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NUMERICAL BLOW-UP SOLUTIONS FOR SOME SEMILINEAR HEAT EQUATIONS*

FIRMIN K. N°GOHISSEf AND THEODORE K. BONT#

Abstract. This paper concerns the study of the numerical approximation for the following initial-boundary
value problem,
b
Ut = Ugz + ;uz +4?, z€(0,1), te(0,7T),
um(O,t) =0, u(lyt) =0, te (OzT)z
u(z50) ZUO(I)a T € [07 1};

where b > 0 and p > 1. We give some conditions under which the solution of a semidiscrete form of the above
problem blows up in a finite time and estimate its semidiscrete blow-up time. Under some assumptions, we also
show that the semidiscrete blow-up time converges to the continuous blow-up time when the mesh size goes to zero.
Finally, we give some numerical results to illustrate our analysis.
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1. Introduction. In this paper, we consider the following initial-boundary value prob-
lem for semilinear heat equation of the form

(L1) W=t Db, € (0,1), € (0,T),
(1.2) up(0,8) =0, w(l,t)=0, te(0,T),
(1.3) u(z,0) = uo(z), =z €]0,1],

which models the temperature distribution of a large number of physical phenomenon from
physics, chemistry and biology. The term u? represents nonlinear heat generation with p > 1
and b is a positive parameter. Here ug € C°([0, 1]), 1y (0) = 0, ug(1) = 0, (0, T) is the max-
imal time interval on which ||u(z,t)||« is finite where ||u(z,t)||cc = maxo<qz<i1 [u(z,1)|.
The time T' may be finite or infinite. When T is infinite, we say that the solution u exists
globally. When T is finite, the solution v develops a singularity in a finite time, namely

i [|u(z, 8)[|oo = oo

In this case, we say that the solution v blows up in a finite time and the time 7T is called the
blow-up time of the solution w.

The theoretical study of blow-up of solutions for semilinear parabolic equations has been
the subject of investigations of many authors; see [2, 5, 7, 9, 10], and the references cited
therein.

The authors have proved that under some assumptions, the solution of (1.1)—(1.3) blows
up in a finite time and the blow-up time is estimated.

Let us notice that if we consider the semilinear heat equation

U = Uy +uP, zE€B, te(0,T),
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with boundary conditions
u(z,t) =0, z€S, te(0,T),
and initial data
u(z,0) = uo(z) € B,

where B = {z € R : |z| < 1}, S = {z € R" : |z| = 1}, the radial symmetric solutions are
solutions of (1.1)—(1.3) with b = 1.

In this paper, we are interested in the numerical study using a semidiscrete form of (1.1)—
(1.3). Let I be a positive integer and define the grid z; = ih,0 < i < I, where h = 1/I. Ap-
proximate the solution u of (1.1)—(1.3) by the solution Uy (t) = (Ug(t), U1 (¢), ..., Ur(t))T
of the following semidiscrete equations

dUy (t .
(14) ;t( ) = (14 0)80(0) + T2, te 0,TP),
(1.5) d[{;t(t) = 0°Ui(t) + %dJrUi(t) +UP@), 1<i<I-1, te(0,T]),

(1.6) Ur(t) =0, te(0,T]),
(1.7) Ui(0) =¢;, 0<i<I,

where
52Uo(t) = 2U1 (t) h_QQUO(t) 7
S2Ui(t) = Uit1(t) — 2(2-2(75) + Ui_l(t)’ 1<i<I-1,
§tU(t) = w 1<i<I-—1.

Here, (0,T}") is the maximal time interval on which ||Up(¢)|| is finite where

U)o = sup [Ui(t)].
0<i<I

When T} is finite, we say that the solution Uy, (t) blows up in a finite time and the time T}*
is called the blow-up time of the solution Up(t). We give some conditions under which the
solution of (1.4)—(1.7) blows up in a finite time and estimate its semidiscrete blow-up time.
We also show that the semidiscrete blow-up time converges to the theoretical one when the
mesh size goes to zero. A similar study has been undertaken in [1, 4, 6, 8]. In [1, 8], the
authors have considered the equation (1.1) for b = 0 with Dirichlet boundary conditions
and nonnegative initial data. Numerical methods for heat equations with nonlinear boundary
conditions have been described in [4, 6]. In the same way in [2], the numerical extinction has
been studied using some discrete and semidiscrete schemes (a solution u extincts in a finite
time if it reaches the value zero in a finite time).

