ;{��)*� , " t ¤
9 ¤ t , suggests itself that will later be

compared with the above versions.

5.1. Wavelets for Operator Equations. We shall not give any details on specific re-
alizations of wavelet bases but collect only their relevant properties. How to realize them
has been discussed in the literature and we refer to references given e.g. in [7, 4]. As for
some notational conventions, a wavelet basis will be denoted by � 	 y�� w = u a�� z
where � is a countable index set whose elements typically encode the scale, the spatial lo-
cation and the type of the wavelets � w . The wavelets will always be assumed to be local,
i.e. � ��cU³7� ¥4¦�§X§ � w � O Ô 9 i w i , where

© uF©
denotes the scale, i.e. the dyadic refinement level on

which the wavelet lives. Our first requirement is that � be a Riesz basis for ê . This means
that every

ö a½ê has a unique expansion
ö 	 t w � | ð ö 
V�� w ò�� w which is stable in the fol-

lowing sense. Denoting by � 	!� ö w��4w � | the array of wavelet coefficients of
ö
, there exists

bounded constants
ÕE� 
 ° � 5g� such that

(5.1)
Õ � � � �{z r Q.|�V ¤7�CöA� ô ¤ ° � � � �hz r Q.|�V 
 ö a}ê@Z

It is well known that this implies the existence of a dual Riesz basis �� 	 y �� w = u a�� z �_ê
for ê , i.e. ð �� wE
 � w ø ò 	 » w � w ø , so that

ö w�	 ð ö 
 � w ò , and one has the alternate expansion	 t w � | ðe� w 
 ö ò �� w , see e.g. [5]. Viewing � 
 �� as column vectors with respect to some
fixed ordering of the indices, ð ö 
 ���ò , ð��� 
 ö ò are the arrays of wavelet coefficients in the first
representation of

ö
viewed as row and column vectors, respectively. The above expansions

can then conveniently be rewritten asö 	 ð ö 
 ��ÅòC� 	 ð ö 
 �Åò �� 
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where we formally view the expansions as “inner products” of the coefficient arrays with the
bases. As a default we shall view sequences as column vectors.

Moreover, a duality argument shows that in these terms

t° � � ðp� 
 ö ò �hz r Qj|�V ¤7�®öM� ô ¤ tÕ � � ðp� 
 ö ò �hz r Qj|�V 
 ö aàê@Z
For ê£	_%Â'U�s)*� and a wide range of domains one can construct � and �� simultaneously

in a way that the primal as well as dual wavelets are compactly supported. Moreover, these
constructions actually offer more, namely that properly scaled versions of � and �� form
Riesz bases for certain smoothness spaces

é
,
é¼ë

, respectively, appearing in (2.16). More
precisely, for

é
from (2.16), we shall assume (in agreement with all known constructions)

from now on that for the positive diagonal matrix

(5.2) � 	 diag y Y w = u a�� z 
 Y w =�	_³ c�� y t 
 � � w �C÷ z 

one has ö a é���� ��� a�� ' �����®
 where � 	 ð��� 
 ö ò 
 i.e.

ö 	 � P � 

and that the norm equivalence

(5.3)
Õ ÷ � ��� �hz r Q.|�V ¤ª�®öM� ÷ ¤ ° ÷ � ��� �{z r Q.|/V 
 ö 	 � P � a é 


holds with constants
Õ ÷ 
 ° ÷ 5G� . Again it follows from biorthogonality and duality that° 9 É÷ � � 9 É �� �hz r Qj|/V ¤ª�®öM�C÷Dø1¤GÕ 9 É÷ � � 9 É �� �hz r Q.|/V 
 ö 	 �� P �� a é ë Z

In these terms the rescaled bases � 9 É � and ���� are Riesz bases of
é

and
éìë

, respectively.
This has been realized for Sobolev spaces

é 	 é ;®�s)*� or
é ;� ��)*� , 2 ß v �UÔ . In particular,

for
é 	 é É� ��)*� the scaling weights are of the order Y w 	 Ô i w i . This suggests working with

the rescaled bases exclusively, if one is only interested in the spaces
é

and
é~ë

. However,
we are going to employ wavelet representations of operators from

é
onto

é ë
(and even fromé �èÌ��Â? é �3ÌM� ë for certain ê � é �3ÌM�I+ é ) as well as of endomorphisms of ê . Recording

the dependence on � (and further scalings) explicitly will enable us to adapt to the relevant
topologies. Therefore, expansion coefficients will always relate to the ê -normalized bases.

With these preparations we can transform now any variational problem of the form: Find�àa ' such that for Jàa éìë
(5.4) ð ö 
 ' � ò 	 ð ö 
�J ò 
 ö a é 

into an equivalent one in the wavelet coordinate domain. To this end, it will be convenient
to define for any two countable collections � 
8� of functions, ordered in an unspecified but
fixed way, the corresponding generalized Gramian byðp� 
8� ò =�	�� ð�  
 ,�òY¡�¢ �W£1� ¤C�W¥ 

i.e. the first entry is formally viewed as a column vector while the second one acts as a row
vector which explains the subsequent formal manipulations. Using the scaled basis functions
as test functions in (5.4), shows that the original variational problem (5.4) is equivalent to the
infinite-dimensional system ðe� 9 É � 
 ' � ò 	 ðe� 9 É � 
¢J ò 
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as � 9 É � is complete in
é

. Inserting the representation �
	§¦ P � into the previous equation,
yields

(5.5) � 9 É ð¨� 
 '©�Åòª «{¬ ­ÿ¯® � 9 É � � ¦1�@	 � 9 É ð¨� 
¢J òª «{¬ ­ÿ¯° Z
± 	 ðp² 
 '�²�ò is called the (standard) wavelet representation of ' with respect to ² . It is
well known that, when ' satisfies a relation like (2.17) and the basis satisfies (5.3), this latter
problem is now well-posed in � ' ����� , see e.g. [2]. The relevant properties may be summarized
as follows.

REMARK 5. For every bounded linear operator ' = é ? é ë
we have� � 9 É ± � 9 É �N� Q z r Q.|�V � z r Q.|/V3V ¤ ° '÷ � ' �C� Q ÷ � ÷Dø V Z

If (2.17) holds for ' with constants
Õ + 
 ° + , i.e. ' 9 É a�³ì� é}ë 
 é � exists, we have

(5.6)
Õ + Õ '÷ � � �hz r Q.|/V ¤ª� � 9 É ± � 9 É � �{z r Q.|�V ¤ ° + ° '÷ � � �hz r Q.|�V 
 � a �N'U�¨�·�CZ

i.e. the representation of ' with respect to the scaled basis � 9 É � for
é

. Likewise, for every
continuous endomorphism ' =�ê£?Ùê the estimates� ð¨� 
 '©�
ò �C� Q z r Q.|/V � z r Qj|/V3V ¤ ° '� � ' �C� Q ô � ô V
and � ð �� 
 ' ��Åò �C� Q z r Q.|�V � z r Qj|/V3V ¤gÕ 9 '� � ' �C� Q ô � ô V
are valid.

