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In this paper, the homotopy perturbation method (HPM) is employed to obtain approximate analytical 
solutions of the time-fractional reaction-diffusion equation of the Fisher type. The method can easily be 
applied to many problems and is capable of reducing the size of computational work. The fractional 
derivative is described in the Caputo sense. The analytical/numerical results are compared with existing 
analytic solutions obtained by Adomian decomposition method (ADM) and differential transformation 
method (DTM) and the outcomes confirm that the scheme yields accurate and excellent results even 
when few components are used. 
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INTRODUCTION 
 
Reaction-diffusion is a process in which two or more 
chemicals that diffuse at unequal rates over a surface 
react with one another in order to form stable patterns. 
Reaction–diffusion (RD) (Wang and He, 2008; 
Wilhelmsson et al., 2001; Hundsdorfer et al., 2003) 
equations are useful in many areas of science and 
engineering. Recent development of new algorithms for 
analyzing reaction–diffusion phenomena has led to 
physically interesting and mathematically challenging 
problems. The Fisher equation has various applications 
in the fields of logistic population growth (Fisher, 1937), 
neurophysiology (Tuckwell, 1988), autocatalytic chemical 
reaction (Aronson and Weinberg, 1988), branching 
Brownian motion processes (Bramson, 1978). In the 
recent years fractional differential equations (Miller and 
Ross, 1993; Butzer and Westphal, 2000; Diethelm et al., 
2005; Zhou and Li 2005) are gaining importance owing to 
their applications in the field of visco-elasticity (Mahmood 
et al., 2009), feed-back amplifiers, electrical circuits, 
electro-analytical chemistry, fractional multipoles, neuron 
modeling. Fractional diffusion equations are used to 
model problems in finance (Gorenflo et al., 2001; 
Mainardi et al., 2000; Raberto et al., 2002), and 
hydrology  (Benson  et  al.,  2000).   The   nature   of   the 
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diffusion is characterized by the temporal scaling of the 

mean-square displacement ( ) γt~tr 2
. For standard 

diffusion 1=γ , whereas in anomalous sub-

diffusion 1<γ  and in anomalous super-diffusion 1>γ . 

Sub-diffusion typically arises in cases where there are 
spatial or temporal constraints such as occurring in 
fractured and porous media and fractal lattices. Super-
diffusion may occur in chaotic or turbulent processes 
through enhanced transport of particles. 

Many mathematical and computational methods have 
been developed over the last century for solving and 
analyzing differential equations (DEs), which makes DE-
based modeling attractive. However, it has serious 
limitations when applied to physical, chemical and 
biological systems. The most recent numerical 
techniques, it is worth mentioning on-standard finite 
difference methods, hybrid boundary integral procedures. 
The widely applied techniques (that is, perturbation 
method) are of great interest to be used in engineering 
systems (Cole, 1968). To eliminate the limitation of “small 
parameter”, which is assumed in the perturbation 
method, a new technique based on the homotopy 
terminology has been proposed. Accordingly, a nonlinear 
problem is transformed into an infinite number of simple 
problems without using the perturbation technique. 
Effectively,   letting   the    small    parameter    float    and 
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converge to the unity, the problem will be converted into 
a special perturbation problem with a small embedding 
parameter. So the method receives the name, homotopy 
perturbation method (HPM) (He, 1999, 2000, 2004, 2006, 
2008; Khan and Wu, 2011). The scheme has been 
applied to linear and nonlinear ordinary and partial 
differential equations. These equations usually describe a 
dynamic system incorporating the perturbation value (that 
is, HPM). Recently, it has been applied to a wide class of 
differential equations, such as Riccati equation 
(Aminikhah and Hemmatnezhad, 2010), system of 
ordinary differential equation with time-fractional 
derivative arising in chemical engineering (Khan et al., 
2010), fractional order Riccati equation (Khan et al., 
2011), rational approximation solution of the fractional 
Sharma–Tasso–Olever equation (Song et al., 2009). The 
method was also applied to Cahn-Hilliard equation 
(Ugurlu and Kaya, 2008), Navier-Stokes equation (Khan 
et al., 2009) and Biazar discuss the convergence of HPM 
(Biazar and Ghazvini, 2009) etc. 

