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Abstract

Recently, the concept of statistical convergence has been studied in 2-normed and
random 2-normed spaces by various authors. In this paper, we shall introduce the
concept of A-double statistical convergence and A-double statistical Cauchy in a
random 2-normed space. We also shall prove some new results.
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1 Introduction

The probabilistic metric space was introduced by Menger [1] which is an interesting and
an important generalization of the notion of a metric space. The theory of probabilistic
normed (or metric) space was initiated and developed in [2—6]; further it was extended to
random/probabilistic 2-normed spaces by Golet [7] using the concept of 2-norm which
is defined by Géhler (see [8, 9]); and Giirdal and Pehlivan [10] studied statistical conver-
gence in 2-normed spaces. Also statistical convergence in 2-Banach spaces was studied
by Giirdal and Pehlivan in [11]. Moreover, recently some new sequence spaces have been
studied by Savas [12—14] by using 2-normed spaces.

In order to extend the notion of convergence of sequences, statistical convergence of
sequences was introduced by Fast [15] and Schoenberg [16] independently. A lot of devel-
opments have been made in this areas after the works of Salat [17] and Fridy [18]. Over
the years and under different names, statistical convergence has been discussed in the the-
ory of Fourier analysis, ergodic theory and number theory. Recently, Mursaleen [19] stud-
ied A-statistical convergence as a generalization of the statistical convergence, and in [20]
he considered the concept of statistical convergence of sequences in random 2-normed
spaces. Quite recently, Bipan and Savas [21] defined lacunary statistical convergence in a
random 2-normed space, and also Savas [22] studied A-statistical convergence in a ran-
dom 2-normed space.

The notion of statistical convergence depends on the density of subsets of N, the set of
natural numbers. Let K be a subset of N. Then the asymptotic density of K denoted by
8(K) is defined as

’

8(K) = lim l|{k§n:ke1<}
n—-oo 1

where the vertical bars denote the cardinality of the enclosed set.
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A single sequence x = (x) is said to be statistically convergent to £ if for every ¢ > 0, the
set K(e) = {k < n:|xx — £| > &} has asymptotic density zero, i.e.,

lim l|{k§n:|xk—z|zs}|=o.
n—-oo 1

In this case we write S — limx = £ or x; — £(S) (see [15, 18]).

2 Definitions and preliminaries
We begin by recalling some notations and definitions which will be used in this paper.

Definition 1 A function f : R — R{ is called a distribution function if it is a non-
decreasing and left continuous with inf,cg f(£) = 0 and sup, g f(¢) = 1. By D*, we denote
the set of all distribution functions such that f(0) = 0. If 2 € R, then H, € D*, where

1, ift>a;
Ha(t) =
0, ift<a.

It is obvious that Hy > f for all f € D*.

A t-norm is a continuous mapping * : [0,1] x [0,1] — [0,1] such that ([0,1],*) is an
Abelian monoid with unitoneand cxd >axbif c>a and d > b for all a,b,c,d € [0,1].
A triangle function t is a binary operation on D*, which is commutative, associative and
©(f,Hy) =f for every f € D*.

In [8], Gdhler introduced the following concept of a 2-normed space.

Definition 2 Let X be a real vector space of dimension d > 1 (d may be infinite). A real-
valued function |-, -|| from X? into R satisfying the following conditions:

(1) Il x2]l = 0 if and only if %1, x, are linearly dependent,

(2) |l#1,%2]| is invariant under permutation,

(3) oy, %2l = |ee|lloe1, %2, for any o € R,

(4) llx+ %22l < ll2, 22| + [I%, 2
is called a 2-norm on X and the pair (X, ||-,-||) is called a 2-normed space.

A trivial example of a 2-normed space is X = R?, equipped with the Euclidean 2-norm
[lx1, %2 || = the area of the parallelogram spanned by the vectors x;, x; which may be given

explicitly by the formula
ll1, %2 || £ = |det(ax)| = abs(det((x;,;))),

where x; = (x;1,%) € R* for each i = 1,2.
Recently, Golet [7] used the idea of a 2-normed space to define a random 2-normed

space.