The property (5.6) provides one of the main foundations of the recent adaptive paradigm
developed in [2]. In fact, it suggests that one can find simple preconditioners ´©µ such that
the idealized iteration

(5.7) � ¦ ú Ø É 	 � ¦ ú � ´Rµ¶� 9 É ��·I" ± ¦ ú �C
 � 	���
 t 
NZBZNZC

converges to the solution �G	�¦ P � of (5.5) for any initial guess ¦ � with some fixed error
reduction rate ! ß t per step. In fact, for symmetric positive definite ' (implying that also±

is symmetric positive definite) the choice ´ µ 	 �K¸ would work for a suitable damping
parameter depending on the constants in (5.6). In general, ´ µ =�	 � � � 9 É ± � 9 É � P would in
principle do the job although the corresponding squaring of condition numbers might degrade
the quantitative performance.

For a numerical realization of (5.7), one has to approximate for any finitely supported
input vector � the infinite-dimensional vector � 9 É ± � by some finitely supported ¹ that
approximates the exact sequence � 9 É ± � in � ' ���·� within suitable dynamically updated tol-
erances. In fact, one actually applies compressed versions of � 9 É ± � 9 É to scaled vectors��� . These perturbations of the ideal iteration (5.7) can be shown to provide an adaptive
solution scheme

Solve( � 
 ± 
87�
C· ) ?º¦ a
that outputs for any target accuracy 7
5G� an approximate solution ¦ a of

± ¦�	�· such that

(5.8)
� � ��¦à"»¦ a � �hz r Qj|/V ¤ 7A
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which, in view of (5.3), means that
� � "�� a � ÷ ¤ ° ÷ 7 .

Moreover, for operators ' considered here one can contrive efficient schemes for the
approximate application of � 9 É ± � 9 É so that the algorithm Solve can be shown to exhibit
an overall asymptotically optimal work/accuracy balance in the following sense. To this end,
let us denote for ­ 5&� by ¼>½ 	 ¼X½ � é 
 � � the class of those functions

ö a é such that
the error âG? � ÷ � ö � of best A -term approximation of

ö
in
é

, i.e., the accuracy obtainable by
a linear combination of at most A wavelets � w , decays like A 9 ½ . It is not hard to see that© ö © ¾�¿ =�	 ¥4¦�§ ? ��û A ½BâÀ? � ÷ � ö � defines a quasi-norm for ¼>½ . Moreover, when

é 	 é ;®�s)*� for
some 2*5�� , the space ¼>½ is almost characterized by the Besov space ' ;3Ø ½ .S ��% S �s)*�4� , wheret{� WÅ	 ­ � t���Ô , see [2] for more details. Thus, an element

ö a ¼R½ can be recovered within
accuracy 7 using only the order of 7A9 ÉYÁ ½ © ö © É8Á ½¾ ¿ terms. It is important to note that, on account
of (5.1), an element

ö 	 � P � a é belongs to ¼X½ � é 
 � � if and only if its scaled wavelet
coefficient array ��� can also be approximated in �{'U����� within accuracy A 9 ½ by the order
of A terms. Equivalently, approximating ��� in �Ê'������ within a tolerance 7H5j� , takes the
order of 7�9 ÉYÁ ½ © ö © É8Á ½¾ ¿ terms. Thus, in brief, (near-)best A -term approximation in

é
is directly

linked to (near-)best A -term approximation in �Ê'����·� . Clearly, best A -term approximation in�N'U�¨�·� is conceptually very simple since it boils down to retaining the A largest (in absolute
value) terms of ��� .

Now the main complexity estimate from [2] states that whenever the solution � of (5.4)
belongs to ¼>½ for some ­ ß ­ � , then the computational work required by Solve � � 
 ± 
Y7A
8·{� to
output an 7 -accurate approximation ¹ a of ¦ and hence, in particular, the number of nonzero
terms in ¹ a , is bounded uniformly by a constant multiple of 7M9 ÉYÁ ½ © ö © É8Á ½¾ ¿ . Moreover, when
using spline wavelets of exactness order Â a � it has been shown in [17] that the optimality
range covers the highest possible order, i.e. ­ � 5 Â "_2 � Y . For this optimal complexity
estimate it is crucial to have a relation like (5.6) which requires controlling the constants in
(5.3) and those in a mapping property like (2.17).

We shall apply these concepts next to equations (5.4) for the choices (4.3) and (4.4).

5.2. Solution of the Resolvent Equations. To apply the wavelet technique to the resol-
vent equation

(5.9) �èÌM«¬"��6� ö 	�J�
 Ì}a�!����x�®

we will start from the following weak formulation: For any given JÎa é�ë , find �~a é such
that

(5.10) ð ���3ÌM�Ó�F
 ö ò 	 ð Ì 9 É J�
 ö ò for all
ö a é 


where ���3ÌM�(=�	_«�"ìÌ 9 É �>Z
Here and in the sequel we assume Ì}a�!A���6� , i.e. for any Jìa é�ë , equation (5.10) has a unique
solution continuously depending on J . In particular, the norm equivalence

(5.11)
Õ <�QI#�V �®öM�C÷,¤ª� ���3ÌM� öA�N÷Âø1¤ ° <�QI#�V �®öM�C÷ 
 �ìa é Z

holds for some constants
Õ <�QI#�V 
 ° <�QI#�V 5½� that may depend on Ì . The corresponding wavelet

representations is denoted by Ã �èÌ�� 	 ð¨� 
����èÌ�� �}ò . In principle, the comments from the
previous section imply that, because of (5.11), the scheme Solve with the scaling � would
indeed work for each fixed Ì in the resolvent set with optimal complexity. However, we
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expect the ratios ° <�QI#�V � Õ <�QI#�V to become large when Ì gets close to the spectrum. Moreover,
when

© Ì © grows ���3ÌM� acts more and more like the identity on lower scales so that the mapping
properties of ���3ÌM� agree less and less with the topology of

é
. Thus the complexity bounds

deteriorate due to the increasing ratio ° <�QI#�V � Õ <�QI#�V .This problem can be ameliorated by introducing appropriate Ì -dependent norms on
é

.
The lower constant

Õ <�QI#�V will always depend on the distance of Ì from the spectrum. To
control this will be a matter of the choice of the curve � É . So all one can hope for in addition
is to reduce (or even avoid) the dependence of such stability constants on the size

© Ì © . To this
end, we introduce next different norms on

é
and set

(5.12) ��Ä 	 � � c�e���Y:w��3ÌM�n�4w � | 
&Y�wX�3ÌM�(=�	½³ c�� y t 
 © Ì © 9 ÉYÁ�' Y�w z 