The paper is organized as follows. In the Section 2, we give some properties concern-
ing our scheme. In Section 3, under some conditions, we prove that the solution of the
semidiscrete problem blows up in a finite time and estimate its semidiscrete blow-up time. In
Section 4, we study the convergence of the semidiscrete blow-up time. Finally, in Section 5
we report on some numerical experiments using several discretisations of (1.1)—(1.3).
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2. Properties of the semidiscrete scheme. In this section, we give some results about
the discrete maximum principle. The following lemma is a discrete form of the maximum
principle.

LEMMA 2.1. Let ap(t) € C°([0,T], RI*Y) and let V3, (t) € C1([0,T], RI+1) such that
fort € (0,T),

T — 4970 + an(7(0) > 0,
d{;;t(t) — 0%V;(t) — %5+Vi(t) +ai(t)Vi(t) >0, 1<i<I-—1,
2.1 Vi(t) >0,

Vi(0) >0, 0<i<I.

Then we have V;(t) > 0,0<i < I, t € (0,T).
Proof. Let Ty < T and let m = info<;<s¢cpo,1) Vi(t). Since fori € {0,...,I},
Vi (t) is a continuous function, there exists to € [0, Tp] such that m = V;, (o) for a certain

io € {0,...,I}. If ig = I, we have a contradiction because of (2.1). When i is between 0
and I — 1, we observe that
’ dt k—0 k -7
@3) Vi (ty) = Ler1l0) W";’Lz(t(’) FVallo) 54 i 1<ig<T-1,
2Vi(tg) — 2Vp (¢ e
(2.5) 8V, (to) = it °)h2 o(to) >0 if 9 =0.

Define the vector Z(t) = e*V},(t) where X is such that a;, (tg) — A > 0. A straightforward
computation reveals that

20 Pillo) (14 1822, (10) + (@ t0) ~ N 10) 20 iF g =0,
1) Zl0) 527, (t0) — 5% 21y t0) + (@i t0) — N Zn(t0) > 0

if 1<ig<TI-1.
We observe from (2.2)—(2.5) that

dZ;, (to)
dt

Using (2.6)—(2.7), we arrive at (a;, (t) — A)Z;,(to) > 0, which implies that Z; (o) > 0.
Therefore V;, (tg) = m > 0 and we have the desired result. 0
Another version of the discrete maximum principle is the following comparison lemma.
LEMMA 2.2. Let Vi (t), Up(t) € C*([0,T],RI*1) and f € C°(R x R, R) such that for

t e (0,T)

<0, 6°Z;i(tg) >0 and 6T Z;(ty) > 0.

(2.8) dvd%ft) — (A +b)8Vo(t) + F(Vo(t),t) < dUst(t) — (1+b)6°Us(t) + F(Us(t), 1),
(2.9) d‘;—ft) - 8Vi(t) — %6*%) + F(Vi(t),1)
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<0 vy - Latvin + s, 1<i<ion,
(2.10) Vi(t) < Ur(t),
(2.11) Vi(0) < U;(0), 0<i<I.

Then we have Vi, (t) < Up(t), t € (0,T).

Proof. Define the vector Zy(t) = Up(t) — Vi (). Let to be the first ¢ > 0 such that
Zp(t) > 0fort € [0,t0), but Z;, (to) = O for a certain ig € {0,...,I}. Ifip = I, we have a
contradiction because of (2.10). If ig is between 0 and I — 1, we observe that

Ziy(to) _ 1. Zio(to) = Ziy(to — k) _ 0
dt k—0 k -
8% Z;y (to) = Zigt1(to) = 2Z’£2(t°) + Zio-1(to) >0 if 1<ig<I-—1,
Z; s
5F Ziy (to) = Z20H (tO)h ) S if 1<io<T- 1,
27, (to) — 22
#7400 = ZER) 50 i iy =0,

which implies that

Visllo) _ 527, (10) 2% Zu10) + FUlto) o) ~ (Vi o), t0) SO if 1<ig <1,
0
dZic;t(tO) — (1 +0)0%Zi, (to) + f (Ui, (to), to) — f(Vig (o), to) <O if ig = 0.

