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1 Introduction
Given an n × n real matrix M and q ∈ Rn, the linear complementarity problem (LCP) is to
find a vector x ∈ Rn satisfying

x ≥ , Mx + q ≥ , (Mx + q)T x =  ()

or to show that no such vector x exists. We denote this problem () by LCP(M, q). The
LCP(M, q) arises in many applications such as finding Nash equilibrium point of a bima-
trix game, the network equilibrium problem, the contact problem and the free boundary
problem for journal bearing etc.; for details, see [–].

It is well known that the LCP(M, q) has a unique solution for any vector q ∈ Rn if and
only if M is a P-matrix []. Here a matrix M is called a P-matrix if all its principal minors
are positive. For the LCP(M, q), one of the interesting problems is to estimate

max
d∈[,]n

∥
∥(I – D + DM)–∥∥∞, ()

which can be used to bound the error ‖x – x∗‖∞ [], that is,

∥
∥x – x∗∥∥∞ ≤ max

d∈[,]n

∥
∥(I – D + DM)–∥∥∞

∥
∥r(x)

∥
∥∞,

where x∗ is the solution of the LCP(M, q), r(x) = min{x, Mx + q}, D = diag(di) with  ≤
di ≤  for each i ∈ N , d = [d, d, . . . , dn]T ∈ [, ]n, and the min operator r(x) denotes the
componentwise minimum of two vectors.
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When the matrix M for the LCP(M, q) belongs to P-matrices or some subclass of P-
matrices, various bounds for () were proposed; e.g., see [, –] and the references
therein. Recently, García-Esnaola and Peña in [] provided an upper bound for () when
M is a B-matrix as a subclass of P-matrices. Here, a matrix M = [mij] ∈ Rn,n is called a
B-matrix [] if for each i ∈ N = {, , . . . , n},

∑

k∈N

mik > , and

n

(
∑

k∈N

mik

)

> mij for any j ∈ N and j �= i.

Theorem  ([], Theorem .) Let M = [mij] ∈ Rn,n be a B-matrix with the form

M = B+ + C, ()

where

B+ = [bij] =

⎡

⎢
⎢
⎣

m – r+
 · · · mn – r+


...

...
mn – r+

n · · · mnn – r+
n

⎤

⎥
⎥
⎦

, C =

⎡

⎢
⎢
⎣

r+
 · · · r+


...

...
r+

n · · · r+
n

⎤

⎥
⎥
⎦

, ()

and r+
i = max{, mij|j �= i}. Then

max
d∈[,]n

∥
∥(I – D + DM)–∥∥∞ ≤ n – 

min{β , } , ()

where β = mini∈N {βi} and βi = bii –
∑

j �=i |bij|.

It is not difficult to see that the bound () will be inaccurate when the matrix M has very
small value of mini∈N {bii –

∑

j �=i |bij|}; for details, see [, ]. To conquer this problem, Li
et al., in [] gave the following bound for () when M is a B-matrix, which improves those
provided by Li and Li in [, ].

Theorem  ([], Theorem .) Let M = [mij] ∈ Rn,n be a B-matrix with the form M =
B+ + C, where B+ = [bij] is the matrix of (). Then

max
d∈[,]n

∥
∥(I – D + DM)–∥∥∞ ≤

n
∑

i=

n – 
min{β̄i, }

i–
∏

j=

bjj

β̄j
, ()

where β̄i = bii –
∑n

j=i+ |bij|li(B+) with lk(B+) = maxk≤i≤n{ 
|bii|

∑n
j=k,
j �=i

|bij|}, and
∏i–

j=
bjj
β̄j

=  if

i = .

In this paper, we further improve error bounds on the LCP(M, q) when M belongs to
B-matrices. The rest of this paper is organized as follows: In Section  we present a new
error bound for (), and then prove that this bound is better than those in Theorems 
and . In Section , some numerical examples are given to illustrate our theoretical results
obtained.
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2 Main result
In this section, an upper bound for () is provided when M is a B-matrix. Firstly, some
definitions, notation and lemmas which will be used later are given as follows.

A matrix A = [aij] ∈ Cn,n is called a strictly diagonally dominant (SDD) matrix if |aii| >
∑n

j �=i |aij| for all i = , , . . . , n. A matrix A = [aij] ∈ Rn,n is called a nonsingular M-matrix if
its inverse is nonnegative and all its off-diagonal entries are nonpositive []. In [] it was
proved that a B-matrix has positive diagonal elements, and a real matrix A is a B-matrix
if and only if it can be written in the form () with B+ being a SDD matrix. Given a matrix
A = [aij] ∈ Cn,n, let

wij(A) =
|aij|

|aii| –
∑n

k=j+,
k �=i

|aik| , i �= j,

wi(A) = max
j �=i

{

wij(A)
}

,

mij(A) =
|aij| +

∑n
k=j+,

k �=i
|aik|wk(A)

|aii| , i �= j.