(with Y w from (5.2)) and endow

é
with the norm�®öM� ÷ QI#�V =�	 � �ÅÄs� �{z r Q.|/V 
 ö 	 � P � Z

Clearly, by duality � 4 � ÷ QI#�V ø 	 � � 9 ÉÄ ð¨� 
 4�ò �hz r Qj|/V Z
The analog to (5.3) holds for

é �èÌ�� trivially with constants
Õ ÷ QI#�V 	 ° ÷ QI#�V 	 t . If we had in

addition a mapping property�ÕU�CöA� ÷ Q)#{V ¤7� ���3ÌM� öA� ÷ QI#�V ø ¤ �° �®öM� ÷ QI#�V 
 ö a é �èÌ��®

with constants independent of

© Ì © , we could conclude according to Remark 5 that

(5.13) ÆE( d � 'U� � 9 ÉÄ Ã �èÌ�� � 9 ÉÄ � O t 

which is needed for Solve to perform with asymptotically optimal complexity. To this end, it
is easy to see that for

ö 	 � P �� ���3ÌM� öA� ÷ QI#�V ø 	 � � 9 ÉÄ ð¨� 
n�i�èÌ�� ö ò �{z r Q.|/V ¤ ° � � Ä � �hz r Qj|�V 	 ° �®öM� ÷ QI#�V 

where the constant ° depends only on the constants in (5.1) and (5.3) and is thus independent
of Ì . Hence ���èÌ�� is uniformly bounded in

é �èÌ�� for Ì in the resolvent set. This means
that the upper estimate in (5.6) holds for � 9 ÉÄ Ã �èÌ�� � 9 ÉÄ with a constant independent of Ì .
The validity of a lower bound independent of

© Ì © seems less clear. However, computational
evidence shows clearly that scaling by ��Ä is by far superior to scaling by � .

Thus we shall employ Solve with respect to the scaling � Ä . To bound the error with
respect to

� ñ � ô independent of Ì we shall make frequent use of the following simple facts.
REMARK 6. Note that for all the above scalings one has � w � w Ö t , � ��Ä �4w � w Ö t , for

all
u a�� . This implies that for 4 	 ¹ P �

(5.14)
� � 9 É ¹ �hz r Q.|/V ¤ª� ¹ �hz r Q.|�V 
 ¹ a��N'U�¨�·�C


which are the discrete analogues of the embedding inequalities� 4 � ô ¤,� 4 �C÷ 
 � 4 � ô ¤,� 4 � ÷ QI#�V 
 4 a é Z
We are now prepared to formulate a realization of SOLVE( ÌM«�"���
Y7A
4�M� ).

ALGORITHM 3. w 5 SOLVE �3ÌA«�"�� , 7 , �A�Ê�ZÇ¦ � 5 ð¨� 
4� � ò
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 Ã �èÌ��®
 ° 9 É� 7�
C¦R� )Z 465�¹ P �
The requirement

� �3ÌA«�"½�x�®9 É � � " 4 � ô ¤ 7 is met thanks to the accuracy of Solve,
c.f. (5.8), the discrete embedding inequality (5.14) and the right inequality in (5.1).

Concerning the specification of the scheme Solve in the above Algorithm 3, we can
refer directly to [2] since the underlying equivalent formulation of the resolvent equation
in wavelet coordinates is straightforward as given above. Moreover, the fast approximate
application of Ã �èÌ�� as well as the approximation of the data ¦ � follow here standard lines.
One such ingredient is the approximation of given data in terms of wavelet coefficient series
by sequences with shorter support. These approximations can be obtained (after appropriate
preprocessing of the data) with the aid of a coarsening routine Coarse ��7A
 � �}? � a that
approximates É by a finitely supported vector such that

� � " � a �{z r Q.|/V ¤ 7 and � a has (nearly)
minimal support, see [2] for details concerning this routine. The routine EVAL appearing in
Algorithm 2 looks as follows:

ALGORITHM 4. w 5 EVAL ��7 , ö �Z � 5 ð��� 
 ö ò ,Z ¹ 5 Coarse ��7A
 � � ,Z 4 5º¹ P � .

The realization of SOLVE also for (4.3), i.e. in the context of the Tikhonov-type schemes
is more involved since the application of the concepts from [2] require

(a) the wavelet representation of the underlying operators (in this case ' 	 � «¬� 0 � 0
or ' 	 �1á>� � 0 � 0 ),

(b) their efficient application in wavelet coordinates as well as
(c) the less straightforward approximate evaluation of the right hand side in wavelet

coordinates.
Therefore we turn now to providing these necessary ingredients in the subsequent subsec-
tions.

5.3. Application of (Projected) Semigroups in Wavelet Coordinates. The adaptive
wavelet schemes hinge on the wavelet representation of the involved operators and data.
Therefore we we shall derive next the wavelet representation of the projected semigroup and
of the semigroup itself. Since the resolvents (5.9) apply to elements in

éìë
which are naturally

expanded in terms of the dual basis �� we choose to represent 8:9�;3< � � Ñ with respect to �� ,
i.e. we set

(5.15) Ê@Ë �324��	 ð��� 
n8 9E;3< � � Ñ ��
ò 
 thus 8 9E;3< � � Ñ ö 	ª� Ê@Ë ��24� � � P � Z
To apply this operator to a given vector � we invoke Algorithm 1. As we have already
provided a realization of SOLVE( ÌM«I"Å�>
Y7A
n� � ), Algorithm 1 and consequently the following
algorithm is a computable scheme.

ALGORITHM 5. w 5 Apply( Ê@Ë �324�C
Y7A
 � )Z 465 APPLY ��8�9�;3< ��� Ñ 
 Õ�� 7A
 � P �� �Z ¹È5 ðC�² 
 4�ò
The formulation of Apply is in principle only a formality which could be dispensed with.

However, on one hand, it will be convenient in what follows and, on the other hand, reflects
how the APPLY–routine actually works. In fact, since the resolvent equations are solved in the
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wavelet coordinate domain, the intermediate quantities 4 Q � ú 
4� Q 
nY Q 
 4 Q generated in Algorithm
1 are actually given in terms of their wavelet coefficient arrays.

Similarly to (5.15), the representation of 0 	�8:9�;3< in wavelet coordinates is given byË �324�D=�	 ð��� 
n8 9E;3< ��
ò Z
We note that approximate evaluation schemes

(5.16) Apply � Ë ��24�®
ÍÌ� 
Y7��®

can be constructed analogously based on the corresponding version of APPLY. For a detailed
discussion and analysis of these evaluation schemes we refer to [15, 16, 11]. Alternatively, in
view of Remark 2, we could realize the scheme Apply � Ë �324�C
ÍÌ� 
Y7�� with the aid of Algorithm
5 combined with a proper choice of the curve � É . Therefore, we shall assume that the scheme
in (5.16) is given without further elaborating on its specific features.