Definition 3 Let X be a linear space of dimension d > 1 (d may be infinite), t a triangle,
and F : X x X — D*. Then F is called a probabilistic 2-norm and (X, F, t) a probabilistic
2-normed space if the following conditions are satisfied:
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(P2N;) F(x,9;t) = Ho(t) if x and y are linearly dependent, where F(x, y; t) denotes the value
of F(x,y) att € R,

(P2Ny) F(x,y;t) # Ho(2) if x and y are linearly independent,

(P2N3) F(x,y:t) = F(y,x:¢), for all x,y € X,

(P2Ny) Flax,y;t) = F(x,y; ), forevery t >0, @ #0 and &,y € X,

|

(P2N5) F(x+y,z:t) = ©(F(x,2:8), F(y,2;t)), whenever x,y,z € X.
If (P2N5) is replaced by
(P2Ng) Flx+y,zt1+t) = F(x,zt) * F(y, 23 t), for all x,y,z € X and 1, ¢, € R{;

then (X, F, x) is called a random 2-normed space (for short, R2NS).

Remark 1 Every 2-normed space (X, ||-,-||) can be made a random 2-normed space in a
natural way by setting F(x,y; £) = Ho(¢t - ||x, y||) for every x,y € X, ¢ > 0 and a* b = min{a, b},
a,be[0,1].

Example 1 Let (X, ||-,-||) be a 2-normed space with ||x,z|| = |[x120 — %221 ||, x = (x1,%2), z =

(z1,z2) and ax b =ab, a,b € [0,1]. For all x € X, ¢ > 0 and nonzero z € X, consider

—L _ ift>0;
Flx,zt) = { el
0, ift <0.

Then (X, F, *) is a random 2-normed space.

Definition 4 A sequence x = (xy;) in a random 2-normed space (X, F,*) is said to be
double convergent (or F-convergent) to £ € X with respect to F if foreach e > 0, n € (0,1),
there exists a positive integer #¢ such that F(xx; — ¢,z;¢) >1 — n, whenever &,/ > 1y and
for nonzero z € X. In this case we write F — limy;x; = £, and £ is called the F-limit of

x = (%x0)-

Definition 5 A sequence x = (x;;) in a random 2-normed space (X, F, *) is said to be
double Cauchy with respect to F if for each ¢ > 0, n € (0,1) there exist N = N(¢) and
M = M(e) such that F(xr; — xp,4,2;6) > 1 — n, whenever k,p > N and /,q > M and for

nonzero z € X.
Definition 6 A sequence x = (x;) in a random 2-normed space (X, .F,*) is said to be

double statistically convergent or S***N _convergent to some £ € X with respect to F if for

each ¢ >0, n € (0,1) and for nonzero z € X such that
8({(/(,1) eENXN: Flxr;—4,z¢) 51—7}}) =0.

In other words, we can write the sequence (xx;) double statistically converges to £ in

random 2-normed space (X, F, *) if

lim LHk5m,lflfz:.7-'(961(,1—6,2;8)§l—r;}‘ =0

mn—oo n
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or equivalently,

S({k 1 eN: Flaxs - 6,z38) > 1-n}) =1,

§*— lim F(xx,—4€,z6) = 1.
k,l— o0

In this case we write S?*N _ limx = ¢, and ¢ is called the S**?N-limit of x. Let S>*N(X)
denote the set of all double statistically convergent sequences in a random 2-normed space
(X, F, ).

In this article, we study A-double statistical convergence in a random 2-normed space
which is a new and interesting idea. We show that some properties of A-double statistical
convergence of real numbers also hold for sequences in random 2-normed spaces. We es-
tablish some relations related to double statistically convergent and A-double statistically

convergent sequences in random 2-normed spaces.

3 A-double statistical convergence in arandom 2-normed space

Recently, the concept of A-double statistical convergence has been introduced and studied
in [23] and [24]. In this section, we define A-double statistically convergent sequence in a
random 2-normed space (X, F, ). Also we get some basic properties of this notion in a
random 2-normed space.