But these inequalities contradict (2.8) and (2.9). O
To finish this section, let us state a result on the operators 62 and §+.
LEMMA 2.3. Let Uj, € Rt such that Uy, > 0. Then we have

S2UP > pUP'8?U;, 1<i<I-1,
§TUP > pUP'otU;, 1<i<I-1.

Proof. Using Taylor’s expansion, we get

S*UP = pUI ™' 8 Ui + (Uipa — Ui)2%05_2 + (Ui — Ui)z% P?1<i<I -1,
_ -1)
§°UL = pUL~'6°Uo + (U1 — UO)Q%%’ %,
-1
StUP = pUP~'6°U; + (Uiga — Ui)z%xfﬂ, 1<i<I-1,

where 6; and y; are intermediate values between U; and U1, n; is an intermediate value
between U; and U;_;. Use the fact that U}, is nonnegative to complete the rest of the proof. [0

3. Semidiscrete blow-up solutions. In this section under some assumptions, we show
that the solution of the semidiscrete problem blows up in a finite time and estimate its semidis-
crete blow-up time.

THEOREM 3.1. Suppose that there exists a positive integer A such that the initial data at
(1.7) satisfies

(1+b)8%p0 + ¢ > Ayh,
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2 b oy P D ;

3.1 6%+E6 wit+ ;> Ap;, 1<i<I-—1.

Then the solution Up(t) of (1.4)—(1.7) blows up in a finite time T,* and we have the following

estimate
1 llenllss®
Th
b= -1 1)

Proof. Since (0,T}) be the maximal time interval on which ||Up(t)|| is finite, our aim
is to show that T}" is finite and obeys the above inequality. Introduce the vector Jj, such that

J,-:dU” P0<i<I.
dt
A straightforward calculation gives

dJo 2 d dUO 2 ldUO 2
14+0)0“Jyg = —(— — (1 +b)é —A A(1 +b)5°U¢

S — (14 0)6 g = (8 = (L+4)0%Uo) — ApU ™ 2 + A(L+1)5°U3,
dJ; 9 d dU; 1dU; .
— =8 = — ApUP~ AS’UP, 1<i<I-1.
7 0 J; dt(dt U;) — ApU; 7 + Ad°U; <i<

From Lemma 2.3, we have 62U? > pU? ~152U; which implies that
d , d d
Yo _ (1 4 5)8200) — ApUE~( 20 ~ (14 b)3To),

dJo
b)4?
il G LR Gty
i d ,dU; .y dU; .
X 5% > — ) — ApUP~ 1 (=L — 82U, 1<i<I-—1.
dt Jz_dt( dt Ul) pU@ (dt 5Uz)7 STS

Use (1.4)—(1.5) to obtain
dJO — (]. + b)(SQJ() Z pUg_ng,

dt
‘2‘] 8 J; > pUP~J; + (5+
Ci — AST UL, which implies

et ), 1<i<I-1.

Taking into account the expression of Jy (t), we get 67 .J; = 614U
that 6+ 4Ui = §+J,+ A5+ UP. From Lemma 2.3, we arrive at 6+% > 6+ Ji+ AUP 15U,
AUP™15+U; > 8+ J; and due to (3.1), we discover that

+ dU;
Therefore, we get § o

dJ; b
— 8% — 6T L > pUP Ny, 1<i<I-L
dat ih p is SRS
Obviously, J;(t) = 0 and the hypotheses on the initial data ensure that J;(0) > 0. It follows
from Lemma 2.1 that J;(t) > 0 for t € (0,T}*), which implies that dU’ > AUP,0<i<I.

This estimation may be rewritten as follows
dU > Adt, 0<i<I.

Z

Integrating this inequality over (¢, T}"), we find that
1 i(t 1-p
1y < L)
“A (p-1)

?