5.4. Tikhonov-Type Schemes. We shall now provide computable schemes for SOLVE� � «>� 0 � 0 
Y7A
 0 � ^�� and SOLVE � �1á�� � 0 � 0 
87�
 0 � ^�� , see (4.3). To this end, we will apply
the general solution concept of � 5.1 to the operator ' 	 � «>� 0 � 0 and ' 	 �1á � � 0 � 0 ,
respectively. Both are norm-automorphisms of the space ê such that it is sufficient to choose� 	 ¸ , i.e. preconditioning is not necessary.

Recalling that � is assumed to be normal, the (modified) Tikhonov regularization re-
quires, in view of (3.3), solving the operator equation

(5.17) � ��á � �H8 9�;�+ � ] 	_8 9E;3<�* ^A
 ' =ó	�� � ����

Concerning an equivalent formulation in wavelet coordinates, recall that the resolvent appli-
cation suggested to represent the evolution operators in the dual basis �� , i.e.Î � 	 ð �� 
 á>� ��
ò 
 Ë + �324��	 ð �� 
n8 9�;�+ ��Åò 

where á�� either denotes the identity or a projection, depending on the size of � . Here we use
the superscript ' to distinguish Ë +��324� from the representation Ë �324� of the original semigroup8�9E;3< . If we were content with representing the solution ] in dual coordinates ] 	 �] P �� ,
(5.17) is equivalent to

(5.18) � � Î � � Ë + �324� ¡ �Ï 	 ðp� 
�8 9E;3<�* ^ ò 	 Ë �324� � ðp� 
n^ ò Z
But representing the solution in dual coordinates has several drawbacks. In practical con-
structions the primal basis � is typically piecewise polynomial and comfortable routines are
available for further manipulating or processing the approximate solutions. The dual basis�� is typically less regular and less convenient to handle. Therefore, we indicate next briefly
how to switch representations with the aid of numerically executable Riesz maps. Clearly,
expanding the � w in terms of the �� w , yields� 	 ð¨� 
 �Åò �� i.e. ¸ 	 ðp� 
 �ÅòCð �� 
 ��
ò Z
Thus, defining the Gramian Ð 	 ð¨� 
 �
ò , we haveÌ� P � 	ª� Ð Ì� � P �� 

i.e. application of the Gramian to primal coordinates yields the dual coordinates. Likewise,
since ¸ 	 ðp� 
 ��Åò , we obtain for any endomorphism ' of ê
(5.19) ð¨� 
 '©��ò 	 ð¨� 
 �ÅòCð �� 
 ' ���òNð¨� 
 �Åò 	 Ð�ð �� 
 ' ��
ò8Ð Z
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If, as argued above, we wish to represent ] 	 Ï P � aÅê in primal coordinates we obtain,
on account of (5.19), the alternate equivalent formulation

(5.20) Ð � � Î � � Ë + �324� ¡�Ð Ï 	 Ð Ë � �324� ðp� 
4^ ò Z
(5.18) would save two applications of Ð per iteration step in comparison with (5.20). Of
course, one could transform at the end �Ï into primal coordinates by applying the inverseÐ 9 É 	 ð �� 
 ��
ò . But the latter one is usually less compressible rendering its application less
efficient. Therefore we concentrate in what follows on (5.20).

We wish to solve the system (5.20) within any desired target accuracy with the aid of
the scheme Solve following the lines of [2]. To invoke the concepts developed there we need
algorithms to apply the involved operators up to any prescribed accuracy. We provide these
ingredients in the following subsections. The above representations involve, in particular, the
(infinite) matrix Ð . The vanishing moment property of wavelets allows one to apply Ð to any
finitely supported vector within any prescribed accuracy tolerance by the schemes developed
in [2, 1]. Moreover, within a certain basis dependent range such an application has asymptot-
ically optimal complexity in the sense described earlier. Such a multiplication scheme is also
a central building block in the scheme Solve and will be denoted by Ñ ¦KÒ�Ó�� Ð 
Y7A
 � �I? ¹ a
providing an approximation ¹ a to Ð�� such that

� Ð�� " ¹ a �{z r Q.|/V ¤ 7 .It should be noted that the following building blocks are all acting in the wavelet domain.
This is necessary since the scheme Solve( � 
 ± 
Y7A
 � ) itself operates in the wavelet domain.
Once all ingredients are gathered we shall formulate an algorithm acting in the continuous
domain, see Algorithm 9 at the end of � 5.4.3.

5.4.1. The Right Hand Side Ô . Then the right hand side of (5.20) has the representation

Ô 	 ðp� 
�8 9E;3<�* ^ ò 	 ð¨� 
 �ÅòMð �� 
�8 9�;3<�* ��
ò�É 	 Ð Ë � ��24� É Z
Again since É has possibly infinitely many non-vanishing entries the following scheme starts
formally with a coarsening step.

ALGORITHM 6. w 5 EvalRhs( 7 , É )Z ¹ É 5 Coarse ��7�É�
 É � , 7:ÉI	 Õ r Ö]8^ rÖ ol× wWØjÙ * opÚWÛ)Ü	Ý 7 ;Z ¹ ' 5 Apply � Ë � ��24�®
Y7�'U
 ¹ ÉN� , 7U'x	 a]8^ rÖ ;Z ¹ 5 Mult � Ð 
Y7 ] 
 ¹ ' � , 7 ] 	 a ] .
LEMMA 5.1. The output ¹ of EvalRhs �e7�
 É � satisfies� ð¨� 
n8 9E;3<�* �
òlÉ " ¹ �hz r Qj|/V ¤ 7AZ
Proof. Repeated application of the triangle inequality yields� ð¨� 
n8 9�;3<�* ^ ò " ¹ �hz r Q.|@V¤7� Ð �C� Q z r Q.|/V3V � � Ë � �324� �C� Q z r Q.|�V3V ñ 7�É��Þ7�' ¡ �ß7 ] Z

As, by Remark 5,
� Ð �C� Q z r Qj|/V3V ¤ ° '� and

� Ë � �324� �C� Q z r Q.|/V3V ¤ªÕ 9 '� � 8�9E;3<�* �C� Q ô V , the choice
of 7:É , 7U' , and 7 ] ensures that the error is bound by 7 .
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5.4.2. The Projection. Given a regularization parameter � 57� the orthogonal projec-
tion á � onto the eigenspace associated with the eigenvalues of 8�9E;3< * 8U9�;3<½	�8Ê;�+ , in   ��
 � ¡
is to be evaluated. Denote by y u ú z ú | É the eigenvalues of ' 	��g�H� � sorted by increasing
size,

u ú ¤ u ú Ø É . Due to the spectral mapping theorem 3.1 we haveâ ��8 9E;�+ ��ã   �X
 � ¡ 	 � y � záà y 8 9E; w�� = � Ö t z ¡ ã   �X
 � ¡	 y � záà y 8 9E; w�� = u ú Ö t 2 ².( e�� t� � z Z
By the results of � 3 we are capable to evaluate projections onto the eigenspaces associated
to any bounded subset of â � ' � . Thus, the representation á � 	 «à" � � is used where� � 	 ��� Ñ � ' � and the Jordan curve � É encloses y u ú = u ú ß É ; ².( e�� É� � z (cf. � 3). The
representation of á � with respect to � becomesð¨� 
 á>�G�
ò 	 Ð " Ð Ê>�GÐ 

where Ê>� 	 Ê@Ë ����� is the projection in wavelet coordinates and can be evaluated by Apply� Ê@Ë ���:�®
87�
 � � , see Algorithm 5. We do not define a Apply–routine for this operator, but use
this representation in the upcoming Algorithm 8.