Definition 7 Let A = (A,) and p = (i) be two non-decreasing sequences of positive real
numbers such that each is tending to co and

Apsl S A+ 1, rM=1
and

Mnel = My + 1, M1 = 1L

Let K € N x N. The number

’

8;(K) = lim _i|{k €Ll € (k1) €K}
mao L

where I, = [n— Ay + 1, 1], Jin = [m — i + 1, m] and Ay = Apfl, is said to be the A-double
density of K, provided the limit exists.

Definition 8 A sequence x = (x;) is said to be A-double statistically convergent or S;—
convergent to the number ¢ if for every ¢ > 0, the set N(¢) has A-double density zero,
where

N(e)={k €Lyl €]y |y — L] > €}

In this case, we write S% —limx=L.
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Now we define A-double statistical convergence in a random 2-normed space (see [25]).

Definition 9 A sequence x = (xg;) in a random 2-normed space (X, F,*) is said to be
A-double statistically convergent or S%—convergent to £ € X with respect to F if for every
£>0,n€(0,1) and for nonzero z € X such that

8;({keln,le]m : Flxks —4,z;€) 51—17}) =0
or equivalently,

8 ({k €Il € s Floii—£,z38) >1-n}) =1,

S2— lim Flxx,—€,z6) = 1.
S e Gewt = &.zi€)

and

In this case we write S/%RZN

—limx = £ or xz; — E(S}%RZN)

SN (X) = {x = () : 3 € R, SZPN — lima = £},

Let S/%RZN (X) denote the set of all A-double statistically convergent sequences in a random

2-normed space (X, F, *).

If A,y = mn for every n, m then A-double statistically convergent sequences in a random
2-normed space (X, F, *) reduce to double statistically convergent sequences in a random
2-normed space (X, F, x).

Definition 9 immediately implies the following lemma.

Lemma 1l Let (X, F,*) be a random 2-normed space. If x = (xy) is a sequence in X, then
forevery e >0, n € (0,1) and for nonzero z € X, the following statements are equivalent:
(i) S§2N —limy 00 Xk = 45
(i) &5(tk € In,l € Jon : Flory — Lrz38) <1 -n}) = 0;
(iii) 8;({k € Ll € Juy : Flotry — L,z36) >1—n}) = 1;
(iv) S5 —limgoo Flwrs —£,2;€) = 1.

Theorem 1 Let (X, F,*) be a random 2-normed space. If x = (xy) is a sequence in X such
that SN —limuxy, = € exists, then it is unique.

Proof Suppose that S%RZN

—limg s 00 Xy = KI;S/%MN —limy ;00 X1 = £2, Where (€1 # £5).
Let ¢ > 0 be given. Choose a >0 such that(1-a)x(1-a) >1—¢.

Then, for any ¢ > 0 and for nonzero z € X, we define

t
Ki(a,t) = {k el,le], :f(xk,;—ﬁl,z;i) < 1—(1};

t
Ky(a,t) = {keln,lelm:.7:<xk,1—€2,z;§) < l—a}.

Page5of 11
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Since S%RZN — limg oo xk; = €1 and S%RZN — limg oo Xk = €2, we have Lemma 1
8;(Ki(a, ) = 0 and &5 (Ky(a,£)) =0 for all £ > 0.

Now, let K(a, t) = Ki(a,t) U Ky(a, t), then it is easy to observe that §; (K (a, £)) = 0. But we
have &; (K¢(r,¢)) = 1.

Now, if (k,[) € K¢(a, t), then we have

t t
Fly =Ly, z;t) > ]:(xk,l — {1,z 5) *]—'(xkrl —40,2; 5) >A-a)x(1-a).

It follows that
Flr—Ly,zt)>(1—¢).

Since ¢ > 0 was arbitrary, we get F(¢; — £3,z;t) = 0 for all £ > 0 and nonzero z € X. Hence
=1,
This completes the proof. d

Next theorem gives the algebraic characterization of A-statistical convergence on ran-
dom 2-normed spaces. We give it without proof.