()

Lemma  ([], Theorem ) Let A = [aij] be an n × n row strictly diagonally dominant
M-matrix. Then

∥
∥A–∥∥∞ ≤

n
∑

i=

(


aii –

∑n
k=i+ |aik|mki(A)

i–
∏

j=


 – uj(A)lj(A)

)

,

where ui(A) = 
|aii|

∑n
j=i+ |aij|, lk(A) = maxk≤i≤n{ 

|aii|
∑n

j=k,
j �=i

|aij|},
∏i–

j=


–uj(A)lj(A) =  if i = ,

and mki(A) is defined as in ().

Lemma  ([], Lemma ) Let γ >  and η ≥ . Then, for any x ∈ [, ],


 – x + γ x

≤ 
min{γ , }

and

ηx
 – x + γ x

≤ η

γ
.

Lemma  ([], Lemma ) Let A = [aij] with aii >
∑n

j=i+ |aij| for each i ∈ N . Then, for any
xi ∈ [, ],

 – xi + aiixi

 – xi + aiixi –
∑n

j=i+ |aij|xi
≤ aii

aii –
∑n

j=i+ |aij| .

Lemmas  and  will be used in the proofs of the following lemma and Theorem .

Lemma  Let M = [mij] ∈ Rn,n be a B-matrix with the form M = B+ + C, where B+ = [bij] is
the matrix of (). And let B+

D = I – D + DB+ = [b̃ij] where D = diag(di) with  ≤ di ≤ . Then

wi
(

B+
D
) ≤ max

j �=i

{ |bij|
bii –

∑n
k=j+,

k �=i
|bik|

}
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and

mij
(

B+
D
) ≤ vij

(

B+)

< ,

where wi(B+
D), mij(B+

D) are defined as in (), and

vij
(

B+)

=


bii

(

|bij| +
n

∑

k=j+,
k �=i

(

|bik| · max
h�=k

{ |bkh|
bkk –

∑n
l=h+,

l �=k
|bkl|

}))

.

Proof Note that

[

B+
D
]

ij = b̃ij =

{

 – di + dibij, i = j,
dibij, i �= j.

Since B+ is SDD, bii –
∑n

k=j+,
k �=i

|bik| > |bij| for each i �= j. Hence, by Lemma  and (), it follows

that

wi
(

B+
D
)

= max
j �=i

{

wij
(

B+
D
)}

= max
j �=i

{ |bij|di

 – di + biidi –
∑n

k=j+,
k �=i

|bik|di

}

≤ max
j �=i

{ |bij|
bii –

∑n
k=j+,

k �=i
|bik|

}

< . ()

Furthermore, it follows from (), () and Lemma  that for each i �= j (j < i ≤ n)

mij
(

B+
D
)

=
|bij| · di +

∑n
k=j+,

k �=i
|bik| · di · wk(B+

D)

 – di + bii · di

≤ 
bii

·
(

|bij| +
n

∑

k=j+,
k �=i

|bik| · wk
(

B+
D
)

)

≤ 
bii

(

|bij| +
n

∑

k=j+,
k �=i

(

|bik| · max
h�=k

{ |bkh|
bkk –

∑n
l=h+,

l �=k
|bkl|

}))

= vij
(

B+)

<


bii

(

|bij| +
n

∑

k=j+,
k �=i

|bik|
)

< .

The proof is completed. �

By Lemmas , ,  and , we give the following bound for () when M is a B-matrix.

Theorem  Let M = [mij] ∈ Rn,n be a B-matrix with the form M = B+ + C, where B+ = [bij]
is the matrix of (). Then

max
d∈[,]n

∥
∥(I – D + DM)–∥∥∞ ≤

n
∑

i=

n – 
min{β̂i, }

i–
∏

j=

bjj

β̄j
, ()
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where β̂i = bii –
∑n

k=i+ |bik| · vki(B+) with vki(B+) is defined in Lemma , β̄i is defined in
Theorem , and

∏i–
j=

bjj
β̄j

=  if i = .