5.4.3. The Operator 8:9E;3<�*N8�9E;3<�	k8�9E;�+ . The observations in � 5.4, suggest the fol-
lowing algorithm to evaluate ð¨� 
Ê� � «6�H8 9E;�+ � �Åòl� 	 Ð � �K¸ � Ë + �324�4� Ð�� , where � are here
the expansion coefficients with respect to the basis � of ê .

ALGORITHM 7. ¹â5 Apply( ð¨� 
B� � «���8:9E;�+D� �Åò 
87A
 � )Z ¹ É 5 Mult � Ð 
87:É�
 � � , 7:ÉI	 Õ r Ö]8^ rÖ ol× wWØjã opÚWÛIÜ	Ý 7 ;Z ¹ ' 5 Apply � Ë +���24�®
Y7�'U
 ¹ ÉN� , 7U'x	 É]8^ rÖ 7 ;Z ¹ 5 Mult � Ð 
87 ] 
 ��� � ¹ 'Ê� , 7 ] 	 É] 7 .
Clearly, in the third step we invoke the scheme Apply � Ë +��324�C
 Ì� 
Y7�� from (5.16) for the

operator Ë +x�324�@	 ð��� 
�8�9E;�QT<MØ�<�*nV ��
ò . An analogous reasoning as in the proof of Lemma 5.1
yields the following estimate.

LEMMA 5.2. The output ¹ of Apply � ð¨� 
Ê� � «��H8:9E;�+D� �
ò 
87A
 � � satisfies� ð¨� 
B� � «���8 9�;�+ � �Åò " ¹ �hz r Qj|�V ¤ 7AZ
If the identity is replaced by a projection ái� 	�«�" ��� we use an algorithm based on the

decomposition ðp� 
B� �1á � �H8 9E;�+ � �
ò 	�ä � «6� Ð � Ë + ��24�1" ��Ê � ¡{å�Ð ZÊ � is chosen depending on � as discussed in the previous section.
ALGORITHM 8. ¹â5 Apply( ð¨� 
B� ��á � �H8 9E;�+ � �Åò 
87A
 � )Z ¹ É 5 Mult � Ð 
87 É 
 � � , 7 É 	 Õ r Öæ ^ rÖ � � Ø ol× wWØjã o ÚWÛ.Ü	Ý � 7 ;Z ¹ ' 5 Apply � Ë +���24�®
Y7 ' 
 ¹ É � , 7 ' 	 Éæ ^ rÖ 7 ;Z ¹ ] 5 Apply � ð��� 
 � � ��
ò 
87 ] 
 ¹ É � , 7 ] 	 Éæ � ^ rÖ 7 ;Z ¹ 5 Mult � Ð 
87 æ 
 � � � " ¹ ] �R� ¹ ' � , 7 æ 	 Éæ 7 .
A similar proof as in Lemma 5.1 yields the following estimate.
LEMMA 5.3. The output ¹ of Apply � ð¨� 
Ê� �1á�� ��8�9E;�+D� �
ò 
87A
 � � satisfies� ð¨� 
B� ��á�� ��8 9�;�+ � �Åò " ¹ �hz r Qj|�V ¤ 7AZ
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We have prepared now all the algorithmic ingredients needed to apply the scheme Solve
from [2] to the operator equation (5.17) which will return an approximate solution ] a that
approximates ] with accuracy 7 . Thus we have the following implementation of the abstract
routine SOLVE � �1á�� � 0 � 0 
87A
 0 � ^�� .

ALGORITHM 9. w 5 SOLVE � ��á�� � 0 � 0 
Y7A
 0 � ^��Z É�5 ðp� 
n^ òZ Ôç5 EvalRhs � É' � Õ '� ° 9 É� 7A
 É �Z ¹�5 Solve( ¸ 
 Ð � � Q � Ë +���24�4� Ð 
 É' ° 9 É� 7�
 Ô )Z 4�5�¹ P �
5.5. Regularization of the Transformed Problem. So far we have first regularized

the continuous problem and then transformed it into a well-posed problem in � ' ����� (whose
condition, of course, depends on the regularization parameter). In this subsection, we will
exchange the order of regularization and transformation. We shall exemplify this briefly only
for the Tikhonov method, the modified version being similar. This gives rise to a scheme
where norms are easily changed by scaling offering an additional way of influencing the
regularization compromise. Accordingly � and [ are now different smoothness spaces and
no longer coincide with ê .

We consider the problem Ë ; �324� Ï 	 É 

posed in � ' �¨� � with the evolution operator given in wavelet coordinates asË ; ��24��	 � ; ð��� 
�8 9�;3< ���òY� ; 
 9 a   " t 
 t ¡ 

where now ] 	 Ï P � 9s; �� . The power

9
of the diagonal elements of � steers the involved

norms. For instance, when � is a second order elliptic operator, Ë � ��24�i	 Ë �324� is a repre-
sentation of the operator 8:9�;3< regarded as a mapping � 	�ê¶	�èU'U�s)*��?éè�':��)*�x	j[ . In
general, for

é 	 é ;� ��)*� , it is well-known that the scaling by � ; induces equivalent norms
on the interpolation spaces between

é 9�;¢�s)*� and
é ;� �s)*� , see e.g. [5]. Let us assume here the

standard case 2�	 t .As 8�9�;3< is compact the transformed operator has the same property as endomorphism
of �N'U���·� and the resulting sequence equation is ill-posed, as well. Applying Tikhonov-
regularization in �B'U�¨�·� yields the equation� � «6� Ë �; �324� Ë ; ��24�4� Ï º � 	 Ë �; �324� É º 

where ¸ denotes again the identity in �Ê'U�¨� � and not the Gramian matrix. É º and Ï º � are given
by É º 	 � ; ð¨� 
4^ º ò 
 Ï º � 	 � 9s; ðp� 
 ] º � ò Z
The regularized equation is equivalent to the solution of the minimization problemê ; � � 
 É º �>	 � � Ï º � � 'z r Q.|/V � � Ë ; ��24� Ï º � " É º � 'z r Q.|�V	 � � � 9�; ð¨� 
 ] º � ò � 'z r Qj|/V � � � ; ðp� 
�8 9E;3< ] º � "¼^ º ò � 'z r Q.|/V? ³���dë Çì � z r Q.|�V Z
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By the norm equivalences of the wavelet basis one sees that� Ï º � �{z r Q.|/V O � ] º � � ÷ wÍí Q)îEV and
� É º �{z r Q.|/V O � ^ º � ÷ í Q)îEV 


i.e. we take here � 	 é 9s;{�s)*� , [î	 é ;{�s)*� . Thus, the smaller

9
is the stronger the norm

becomes in which smoothness of ] º � is measured. In turn, the norm in which the residual is
measured becomes weaker for smaller

9
. In practice, the range

9 a   " t 
�� ¡ is of interest as
the solution ] º � should be smooth.