Theorem 2 Let (X, F,*) be a random 2-normed space, and x = (xi;) and y = (yr,1) be two
sequences in X.

(a) IfS/%RzN —limxy; = £ and c(#0) € R, then S%RZN —limexy; = cl.

(b) [fS%RZN —limwy; = £, and Sﬁ—fZN —limyg; =€, then S%RZN — lim(o g + yk,l) ={1 + £5.

Theorem 3 Let (X, F,*) be a random 2-normed space. If x = (xx) is a sequence in X such
that F —limxy; = £, then S%RZN —limuxy,; = £.

Proof Let F —limwy; = £. Then for every € > 0, £ > 0 and nonzero z € X, there is a positive
integer ny and m such that

Flr—4L,z;6)>1—¢
for all kK > ny. Since the set
K(e, ) = {k€lp,l € Jpn: Flais—,z:8) <1 - ¢}

has at most finitely many terms. Since every finite subset of N x N has §; -density zero,
finally we have §5(K(g,t)) = 0. This shows that S%RZN —limxy,; = £. (N

Remark 2 The converse of the above theorem is not true in general. It follows from the
following example.

Example 2 Let X = R?, with the 2-norm ||x,z|| = |x125 — %221, % = (%1,%2), z = (z1,22) and
axb=abforall ab e [0,1]. Let F(x,y;¢t) = m, for all x,z € X, z #0, and £ > 0. We
define a sequence x = (xx) by

(k1,0), ifn—[VAsl+1<k<mandm-—[/fml +1<k<m;
(0,0), otherwise.

Xkl =
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Now for every 0 < ¢ <1 and ¢ > 0, we write
Ku(e,0) =k €L, l € Ju: Flogy — Lz38) <1-¢}.

Therefore, we get

=0.

8 (K(e,0)) = lim [_k”’”]

nm—o0 ).
This shows that S%RZN —limuxy; = 0, while it is obvious that F — limxy; #0.
Theorem 4 Let (X, F, *) be a random 2-normed space. If x = (xy) is a sequence in X, then
S%RZN —limxy; = € if and only if there exists a subset K = {(ky,1,) : ki < ko, ...; 51 <bp,...} C

N x N such that §;(K) =1 and F - lim,_, oo Xk,,1,, = £.

Proof Suppose first that SZ*N —limux; = €. Then for any £ > 0,4 = 1,2,3,... and nonzero
zeX,let

1
Ala,t) = {ke[n;le]m:]-'(xk,l—ﬁ,z;t)>1— ;}
and
1
K(a,t) = {keln;le]m:]:(xk,l—ﬁ,z;t) <1- —}.
a

Since S%RZN

—limuxy, = ¢, it follows that

8;(K(a, 1)) = 0.
Now, for t >0 and 2 =1,2,3,..., we observe that

Aa,t) D Ala +1,¢t)
and

8 (Aa 1)) =1 (3.1)

Now we have to show that for (k,[) € A(a,t), F — limxg; = £. Suppose that for some

(k,1) € Aa,t), (xx,;) is not convergent to £ with respect to F. Then there exist some s > 0
and a positive integer ko, [y such that

{k elyle]y: Flar—Czt) <1 —s}

for all k > ko and [ > [;. Let

Als,t) = {ke[n;le]m:}'(xk,l—E,z;t)>1—s}

Page 7 of 11
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for k < kg and [ < [y and
1
s>—, a=12,3,....
a
Then we have
83 (A(S, If)) =0.

Furthermore, A(a,t) C A(s,t) implies that §5(A(a,£)) = 0, which contradicts (3.1) as
8;(A(a,t)) = 1. Hence F — limxy; = £.