We present solutions of a more general model of time-
fractional Fisher equation: 
 

( ) ( ) ( )t,x,uFt,xuD  dt,xuD 2

xt +=α

0t  ,x ,10 >ℜ∈≤< α                        (1) 

 

Where d is the diffusion coefficient and ( )t,x,uF  is a 

nonlinear function representing reaction kinetics. It is 
interesting to observe that Equation 1 reduces to the 
time-fractional Fisher equation which was originally 
proposed by Fisher as a model for the spatial and 
temporal propagation of a virile gene in an infinite 
medium. If we set: 
 

( ) ( )( )auu1ut,x,uF −−=                                   (2) 

 
It gives rise to the time-fractional Fitzhugh–Nagumo 
equation (Fitzhugh, 1961; Nagumo et al., 1962; Shih et 
al., 2005), which is an important nonlinear reaction–
diffusion equation and applied to model the transmission 
of nerve impulses. The balance of this paper is organized 
as follows: some basic definitions of fractional calculus 
are given in this study; basic idea of HPM is given and 
implemented on Equation 1; for a number of special 
cases of the RD equations including the time-fractional 
Fitzhugh–Nagumo equation. The approximate solutions 
are compared with the exact closed-form solutions. 
Conclusions are given that briefly summarizes the 
numerical results. 
 
 
BASIC DEFINITIONS OF FRACTIONAL CALCULUS 
 
Definition 1 

 
Caputo’s definition of the fractional-order  derivative  is  defined  as: 
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Where the parameter µ  is the order of the derivative and is 

allowed to be real or even complex, a  is the initial value of 

function f . In the present work only real and positive µ  will be 

considered. For the Caputo’s derivative we have: 
 

0CD =µ
,                                                            (4) 

 
Where C is a constant, 
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Definition 2 
 
For m to be the smallest integer that exceeds a, n to be the 

smallest integer that exceeds γ , the Caputo time-fractional 

derivative operator of order 0>α  is defined as: 
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Definition 3 
 
The Riemann–Liouville fractional integral operator of order mu, of a 
function f: 
 

( )
( )

( ) ( ) 0t0,  ,d f t
1

tfJ

x

0

1
>>−= ∫

− αξξξ
µΓ

µµ
        (7) 

 

For -10,,-1, ≥≥≥ γβαµ  is defined as: 

 

( ) ( )tftfJ 0 = , ( ) ( )tfJtfJJ βαβα += , 

( )
( )

αγγα

αγΓ

γΓ +

++

+
= t

1

1
tJ , ( ) ( )tfJJtfJJ αββα =      (8) 

 
Also, we need two of its basic properties. If: 
 

( ) ( )tftfJD =βα
, 

( ) ( ) ( )( ) 0t   ,
!k

t
0ftftfDJ

1m

0k

k
k >−= ∑

−

=

+αα
                       (9) 

 
A modification in Riemann–Liouville fractional integral operator of 
order mu found in the literature (Khan and Faraz, 2011). 



 
 
 
 
BASIC IDEA AND IMPLEMENTATION OF HPM 
 
To illustrate the basic ideas of this method, we consider the 
following nonlinear differential equation: 
 

( ) ( ) ,  , Ω∈=Φ rrfU                                                           (10) 

 

Where Φ  represents a general nonlinear differential equation 
involving both linear and nonlinear parts. Therefore Equation 10 
can be rewritten as follows: 
 

( ) ( ) ( ) 0rfUNUL =−+                                          (11) 

 
By the homotopy perturbation technique, we construct a homotopy 

( ) [ ] ℜ→×Ω→ 1,0:,, qtXv which satisfies: 

 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] 0rfvqULvLq1q,vH 0 =−+−−= Φ , 

[ ]1,0∈q                                            (12) 

 
 or, 
 

( ) ( ) ( ) ( ) ( ) ( )[ ] 0,,
00

=−++−= tXfvNqUqLULvLqvH

 
 

Where [ ]1,0q ∈  is an embedding parameter, 
0

U  is an initial 

approximation of (11). Obviously from the definitions we will have: 
 