Concerning the convergence of the regularization scheme for » ? ��Ø , the properties of
Tikhonov regularization read as follows. Suppose that^�	�8 9�;3< ] h with ] h a é 9s; �s)*�
and � ^>"�^ º � ÷ í Q)îEV ¤ » Z
Then, � ] º � " ] h � ÷ wÍí Q)îXV ?\� for » ?\� Ø 

if � 	 � � » 
n^�ºN� is chosen properly, e.g. according to the discrepancy principle.

5.6. Some Comments on Computational Complexity. Not much seems to be known
about the actual computational cost of determining the numerical approximation È] º � for the
regularized solution ] º � depending on the given noise level » as » tends to zero. We address
this question now in a somewhat sketchy and partly heuristic way for the simplest scenario
that � is a symmetric self adjoint second order elliptic operator so that

é 	 é É� ��)*� , é}ë 	é 9 É ��)*� . Hence the singular values â ú of 0 	_8�9E;3< are for fixed 2D5½� given by â ú 	�8�9E; w � ,
where

u ú are the eigenvalues of � . A detailed rigorous study would be beyond the scope of
the present paper and will be given elsewhere. Here we merely wish to bring out what the
approach might offer at best and to identify some of the questions along that way.

Let ��ï É denote a suitable Jordan curve whose interior contains the first ð eigenvaluesu ú 
 � 	 t 
NZBZNZC
 ð , and let � ï =�	 � �Íñ Ñ be again the projector defined in (3.1). As pointed out
before, ] ºï =�	j8 ;3< Ñ ^ º with 8 9�;3< Ñ 	 � ï 8 9E;3< 	£8 9E;3< � ï , corresponds to a truncated SVD
expansion. Since by assumption

� � ï �3^�"~^�ºB� � ô ¤ °�» we can invoke [9, Theorem 3.26] to
conclude that

(5.21)
� ] h " ] ºï � ô ¤ ° ë � â ï Ø É�� »â ï �

for some constant ° ë independent of » 
 ð . Having some estimates for the
u ú and hence for

the âEú , a reasonable parameter choice is to balance both terms on the right hand side of (5.21).
This suggests choosing ð 	 ð � » ��	_³ c�� y � = â ú Ø É â ú Ö » z Z
In order to retain the accuracy offered by this projection method we compute�] ºï 	 Ï�P � 
 Ï 	 Ã�ò�ò Ò É � Ê@Ë �Ó"*24�®
 É º 
87��®
 with 7·=�	 » � â ï Z
Recall that the latter routine is given in Algorithm 1. As before, we do not specify in which
form the noisy data ^�º>aìê are actually given but assume for simplicity that we can observe
its wavelet coefficients É º for the expansion ^�ºI	ª� É ºÊ� P �� . Note that by (5.1), we have then

(5.22)
� É " É º �hz r Q.|@V ¤½Õ 9 É� » Z
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In this scheme the computational cost is then dominated by the approximate applications
of resolvents at quadrature points Ì/� 9 Q � ú � , � 	k�X
NZNZBZC
 A Q " t , A Q =ó	 Ô Q A � , on the curve��ï É . By a geometric series argument the overall work is dominated by the quadrature at the
terminating level % of quadrature resolution. For that % the scheme Solve is called A D 	Ô D A � times with target accuracies O 7 � © 8 ;$#:Q.;Ló m � V © , � 	Ù�X
NZBZNZC
 A D " t . Thus, the most
stringent accuracy constraint is encountered when the real part of Ì/� 9 D � ú � is of the order ofu ï . Hence, a rough bound for the computational cost ô ï of Ã�ò�ò Ò É � Ê@Ë �Ó"*24�®
 É ºU
Y7�� with7·=�	 » � â ï is given by

(5.23) ô ï ßO Ô D A � ô �põ¯ö`Ò �`÷ � ��ø Û í ó m ù ó w Ñ Ý 
 Ã �3Ì1�
9 D � ? ó 9 É �4�C
 Õ » 
4Ì1� 9 D � ? ó 9 É � 9 É É º � ¡ 


where we have used that â ï 	 8 9E; w ñ (recall the scaling � Ä given by (5.12)). Here,ô �¨õ�öGÒ �G÷ � denotes the computational cost of the routine Solve and ú ßOüû means that ú can
be bounded by a fixed multiple of û which is independent of the parameters on which ú and û
may depend.

It remains now to estimate % and ô �¨õ�öGÒ �G÷ � for a target accuracy of the order » . We
shall address this latter issue first. Recall that, according to (5.7), Solve endowed with the
scaling ��Ä operates on right hand side data of the form Ì/9 É � 9 ÉÄ É º which are the expansion
coefficients with respect to the

é �èÌ�� ë -scaled basis ��Äý�� . Thus, the noisy input data É º are
damped in two ways, first by Ì19 É when

© Ì © is large, and second, the entries ^�ºw for
© uF© ÖÉ' ².( e ' © Ì © are attenuated by the weights � ��Ä � 9 Éw � w , see (5.12). By (5.22) and (5.14) we also

know that

(5.24)
� Ì 9 É � 9 ÉÄ � É " É º � �hz r Q.|@V ¤gÕ 9 É� »

uniformly in
© Ì © Ö t .To obtain an impression of ô �põ¯ö`Ò �`÷ � in this context, suppose now that the exact wavelet

coefficient array É of ����24��	½^�	 É P �� is sparse in the sense that^·a ¼ ½ �sê�
 �� �
for some ­ 5g� , i.e. the error of best A -term approximation in � ' �¨� � decays as A 9 ½ © ^ © ¾ ¿ Q ô �$þÿ V .
Since the expansion coefficients of ^ with respect to the

é �3ÌM� -basis � ø Û í Ý �� are given by� 9 Éø Û í Ý É , (5.14) implies that also ^·a ¼ ½ � é �èÌ�� ë 
 �� �
for that ­ 5�� and any point Ì1� 9 � on �Kï É , uniformly in

9
and ð . We shall explain later what

this means in terms of the regularity of ^ . Now suppose further that the operator � and its
shifted versions ���èÌ/� 9 �n� permit the following “regularity” result:

ASSUMPTION 2. Given Ì�àa ¼>½ � é �èÌ�� ë 
 �� � for some ­ ß ­ � (with ­�� the fixed compress-
ibility limit depending on the wavelet bases (see [2, 17])) then the solution

ö a é �èÌ/� 9 �n� of���3Ì1� 9 �n� ö 	 Ì� belongs to ¼ ½ � é �3Ì1� 9 �4�®
 � � , i.e. sparseness is preserved under the inversion
of ���3Ì1� 9 �n� .