Conversely, suppose that there exists a subset K = {(k,,1,) : ks < ko,...;5 < lp,...} C
N x N such that 6;(K) =1 and F — limy,yy—oc %k, = £. Then for every ¢ > 0, t > 0 and
nonzero z € X, we can find a positive integer 7o such that

Flxrpzt)>1—¢
for all k,I > ngy. If we take

K(g,0)={k €Ll € Jp: Flaxy—,z58) <1-g},
then it is easy to see that

I<(8’ t) C N xN- {(kn0+17 l}’l0+1)r (kn0+21 ln0+2)r .. .},
and finally,

8 (K(e,1)) <1-1=0.

Thus Sfm —limxy; = £. This completes the proof. O

We now have
Definition 10 A sequence x = (x,) in a random 2-normed space (X, F, ) is said to be
A-double statistically Cauchy with respect to F if for each ¢ > 0, 5 € (0,1) and for nonzero
z € X, there exist N = N(g) and M = M(e) such that for all kK, > N and [, n > M,

8i({k € Lzl € Jn s Flas —xaan, z36) <1-1n}) =0,
or equivalently,
8;({k €Lyl €y Fxis—xmn,z:€) >1 - 17}) =1
Theorem 5 Let (X, F,*) be a random 2-normed space. Then a sequence (xy;) in X is \-

double statistically convergent if and only if it is h-double statistically Cauchy in random
2-normed space X.

Page8of 11
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Proof Let (xx;) be a A-double statistically convergent to £ with respect to random 2-
normed space, i.e., S%RZN —limuxy = £. Let € > 0 be given. Choose a > 0 such that
Ql-a)x(1-a)>1-¢. (3.2)

For ¢ > 0 and for nonzero z € X, define

t
Aa,t) = {ke]n;le]m:]:<xk,l—f,z;§) fl—a}.

Then
t
A(a,t) = {k el;le], :]—'(xk,l -4,z 5) >1 —a}.

Since S%RZN —limxy = ¢, it follows that &5 (A(a, £)) = 0, and finally, &5 (A%(a, t)) = 1.
Let p,q € A%(a, t). Then

t
.7-"<xp,q -4,z 5) >1-a. (3.3)
If we take
B(e,t) = {k elple]y: Fxr—%pq2t) <1 - 8},

then to prove the result it is sufficient to prove that B(e, t) C A(a, £).
Let (k,l) € B(e,t) N A%(a, t), then for nonzero z € X, we have

t
Fxxs —%pgzt) <1—¢ and ]—'<ka, -4,z 5) >1l—a. (3.4)
Now, from (3.1), (3.3) and (3.4), we get
t t
1-¢&> Fxki—xpgr2it) > f(xk,l -4,z 5) * .F(xp -4,z E)
>(l-a)x(1-a)>0-¢),

which is not possible. Thus B(e, £) C A(a, t). Since 85 (A(a, £)) = 0, it follows that 8; (B(e, t)) =
0. This shows that (x4 ) is A-double statistically Cauchy.

Conversely, suppose (xx,) is A-double statistically Cauchy but not A-double statistically
convergent with respect to F. Then for each ¢ > 0, ¢ > 0 and for nonzero z € X, there exist
a positive integer N = N(¢) and M = M(¢) such that

Ale,t) = {k € L;1 € Ju : F (ks — %, 238) <1 -},

Then

83 (A(S, If)) =0

Page9of 11
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and

8. (A 1) =1 (3.5)

For ¢t > 0, choose a > 0 such that

Q-a)x1-a)>1-¢ (3.6)

is satisfied, and we take

t
B(a,t) = {keln;le]m:}'(xk,,—z,z;i) >1—a}.

If N,M € B(a,t), then F(xnu — 4,2 5) >1-a.
Since

t t
Fxes —xnm 2 £) Z]'“(xk,l—ﬂ,z;§> *]-’(xN,M—Z,z; 5) >Sl-a)x(1-a)>1-¢,

then we have

85 ({#ks + Fors — xaat, z38) >1— ) =0,

i.e., 8;(A°(e,t)) = 0, which contradicts (3.5) as 85 (A°(e, t)) = 1. Hence (xy,;) is A-double sta-
tistically convergent.

This completes the proof. d
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