( ) ( ) ( ) ,ULvL,vH 00
0

=−= and 

( ) ( ) ( ) ,0,1, =−Φ= tXfvvH               (13) 

 

The changing process of q from 0 to 1, is just that of ( )qvH ,  from 

( ) ( )
0

ULvL −  to ( ) ( ).rfvA  −
 

In topology, this is called 

deformation, ( ) ( )
0

ULvL − and ( ) ( )rfvA −  are called 

homotopic. Applying the perturbation technique, due to the fact that 

.1q0 ≤≤ can be considered as a small parameter, we can 

assume that the solution of Equations (10) or (11) can be 
expressed as a series in q: 
 

......v qv qv qvv
3

3

2

2

10
++++=                           (14) 

 

When 1q → , the approximate solution: 

 

.......vvvvv limU 3210
1q

++++==
→

                          (15) 

 
The homotopy perturbation method, which provides an analytical 
approximate solution, is applied on various nonlinear problems. 
Here, we implement HPM on Equation 1: 
 

( ) ( ) ( ) ( )( ) 0t,x,uFt,xuDqt,xuDq1
tt

=−+− αα
           (16) 

 
Or  
 

( ) ( ) 0t,x,uqFt,xuD
t

=+α
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In view of the homotopy perturbation method, we use the homotopy 
parameter q to expand the solution: 
 

......uququ quu
3

3

2

2

10
++++=                           (17)  

 
Substituting Equation (17) into (16), and equating the terms with 
identical powers of q, we can obtain a series of linear equations. 
These linear equations are easily obtained by using 
MATHEMATICA 7 or by writing a computer code to get as many 
equations as we need in the calculation of the numerical as well as 
explicit solutions. Here we only write the first few linear equations: 
 

( ) 0t,xuD
0t

=α
      

     
 

( ) ( ) 0t,x,uFt,xuD
011t

=+α
    

     
 

( ) ( ) 0t,x,u,uFt,xuD
1022t

=+α
                           (18) 

 

( ) ( ) 0t,x,u,u,uFt,xuD
21033t

=+α
 

 

Firstly, we apply the operator 
α
t

J , the inverse of the operator 
α
t

D , 

on both sides of the first equation of (18) to obtain 0u . Solving the 

aforementioned equations, by taking the operator 
α
t

J both sides of 

the system of linear fractional differential equation 18. 
 
 
TIME-FRACTIONAL REACTION-DIFFUSION EQUATIONS OF 
THE FISHER TYPE 
 
To incorporate our discussion, we consider nonlinear Fisher type 
reaction-diffusion equations with time-fractional derivative which are 
arising in engineering sciences and other diverse phenomenon. 
 
 
Application 1 

 
In this case we will examine the case:  
 

( )u  uuuD xxt εδα −+=                                           (19) 

 
Subject to a constant initial condition: 
 

( ) λ=0,xu                              (20) 

 

Where δ  andε , respectively, correspond to the constant intrinsic 

growth rate and intraspecific competition coefficients. In the 1980s, 
this model has been extended to heterogeneous environments by 

Shigesada et al. (1986). Here, we consider δ  andε is equal to 

unity. 
 
According to the HPM, we construct the following simple homotopy: 
 

( ) 0uuquD
2

t
=−+α

                                                         (21) 

 
In view of the homotopy perturbation method, we use the homotopy 
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parameter q to expand the solution. Substituting Equation (17) into 
(21), and equating the terms with identical powers of q, we can 
obtain a series of linear equations. 
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                                                         (22) 

 

0uuu2uuD
2
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Firstly, we apply the operator
α
t

J , the inverse of the operator 
α
t

D  , 

on both sides of the first equation of (22) to obtain 0u . For avoiding 

difficult fractional differentiation the few components are: 

 

( ) λ=t,xu0                                            (23) 
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The approximate solution of Equation 19 by the HPM is: 

 

( ) ∑
=

=
10

0k

kut,xu                                                            (27) 

 

The exact solution of the Equation 19 as 1→α , 1,1 == εδ  

is: 
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Application 2 
 
Consider the following Fisher equation: 
 

( )u1uuuD
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−+= Αα
                                         (29) 