Then, if (5.13) was true, the results in [2] would assert that

(5.25) ô � õ¯ö`Ò �`÷ � ± �3Ì1� 9 D � ? ó 9 É �4�C
 Õ » 
 ÌÉ � ¡ ßO » 9 É8Á ½ © ö © ÉYÁ ½¾ ¿ Z
However, Solve “sees” only the perturbed data ÌÉ º}=�	 � 9 Éø Û í Ý É º . We dispense here with in-
troducing a statistical model and try to construct an estimator reflecting the sparseness of
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the exact data with high probability or in expectation. Instead we resort to a more heuristic
reasoning why under the above assumptions one may still obtain a work count like (5.25).
This requires a somewhat closer look at the way Solve works, see [2]. First of all the dataÌÉ º can be considered as a finite array, since every coefficient ÌÉ ºw with � � ø Û í Ý � 9 Éw � w ¤ » can be
discarded which, in view of (5.22), introduces only an error of the order at most » in �Ê'������
for the scaled right hand side (which is what matters for Solve). Let us call this finite array
again ÌÉ º . Thus, by (5.24), we still have that

� ÌÉ " ÌÉ º �hz r Qj|/V ¤ª� É " É º �hz r Q.|�V ¤ °�» for some
finite constant ° . Now, given some target accuracy � for Solve, the right hand side data are
approximated first by a possibly small array within a tolerance ú�� where ú is typically smaller
than one. This approximation is done by the routine Coarse described e.g. in [2], see also� 5.4.1. If we relax our target accuracy

Õ » in Solve by some constant factor larger than one,
the coarsening of the right hand side data ÌÉ º would have to be done with a target accuracyû °�» where û is now any fixed number larger than one. But then the Coarsening Lemma from
[2] states that the resulting approximation É � to ÌÉ º now satisfies� ÌÉ " ÌÉ � �{z r Q.|/V ¤ � t � û � °�» 
�� ¥4¦X§�§ ÌÉ � ßO » 9 ÉYÁ ½ © Ì^ © É8Á ½¾ ¿ Q ÷ QI#�V � ÿ V 
© Ì^ � © ¾�¿ Q ÷ QI#�V3V ßO © Ì^ © ¾K¿ Q ÷ QI#�V3V Z
Thus, using a fixed but sufficiently large multiple of » as target accuracy in Solve the corre-
sponding coarsening of the data that “peels” off at this level of accuracy the sparsity of the
exact array ÌÉ in the neighborhood. In that sense the routine Solve still “sees” ÌÉ and exploits
its compressibility giving the work count (5.25).

Let us briefly comment now on the above assumptions. We wish to recover the initial
data ]�h 	×�������}	Í� Ï h � P � from the data ^�º . Suppose that ��������a 'R½� ��% � ��)*�n� whereÉ� 	 ½. � É' . The space 'R½� ��% � ��)*�4� is just embedded in %Â'U�s)*� and signifies in some sense
the largest space of smoothness ­ contained in %('U��)*� . Note that the larger ­ the smaller �
and the weaker the measure for smoothness. It is well known that ]Rh a 'R½� ��% � �s)*�4� impliesÏ h a ¼X½ , see e.g. [8]. Moreover, it is known that then ^ª	\�1�324�}	ï8:9�;3<F�1���:� belongs
also to '>½� ��% � �s)*�4� , see [16]. Assumption 2 then says that the assumed gain in regularity
through the application of ���èÌ/� 9 �n�®9 É suffices to ensure that the solution array with respect
to � 9 Éø Û í Ý � is still in ¼ ½ . For moderate

© Ì1� 9 � © O t this is simply a regularity theorem for �
itself. For � as above we would have

ö 	ª���3Ì1� 9 �4�C9 É ^ìa 'R½ Ø '� ��% � �s)*�4� . Note that alreadyö a 'R½ Ø É� ��% � �s)*�4� would suffice to ensure that for
ö 	 � P � the array � ø Û í Ý � belongs to¼X½ � é �3ÌM�C
 � � . On the other hand, for large

© Ì/� 9 � © the operator ���3Ì1� 9 �4� gets closer to the
identity (at least on low scales) and the norm becomes closer to the % ' ��)*� -norm so that
Assumption 2 becomes less demanding. Nevertheless, the validity of (5.13) as well as of
Assumption 2 is crucial for the above reasoning.

Finally, let us quickly address the estimation of A D . A qualitative estimate on the% ü -norm of the integrand
:

is at best of the order 8�; w ñ . Since the required quadrature
accuracy in Apply is of the order 7 	 » � â ï we have to ensure, in view of (4.6), that» � â ï O t{� � â ï 8 ' =Y? � . Although we do not know < we see that A O © ².( e » © . Thus, by
(5.23), the overall work count can at best be expected to be of the order

© ².( e » © » 9 ÉYÁ ½ which
would almost correspond to the sparseness of ]�h 	_�1���:� .

6. Numerical Experiments. For the numerical experiments, we choose the operator��	£"�$ with homogeneous boundary conditions on the unit interval )½	£����
 t � . The eigen-
values and corresponding eigenvectors of this operator are given byu ú 	 � ' � ' 
 ö ú 	 ¨ Ô ¥ ��dR� ��� ] �C
 � 	 t 
 Ô 
NZBZNZ
We will exploit this orthonormal basis of %D'���)*� to obtain a reference solution in the following
experiment. Furthermore, we use the wavelet basis constructed in [6] of order 3 on the primal
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and dual side for the spatial discretization.. In all computations, a highest level of
ê 	 t � is

fixed.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

FIG. 6.1. Initial value

6.1. Application of Projections. First, the projection of a vector � � a�%Â'U�s)*� into the
joint eigenspaces of � and 8:9E;3< is tested. The main concern is to justify Assumption 1 which
the adaptive projection algorithm is based upon.

For the value ��� we choose the characteristic function of   t�� v�
 Ô�� v ¡ , see Figure 6.1. Its
expansion into the eigenvector basis of � can easily be calculated and the Fourier coefficients
with respect to this basis decay sufficiently slowly to pose a meaningful test.