Proof Let MD = I – D + DM. Then

MD = I – D + DM = I – D + D
(

B+ + C
)

= B+
D + CD,

where B+
D = I – D + DB+ = [b̃ij] and CD = DC. Similarly to the proof of Theorem . in [],

we find that B+
D is an SDD M-matrix with positive diagonal elements and that

∥
∥M–

D
∥
∥∞ ≤ ∥

∥
(

I +
(

B+
D
)–CD

)–∥
∥∞

∥
∥
(

B+
D
)–∥

∥∞ ≤ (n – )
∥
∥
(

B+
D
)–∥

∥∞. ()

Next, we give an upper bound for ‖(B+
D)–‖∞. By Lemma , we have

∥
∥
(

B+
D
)–∥

∥∞ ≤
n

∑

i=

(


 – di + biidi –

∑n
k=i+ |bik| · di · mki(B+

D)

i–
∏

j=


 – uj(B+

D)lj(B+
D)

)

, ()

where

uj
(

B+
D
)

=
∑n

k=j+ |bjk|dj

 – dj + bjjdj
, lk

(

B+
D
)

= max
k≤i≤n

{
∑n

j=k,
j �=i

|bij|di

 – di + biidi

}

,

and

mki
(

B+
D
)

=
|bki| · dk +

∑n
l=i+,

l �=k
|bkl| · dk · wl(B+

D)

 – dk + bkk · dk

with wl(B+
D) = maxh�=l{ |blh|dl

–dl+blldl–
∑n

s=h+,
s�=l

|bls|dl
}.

By Lemmas  and , we can easily see that, for each i ∈ N ,


 – di + biidi –

∑n
k=i+ |bik| · di · mki(B+

D)
≤ 

min{bii –
∑n

k=i+ |bik| · mki(B+
D), }

≤ 
min{bii –

∑n
k=i+ |bik| · vki(B+), }

=


min{β̂i, } , ()

and that, for each k ∈ N ,

lk
(

B+
D
)

= max
k≤i≤n

{
∑n

j=k,
j �=i

|bij|di

 – di + biidi

}

≤ max
k≤i≤n

{


bii

n
∑

j=k,
j �=i

|bij|
}

= lk
(

B+)

< . ()

Furthermore, according to Lemma  and (), it follows that, for each j ∈ N ,


 – uj(B+

D)lj(B+
D)

=
 – dj + bjjdj

 – dj + bjjdj –
∑n

k=j+ |bjk| · dj · lj(B+
D)

≤ bjj

β̄j
. ()
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By (), () and (), we have

∥
∥
(

B+
D
)–∥

∥∞ ≤ 
min{β̂, } +

n
∑

i=

(


min{β̂i, }

i–
∏

j=

bjj

β̄j

)

. ()

The conclusion follows from () and (). �

The comparisons of the bounds in Theorems  and  are established as follows.

Theorem  Let M = [mij] ∈ Rn,n be a B-matrix with the form M = B+ + C, where B+ = [bij]
is the matrix of (). Let β̄i and β̂i be defined in Theorems  and , respectively. Then

n
∑

i=

n – 
min{β̂i, }

i–
∏

j=

bjj

β̄j
≤

n
∑

i=

n – 
min{β̄i, }

i–
∏

j=

bjj

β̄j
.

Proof Note that

β̄i = bii –
n

∑

j=i+

|bij|li
(

B+)

, β̂i = bii –
n

∑

k=i+

|bik|vki
(

B+)

,

and B+ is a SDD matrix, it follows that for each i �= j (j < i ≤ n)

vij
(

B+)

=


bii

(

|bij| +
n

∑

k=j+,
k �=i

(

|bik| · max
h�=k

{ |bkh|
bkk –

∑n
l=h+,

l �=k
|bkl|

}))

<


bii

n
∑

k=j,
k �=i

|bik|

≤ max
j≤i≤n

{


bii

n
∑

k=j,
k �=i

|bik|
}

= lj
(

B+)

.

Hence, for each i ∈ N

β̂i = bii –
n

∑

k=i+

|bik|vki
(

B+)

> bii –
n

∑

k=i+

|bik|li
(

B+)

= β̄i,

which implies that


min{β̂i, } ≤ 

min{β̄i, } .

This completes the proof. �

Remark here that, when β̄i <  for all i ∈ N , then


min{β̂i, } <


min{β̄i, } ,
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which yields

n
∑

i=

n – 
min{β̂i, }

i–
∏

j=

bjj

β̄j
<

n
∑

i=

n – 
min{β̄i, }

i–
∏

j=

bjj

β̄j
.

Next it is proved that the bound () given in Theorem  can improve the bound () in
Theorem  (Theorem . in []) in some cases.

Theorem  Let M = [mij] ∈ Rn,n be a B-matrix with the form M = B+ + C, where B+ = [bij]
is the matrix of (). Let β , β̄i and β̂i be defined in Theorems ,  and , respectively, and let
α =  +

∑n
i=

∏i–
j=

bjj
β̄j

and β̂ = mini∈N {β̂i}. If one of the following conditions holds:

(i) β̂ >  and α < 
β

;
(ii) β̂ <  and αβ < β̂ ,

then

n
∑

i=

n – 
min{β̂i, }

i–
∏

j=

bjj

β̄j
<

n – 
min{β , } .