 
Subject to initial condition: 
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To solve the problem using the HPM and apply the same procedure 
in the previous applications, we obtain the following components: 
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The approximate solution of Equation 29 is given by: 
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=

=
10

0k

kut,xu                                                            (35) 

 
The exact solution of the Equation 29 with condition (30) 

as 1→α  is: 
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Application 3 

 
In this case we will examine: 
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Subject to an initial condition: 
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Similarly, we construct the following homotopy: 
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Solving the systems accordingly, thus we obtain: 
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The approximate solution of Equation 37 by the HPM is: 
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The closed form solution of the problem is given by: 
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Application 4 

 
We consider the time-fractional Fitzhugh–Nagumo equation. This 
equation models the transmission of nerve impulses, and in the 
area of population genetics, in circuit theory, also this equation is an 
important nonlinear reaction–diffusion equation. This equation has 

three constant solutions; a  ,1  ,0u = . The case with 1a0 <<  is 

what the genetics (Kawahara et al., 1983) refer to as the 
heterozygote inferiority. 
 

( ) ( ) 1a0              ,au u1 uuuD xxt <<−−+=α
           (46) 

 
Subject to initial condition: 
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Similarly, we construct the following homotopy: 
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Solving the systems accordingly, thus we obtain: 
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The approximate solution of Equation 46 by the HPM is: 
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=

=
8

0k

kut,xu                                                         (53) 

 

As 1→α  the close form solution is given by: 
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Where, 
 

a2
2

1
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Which is a good agreement with Wazwaz and Gorguis (2004) 
solution. 



2488          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 1. Exact solution ( )t,xu for 1.0,1 == λα . 

 
 
 

 
 

Figure 2. Approximate solution ( )t,xu for 1.0,1 == λα . 

 
 
 
DISCUSSION AND CONCLUSION 
 

In this paper we obtain the analytical solutions of 
nonlinear time-fractional reaction-diffusion equations of 
the Fisher type using He's homotopy perturbation 
method. Figures 1 and 2 shows a very good agreement 
to the analytical solution of time-fractional RD-equation 
with constant initial condition in the time interval (0, 3) by 
using 10th order of the series, which indicates that the 
speed of convergence of HPM is very fast. Figures 2, 3 
and 4 shows the solution surfaces of the fractional 

Brownian motion for different values of α and λ . Figures 

5 shows that a decrease in the fractional order α  

corresponds to an increase in the function ( )t,xu . 

 
 
 
 

 
 

Figure 3. Approximate solution ( )t,xu for 55.0,8.0 == λα . 

 
 
 

 
 

Figure 4. Approximate solution ( )t,xu for 9.0,6.0 == λα . 

 
 
 

Similar effects are for the function ( )t,xu  (Figure 6) for 

fixed value of x and λ . It is seen from Figure 6 that four 

consecutive values of 
3

1
  ,

2

1
  ,

3

2
 ,1=α  occur where first 

three are slow (slow diffusion) and in the positive 
direction but the fourth one is faster (fast diffusion). In 
Figures 7 to 8, the solution surfaces, respectively are 
depicted for different values of α . Figures 9 and 10 are 

prepared to show the influence of α  on the 

function ( )t,xu . It is clearly seen that a ( )t,xu  increase 

with the increases in t  for 
10

7
  ,

10

8
  ,

10

9
 ,1=α . 
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Figure 5. Approx. solution ( )t,xu for 1.0,5.0x == λ . (color figure can be viewed in the online issue) 

 
 
 

 
 

Figure 6. Approx. solution ( )t,xu for 3.0,5.0x == λ . (color figure can be viewed in the online issue) 

 
 
 
Figures 11 and 12 are plotted for approximate solution of 
generalized time-fractional Fisher equation found in 
Application     3.    Finally,    the    solution    surfaces    of 

time-fractional Fitzhugh–Nagumo equation are depicted 
in Figures 13 to 16. In Figures 17 and 18 the function 

( )t,xu  vs. x are plotted for different a  andα .  
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Figure 7. Approx. solution ( )t,xu for 6A,1 ==α . 
 
 
 

 
 

Figure 8. Approx. solution ( )t,xu for 6A,6.0 ==α . 