(3.2)
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which implies that

1-p
7+ < Lloallis”
A(p-1)

Therefore T} is finite and the proof is complete. O
REMARK 3.2. The inequalities (3.2) imply that

1 [|Un(to) 157

Ty —to < if 0<to<Ty
’ A (p-1) ’
and there exists a constant C' > 0 such that
C
Ui) < ————, 0<i<I.
(T 1y

THEOREM 3.3. Let Uy, (t) be the solution of (1.4)—(1.7). Then we have

o s lonllis?

"S-
Proof. Let ig be such that Uj, (t) = maxo<;<r U;(t). It is not hard to see that

Uig+1(t) — 2U45(t) + Uip—1(2)

§2Us (t) = 23 <0 if 1<ig<I-—1,
io+1(t) = Ui, (T . .
0 Ui, (1) = Ui ;h Yol <o it 1<ip<i- 1,
20U, (t) — 2Uo(%) o
82Uy (t) = — 5 <0 if =0
We deduce that dld]—zo < U?, which implies that ‘Z[QO < dt. Integrating this inequality over
0
(0, T}), we obtain
. 1-p
7 Wil0)
(r-1)

Use the fact that U;, (0) = ||¢n || to complete the rest of the proof. O

4. Convergence of the semidiscrete blow-up time. In this section, under some as-
sumptions, we show that the blow-up time for the solution of the semidiscrete problem con-
verges to the blow-up time for the solution of the continuous problem when the mesh size
tends to zero. In order to prove this result, firstly we show that for each fixed time inter-
val [0,T] where the solution u of (1.1)—(1.3) is defined, the solution Up(t) of (1.4)—(1.7)
approximates u, when the mesh parameter h goes to zero by the following theorem.

THEOREM 4.1. Assume that (1.1)—(1.3) has a solution u € C**(]0,1] x [0, T)) and the
initial condition at (1.7) satisfies

4.1) lon = un(0)|lc = 0(1) as h—0,

where up(t) = (w(xo,t),...,u(xr,t))T. Then, for h sufficiently small, the problem (1.4)-
(1.7) has a unique solution Uy, € C1([0,T], RI*1) such that

Oréltang”Uh(t) —up(t)|lo = O(llon — un(0)||co +h) as h —0.
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Proof. Since u € C31, there exist positive constants K and M such that
4.2) lullo <K, p(E+1)"' <M.

The problem (1.4)—(1.7) has for each h, a unique solution U, € C*([0,T}"), RI*1). Let t(h)
the greatest value of ¢ > 0 such that

4.3) |UL(t) —up(t)||oo <1 for ¢t € (0,t(h)).

The relation (4.1) implies that ¢(h) > 0 for h sufficiently small. Let t*(h) = min{¢(h),T'}.
By the triangle inequality, we obtain

Ul < llun@lloo + IUR(E) — un(®)lloo for ¢ € (0,27(h)),
which implies that
“.4) NU@)lloo <1+ K for te (0,¢(h)).

Let en(t) = Upn(t) — un(t) be the error of discretization. Since u € C*!, using Taylor’s
expansion, we have for t € (0,t*(h)),

20t (14 b)5%eo(t) = e eolt) +olh),

dt
de;(t) 2 . ﬁ (4) = -1,
5 5e;(t) — ihé*e,(t) = p&lei(t) + o(h),

where &; is an intermediate value between U;(t) and u(x;,t). Using (4.2) and (4.4), there
exists a positive constant M such that

deo(t)
dt

— &%e;(t) — %6"“6,-(75) < Mle;(t)|+ Mh, 1<i<I-1.

— (1 +b)d%eo(t) < Mleo(t)| + Mh,

dL(t)
dt
Introduce the vector Zp,(t) such that
Z;(t) = M|l — un(0)l|oo + Mh), 0<i<I.
A straightforward calculation reveals that

o) _ (14 b)520(t) > M|Zo(t)| + Mh,

dt
7.
20 527 (1) %ﬁzi(t) >M|Zi(®) + Mh, 1<i<I-1,

dt
Z1(t) > er(t).