Proof When β̂ >  and α < 
β

, we can easily get

n
∑

i=

n – 
min{β̂i, }

i–
∏

j=

bjj

β̄j
<

n – 
min{β̂ , }

n
∑

i=

i–
∏

j=

bjj

β̄j
= (n – )α <

n – 
β

≤ n – 
min{β , } .

Similarly, for β̂ <  and αβ < β̂ , the conclusion can be proved directly. �

3 Numerical examples
Two examples are given to show that the bound in Theorem  is sharper than those in
Theorems  and .

Example  Consider the family of B-matrices in []:

Mk =

⎡

⎢
⎢
⎢
⎣

. . . .
–. . . .
. –. k

k+ . .
 . . .

⎤

⎥
⎥
⎥
⎦

,

where k ≥ . Then Mk = B+
k + Ck , where

B+
k =

⎡

⎢
⎢
⎢
⎣

  –. 
–.   –.

 –. k
k+ – .  –.

–. –.  

⎤

⎥
⎥
⎥
⎦

.

By computations, we have β = 
(k+) , β̄ = β̄ = k+

k+ , β̄ = ., β̄ = , β̂ = k+
k+ ,

β̂ = ., β̂ =  and β̂ = . Then it is easy to verify that Mk satisfies the condition (ii) of
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Theorem . Hence, by Theorem  (Theorem . in []), we have

max
d∈[,]

∥
∥(I – D + DMk)–∥∥∞ ≤  – 

min{β , } = (k + ).

It is obvious that

(k + ) −→ +∞, when k −→ +∞.

By Theorem , we find that, for any k ≥ ,

max
d∈[,]

∥
∥(I – D + DMk)–∥∥∞

≤ 
(


β̄

+

β̄

· 
β̄

+

β̄

· 
β̄β̄

+


β̄β̄β̄

)

= 
(

k + 
k + 

+
(k + )

(k + ) +
(k + )

.(k + )

)

< ..

By Theorem , we find that, for any k ≥ ,

max
d∈[,]

∥
∥(I – D + DMk)–∥∥∞

≤ 
(


β̂

+

β̂

· 
β̄

+


β̄β̄
+


β̄β̄β̄

)

= 
(

k + 
k + 

+
(k + )

.(k + )
+

.(k + )

.(k + )

)

< 
(

k + 
k + 

+
(k + )

(k + ) +
(k + )

.(k + )

)

.

In particular, when k = ,


(

k + 
k + 

+
(k + )

.(k + )
+

.(k + )

.(k + )

)

≈ .,


(

k + 
k + 

+
(k + )

(k + ) +
(k + )

.(k + )

)

≈ .,

and the bound () in Theorem  is

 – 
min{β , } = (k + ) = .

When k = ,


(

k + 
k + 

+
(k + )

.(k + )
+

.(k + )

.(k + )

)

≈ .,


(

k + 
k + 

+
(k + )

(k + ) +
(k + )

.(k + )

)

≈ .,
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and the bound () in Theorem  is

 – 
min{β , } = (k + ) = .

Example  Consider the following family of B-matrices:

Mk =

[

k

–a
k

 
k

]

,

where
√

–
 < a <  and –a

+a < k < . Then Mk = B+
k + C with C is the null matrix.

By simple computations, we can get

β =
 – a

k
, β̄ =

 – a

k
, β̄ =


k

, β̂ =

k

and β̂ =

k

.

It is not difficult to verify that Mk satisfies the condition (i) of Theorem . Thus, the bound
() of Theorem  (Theorem . in []) is


∑

i=

 – 
min{β̄i, }

i–
∏

j=

bjj

β̄j
=

k + 
 – a ,

which is larger than the bound


min{β , } =

k
 – a

given by () in Theorem  (Theorem . in []). However, by Theorem  we can get

max
d∈[,]

∥
∥(I – D + DMk)–∥∥∞ ≤  – a

 – a ,

which is smaller than the bound () in Theorem , i.e.,

 – a

 – a <
k

 – a
.

In particular, when a = 
 and k = 

 , the bounds in Theorems  and  are, respectively,


min{β , } =

k
 – a

=



and


∑

i=

 – 
min{β̄i, }

i–
∏

j=

bjj

β̄j
=

k + 
 – a =




,

while the bound () in Theorem  is


∑

i=

 – 
min{β̂i, }

i–
∏

j=

bjj

β̄j
=

 – a

 – a =



.
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These two examples show that the bound in Theorem  is sharper than those in Theo-
rems  and .

4 Conclusions
In this paper, we give a new error bound for the linear complementarity problem when
the matrix involved is a B-matrix, which improves those bounds obtained in [] and [].
Numerical examples are given to illustrate the corresponding results.
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