 
 
 

 
 

Figure 9. Approx. solution ( )t,xu for 6A,10x == . (Colored figure can be viewed in the online issue). 



Khan et al.        2491 
 
 
 

 
 

Figure 10. Approx. solution ( )t,xu for 6A,5x == . (color figure can be viewed in the online issue) 

 
 
 

 
 

Figure 11. Approximate solution ( )t,xu for 5.0x = . (color figure can be viewed in the online issue) 

 
 
 

 
 

Figure 12. Approximate solution ( )t,xu for 9.0x = . (Colored figure can be viewed in the online issue). 
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Figure 13. Approximate solution 8.0,3.0a == α
.
 

 
 
 

 
 

Figure 14. Approximate solution 3.0,3.0a == α  

 
 
 

 
 

Figure 15. Approximate solution 1,9.0a == α
. 
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Figure 16. Exact solution at 1,9.0a == α
.
 

 
 
 

 
 

Figure 17. Approximate solution ( )t,xu for 5.0t = . 1, =α  (colored figure can be viewed in the online issue). 

 
 
 

 
 

Figure 18. Approximate solution ( )t,xu for 9.0t = . a=0.9 (colored figure can be viewed in the online issue). 
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Figure 19. Approximate solution ( )t,xu for 5.0x = .a=0.7 (colored figure can be viewed in the online issue). 

 
 
 

 
 

Figure 20. Approximate solution ( )t,xu for 9.0x = .a=0.4 (colored figure can be viewed in the online issue). 

 
 
 

Table 1. 3..0=λ  
 

t 
75.=α   1=α  

HPM GDTM  HPM GDTM Exact 

0.1 0.548156474808 0.548156465921  0.5249791874789 0.5249791875000 0.5249791874789 

0.2 0.580337900826 0.580337566847  0.5498340000000 0.5498339973125 0.5498339973124 

0.3 0.607777641025 0.607774880331  0.5744425625000 0.5744425168154 0.5744425168116 

0.4 0.632139529406 0.632139529406  0.5986880000000 0.59868766017636 0.5986876601124 

 
 
 
Figure 19 and 20 are depicted for a=0.7 and a=0.4 
respectively. It is interesting to observe that the function 

( )t,xu  of ordinary and generalized Fitzhugh–Nagumo 

equation shows a nonlinear behavior with respect to 
fractional parameter α  in the sense that do not remain in 

phase for smaller values of time. However, the figures 

are not plotted for different values of times. 
Numerical comparison between GDTM (Rida et al., 

2010) and HPM are found in Tables 1 to 3 which shows 
that HPM is more promising. It is also found that the 
results is in complete agreement with the result of HPM 
(Ağırseven and Ozis, 2010;  Dehghan  et  al.,  2010)  and
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Table 2. 2x  ,6A ==
. 

 

t 
75.=α  1=α   

GDTM HPM GDTM HPM Exact 

0.02 0.164993813210 0.024139537033 0.0172618055555 0.0169279385146 0.0169282151010 

0.04 0.138147422907 0.035155268075 0.0173444444444 0.0201117284508 0.0201217246134 

0.06 0.109336625176 0.048947313064 0.0168604166666 0.0238370103628 0.0238595181173 

0.08 0.093578766505 0.066092858687 0.0157555555555 0.0281487518402 0.0282178229330 
 
 
 

Table 3. 0.5x = . 
 

t 
75.=α  1=α   

GDTM HPM GDTM HPM Exact 

0.10 0.788135123734 0.788773986627 0.7410695562265 0.7412818056634 0.7412818057112 

0.15 0.819608638370 0.822391378425 0.7675559304602 0.7681565182997 0.7681565210222 

0.20 0.845635115405 0.863770823666 0.7931210778654 0.7937004785344 0.7937005259840 

0.25 0.867856851346 0.951573461580 0.8171479502783 0.8176979303098 0.8176983602097 
 
 
 

ADM (Gorguis and Wazwaz, 2004) for ordinary cases. A 
considerable advantage of the HPM is that the solutions 
are found very easily by using MATHEMATICA 7 without 
any transformation. 
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