To apply the projection Ê@Ë ���:� and the projected semigroup Ê@Ë �324� we choose the path
of integration as an ellipseÌ/� 9 ��	 Õ � úuÆ�( ¥ � 9 �R� � û ¥ ��d��

9 �C
 9 a   ��
 Ô�� �C

enclosing the eigenvalues

u É�
 u '�
BZNZBZN
 u ï for some fixed ð 5g� . The most satisfactory results
are obtained by the choiceÕ 	j� u É � u ï � ��Ô 
 ú 	ª� u ï " u É � ��Ô � �Wð 
 û 	 ú � ð Z
To justify Assumption 1 we compare the true error

err � A �(=�	 � ð��� 
 á@? � : �/"�8 9E;3< � � � � ò �{z r Q.|/V O � á@? � : �q� � "�8 9�;3< � � � � ��D r Q)îXV
with the error estimator  err � A � ¡ =�	 � ð��� 
 á@? � : �1" á ' ? � : � ò �{z r Q.|/V O � á@? � : �q� � " á ' ? � : �Ó� � ��D r Q)îXV
for the three time steps 2ì	 "I��Z � t 
n�X
 and �XZ � t and ð 	 Ô 
 � 
 x 
 � . The arising elliptic
equations are solved up to machine accuracy. This latter accuracy is chosen only in order to
validate Assumption 1 and should not be confused with the adapted tolerances in Solve as
part of the numerical solution process.

In Figures 6.2, 6.3, and 6.4 we have plotted the true error and the error estimator as
functions of A . Since the true error and the error estimator are too close in the graphical
displays the ratio between true error and error estimator is additionally depicted as dotted
line.

We observe an exponential convergence with respect to A as predicted by Theorem 4.1.
The oscillating behavior of the error seems to be caused by the symmetry of the integrand
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FIG. 6.2. True error compared to error estimator for projection 	�

���

with respect to the real axis which was not taken into account by the analysis. It should be
noted that the error estimator shows the same oscillatory behavior.

The speed of convergence becomes slower for increasing values of ð . This indicates
that < 5g� , the width of the strip �R= to which Ì extends analytically, decreases for increasingð . As for large ð , the parameterization Ì introduces a strong distortion of the complex
plane, this effect is not surprising. It could be avoided by splitting � into several curves each
enclosing one or a few neighboring eigenvalues.

When solving the backward problem, i.e. 2�	£"I��Z � t , for ð 	 � the absolute error is sub-
stantially larger than for the other test cases. This effect is caused by the ill-posedness of the
backward problem. For 2x	!"I��Z � t the projected semigroup 8�9�;3< � � has the highest eigen-
value 8�9E; w�� 	 ��� v�Z x ZBZNZ . Thus, some of the Fourier modes of � � are amplified substantially
which results in a large norm of 8 9E;3< � � � � and an increased absolute error.

Concerning the quality of the error estimator we obtain a ratio of almost one between the
true error and the estimated one. This close relation only breaks down for large A when the
quadrature error drops below t ��9�� which corresponds to the discretization error in

é É� ��)*�
when the wavelet basis is truncated at

ê 	 t � . Thus, the breakdown of the error estimator for
large values of A seems to be caused by discretization errors. Thus, Assumption 1 is justified
in our test case.

As the error estimator is almost equal to the true error already for small A , we choose
the constants from the adaptive algorithm to be A � 	 �

and
[ 	 É] and test its reliability. In

this experiment we observe that the actual error stays well below the target accuracy 7ì57� .
Moreover, the actual error is roughly proportional to 7 which indicates that the analysis of
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FIG. 6.3. True error compared to error estimator for projected semigroup ��� ��� ����� 	�
����

Lemma 4.2 is not too pessimistic. We do not provide a graphical display of this results
because there is no further insight to be gained from the plot.

6.2. Comparison of the four schemes. We strive to recover ]�h 	�� � from approxi-
mations ^�º to ^�	 �1�324�i	&8�9E;3<���� , 2�	&�XZ � t , where the initial value is given by �A�:� ] ��	f�� § � ¥ ��dR� Ô�� ] �n��" t , ] aG����
 t � . The perturbation ^�º*"~^ is created by adding white noise to
the wavelet coefficients (normalized in % ' ����
 t � ) such that error in the discrete % ' ���X
 t � norm
becomes exactly » .

The four algorithms from � 4.2 will be compared by measuring the difference of the
regularized solution and the true one in the discrete %('���)*� -norm, i.e.

� ] º � " ]Ah ��D r Q)îXV when
the perturbation » 5G� tends to zero. The regularization parameter � will be chosen according
to the discrepancy principle.

The results are reported in Figure 6.5. First, we observe that the conventional Tikhonov
scheme and the modified one yield the same errors. This is somewhat disappointing as the
modified Tikhonov scheme seems to be superior to the usual one by its construction. Nev-
ertheless, the experiments indicate that the additional effort for applying the projection does
not pay off.

Second, the regularization in the discrete setting with

9 	�� produce an error close to the
error of the Tikhonov regularization, but the methods with

9 	ª" t{�UÔ and

9 	," t yield more
accurate approximations to ]Mh for large data errors » . This effect was by no means clear in
advance, as these methods regularize in norms different from

� ñ ��D r Q � � É V , in which the error
was measured.
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FIG. 6.4. True error compared to error estimator for projected semigroup � ��� ����� 	�
����

Third, we notice that the projection method yields errors
� ] º � " ] �ED r Q � � É V which are

much smaller than those of the other three methods. Since this method requires also less
computational effort than the other methods as discussed in � 4.2 it seems to be preferable
over the other three methods.

As far as can be judged from Figure 6.5 none of the four methods converges with a
substantially higher rate than the other ones. As the inversion of the operator exponential is a
severely ill-posed problem (see [9] for a definition) there is perhaps no chance to improve on
the quality of the standard methods but merely on their efficiency.

7. Conclusions. We have developed and implemented regularization schemes for the
severely ill-posed inversion of diffusion processes. These schemes, including Tikhonov-type
as well as projection methods, avoid any time stepping PDE solvers for the forward problems
but rely on the error controlled approximate evaluation of certain Dunford integrals which
are based on appropriate quadrature techniques and the error controlled solution of resolvent
systems for well-posed operators. This latter task is trivially parallelized. In particular, this
allows us to realize, to our knowledge for the first time in this context, approximate SVD-
projections without actually having to compute or manipulate corresponding singular basis
functions. Of course, the computational complexity is not proportional to the number of
recovered modes but the scheme works also in situations where the SVD basis functions
are not known and difficult to obtain. Moreover, the regularization is separated from the
discretization of the diffusion operator yielding error bounds for the true infinite dimensional
problem. Finally, we present a first discussion of the complexity of the projection scheme.
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FIG. 6.5. Comparison of Different Methods for Approximate Inversion of the Operator Exponential

This together with the numerical experiments support its superiority over the Tikhonov-type
schemes. This superiority is expected to grow with an increasing order of the wavelet basis
since the qualification of the underlying projection scheme is (in contrast to the Tikhonov-
type schemes) unbounded.
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