It follows from Lemma 2.2 that Zy(t) > ey (¢t) for t € (0,¢*(h)). In the same way, we also
prove that Zp,(t) > —ep(t) for t € (0,t*(h)), which implies that

1UA() = wn(®)lloo < e (llop = un(0)]loo + MP), € (0,8*(R)).
Let us show that t*(h) = T'. Suppose that T > ¢(h). From (4.3), we obtain
1= [[Un(t(h)) — un(t(h))lloo < e™ DT (llon — un(0)lloo + Mh).
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Since the term on the right hand side of the above inequality tends to zero as h goes to zero,
we deduce that 1 < 0, which is impossible. Consequently t*(h) = T', and the proof is
complete. O

Now, we are in a position to prove the main theorem of this section.

THEOREM 4.2. Suppose that the problem (1.1)—(1.3) has a solution u which blows up in
a finite time Ty, such that u € C*'([0,1] x [0,T})) and the initial data at (1.7) satisfies

llon —un(0)|loo =0(1) as h—0.

Under the assumptions of Theorem 3.1, the problem (1.4)—(1.7) has a solution Uy (t) which
blows up in a finite time Tbh and

lim T} = Tp.
h—0

Proof. Let e > 0. There exists a positive constant N such that

4.5) Lal™? € for € [N, +-00)
. Ap-D >3 0o T , +00).

Since u blows up at the time T}, then there exists 71 such that |77 —=Ty| < £ and ||u(z,t)||o0 >
2N fort € [T1,Ty). Leting T, = DFTe we see that SUPiefo,my) [u(@,1)| < oco. Tt
follows from Theorem 4.1 that the problem (1.4)—(1.7) has a solution Uy (t) which obeys
supyeo, 1] [Un(t) — un(t)|c < N. Applying the triangle inequality, we get ||Un(t)loo >
[lun(t)]|loo — [UR(E) — un(t)]|loo, Which leads to ||Up(t)||eec > N for t € [0,T3]. From
Theorem 3.1, Ux(t) blows up at the time T}*. We deduce from Remark 3.2 and (4.5) that

1 [|Un(T2)ll55

Th— Ty < |TF = T| + Ty = T3 < & + = WZnE2 0
(T =T < T = Dol + T =Ty < 5+ n 2=t <

and we have the desired result. 0

5. Numerical experiments. In this section, we study the phenomenon of blow-up, us-
ing full discrete schemes (explicit and implicit) of (1.1)—(1.3). Firstly, we approximate the
solution u of (1.1)~(1.3) by the solution U™ = (UF,UP, ..., UP)T of the following explicit
scheme

U(gn+1) _ Uén)

(1) =t = 1+ 0Ty + (U7,
ptD) _ b U —U™
2) i TV _gpgm) g O Tl T HE My 1<i<I-1
(5 ) Atn 5UZ +Zh( 5 )+(Uz )a ST1s )
(5.3) Ul =0,
(5.4) U = 20cos(ih), 0<i<T,
where n > 0,
. h? n)l—
Aty = min{ 5= U157,
0o - h2 ’
62U,-(n) _ Ui+1 —2U;7 + U 1<i<TI-1.

h? ’
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Let us notice that the restriction on the time step guarantees the positivity of the discrete

solution.

Secondly, approximate the solution u of (1.1)—(1.3) by the solution U, (") of the following
implicit scheme

U(TH‘I) U(”)

(5.5) OT (1 + b)(52 n+1) + (Uén))p,
U.(n-i-l) U(n) b U(n+1) U'(n+1)
5.6 i Wi g2yt Yitn T Yi (n)yp
(5.6) A Ut 4 o () + (U
1<i<I-1,
(5.7) Uit = o,
(5.8) U® =20 cos(z'hg), 0<i<I,

where At, = h? ||U,(ln) |L>P. The above equations may be rewritten in the following form

A A n n n n
(5.9)(1+2h—t2)U("+1) —2h—t2U( = Uyl AL U,
_Atn (o Aty bAty. . (n Atn  bAtn. (n
(5.10) = UMY+ (2 U — (S5 U
= UM+ At UM, 1<i<I-1,
(5.11) uinth = .

The equalities (5.9)—(5.11) lead us to the linear system below

n n+1 n
AP _ po),

where A;L") is a I x I tridiagonal matrix defined as follows

ag bo 0 0
(5] aj bl 0
AM =10
br—s
0 -+ 0 crm1 ar—
with
Aty
a0 = 1+ 255"(1+1),
At, bAt,
s=14+2-(1 = i=1,...,I-1,
a + 32 "(14b)+ e i
At At, bAt,
bo = -2— h2 (]. =+ b) bz = —(2F + W), 1 1,...,]— 2,
At, .
Ci:—ﬁ, Z:].,...,I—].,

n = UN 4 At (UMP, 0<i<I-—1,
V(TH‘I) (U("‘H) U("+1) U("+1))
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It is not hard to see that

(AR)i >0, (AR)iy <0 4, (AD)u > Y (ARl
i#i

These inequalities imply that the linear system has a unique solution for » > 0 and the
discrete solution is nonnegative. For the proof, see for instance [3]

We need the following definition.

DEFINITION 5.1. We say that the solution U™ of (5.1)~(5.4) or (5.5)~(5.8) blows up in
a finite time if lim,,_, o ||U, ,(Ln) | = +oo and the series Y125 At,, converges. The quantity

::f) Aty is called the numerical blow-up time of the solution U f(Ln).

In the Tables 5.1-5.6, we present the numerical blow-up times, values of n, the CPU
times and the orders of the approximations corresponding to meshes of 16, 32, 64, 128. We
take for the numerical blow-up time 7" = Z;ZOI At; which is computed at the first time
when At,, = |T™+! — T"| < 10716, The order(s) of the method is computed from

. log((T4h - Tzh)/(T‘Zh - Th))
- log(2)

For the numerical values, we take, Ul-(o) =20cos(5ih),p=2,and 7 = h2.

First case: b =0

TABLE 5.1
Numerical blow-up times, numbers of iterations, CPU times (seconds), and orders of the approximations ob-
tained with the explicit Euler method.

I | 7™ n CPU; s
16 0.056343 7191 16 -
32 0.056231 27359 69 -
64 0.056210 103908 560 2.31
128 | 0.055203 405086 7052 1.68

TABLE 5.2
Numerical blow-up times, numbers of iterations, CPU times (seconds), and orders of the approximations ob-
tained with the first implicit Euler method.

1| 7™ n CPU; s
16 0.056376 7191 20 -
32 0.056240 27360 113 -
64 0.056213 103908 1460 2.22
128 | 0.056207 406009 20746 1.85

Second case: b =1

TABLE 5.3
Numerical blow-up times, numbers of iterations, CPU times (seconds), and orders of the approximations
obtained with the explicit Euler method.

| am n CPU; s
16 | 0.067710 7406 13 -
32 | 0.066986 28264 70s -
64 | 0.066527 107691 594  0.76
128 | 0.06630 409301 7203  1.02
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TABLE 5.4

Numerical blow-up times, numbers of iterations, CPU times (seconds), and orders of the approximations

obtained with the first implicit Euler method.

1| 7 n CPU; s
16 0.067802 7407 18 -
32 0.067008 28265 109 -
64 0.066532 107692 1506 0.84
128 | 0.066303 409302 21000 1.05

Third case: b = 2

TABLE 5.5

Numerical blow-up times, numbers of iterations, CPU times (seconds), and orders of the approximations ob-

tained with the explicit Euler method.

I | AL n CPU; S
16 0.090365 7765 15 -
32 0.089372 29778 71 -
64 0.087243 114065 630 0.85
128 | 0.086658 435971 8580 0.95

TABLE 5.6

Numerical blow-up times, numbers of iterations, CPU times (seconds) and orders of the approximations

obtained with the first implicit Euler method.

(11
(21
31
[4]
(5]
(6]

(7]
(8]

91

[10]

I | ™ n CPU; s
16 0.090575 7767 19 -
32 0.0884238 29780 115 -
64 0.087226 114067 1718 0.85
128 0.086636 435972 23051 1.07
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