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Two-step two-point hybrid numerical methods for direct solution of initial value problems of general
second order differential equations are proposed in this study. Chebyshev polynomials without
perturbation terms are used as basic function for the development of the methods in predictor-corrector
mode. The collocation and interpolation equations are generated at both grid and off-grid points. The
resulting methods are zero-stable, consistent and normalized. The main predictors, having the same
order with the scheme, are developed for the implementation of the methods. Accuracy of a discrete
scheme from the methods is tested with linear and non-linear problems. The results show a better

performance over the existing methods.
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INTRODUCTION

In this paper, we shall consider a direct solution of general
second order problem of the form

y” =f (X1 2 y')1 y(XO) = 50’ yl(XO) = 61 ()

Several literatures have shown that this type of equations
is conventionally reduced to systems of first order ordinary
differential equations in attempting to solve them. Itis also
revealed in literature that some researchers have
attempted the direct solution of (1) using linear multistep
methods (Lambert, 1973; Brown, 1977; Awoyemi, 2003;
Adesanya et al., 2008; Kayode, 2010). These authors
independently proposed methods of various order of
accuracies to proffer solution to problem (1) at only grid
points.

A few authors, (Kayode, 2011; Yahaya and Badmus
2009; Majid et al., 2009; Alabi et al., 2008; Ehigie et al.,
2010; Kayode and Adeyeye 2011) have introduced hybrid
methods to solving problem (1) but with lower order of
accuracies.

In this work, Chebyshev series was used as basic
function in generating the interpolation and collocation
equations for the development of continuous hybrid linear
multistep method (CHLMM) for the direct solution of
problem (1).

MATERIALS AND METHODS

In this work, we considered using a partial sum of Chebyshev series
in the form.
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C+i

y(x) =2 a,T,(x)
-0 @)

as the basic function for the development of the method, where ¢
and i are the number of collocation and interpolation points

a.'s T.(X)

respectively; are the determinate parameters and
the Chebyshev polynomial of first kind.
The differential system arising from Equation (2) is given as:

C+i

y'() =2 a,T,(x)
-0 ®

Interpolating the basic function (2) at grid points Xosin 1= 0.1
and collocating the differential system (3) at grid and off-grid points

X 12002 X X O<r<l .

n+r’  and n+s?

k-1<s<k respectively’ gave rise to a system of equations

C+i

>a, T, ()= Yo i=0L2,..
j=0

4)
C+i )
Zan,JTn',’j (X) = fn+i’ i=012,..
j=0

(5)
Zan,an’,,j x)=f,, 0<r<1
j=0

(6)
Za”va"/v,J' (X) = fn+s’ k-1l<s<k
" (7)

where
f.=f (Xnﬂ-, ynﬂ-,y'nﬂ-); Vi ® Y (Xt )i X =%, +i "

is the stepnumber and h is the stepsize.

a.
Determining ! from Equations (4) — (7) and substituting the
values into Equation (2) yields the continuous hybrid method:

k-1 k
Y ()= a;(X)y,,; +h’ [Zﬂj O f,, +a () f, 4,001,
=0 j=0

(8)
t= X— Xn+k—1
. = . . (oA
Taking h , k= 2, the continuous coefficients ~ /,
LT T . o - .
ﬂ 1, "1 "2 and their respective first derivatives are obtained as:

ap(t) =—t. o t) =1+t.

A O=G 2t —t°(3s+3r—1)—t*(-5rs—3s—3r+6)
S T | t(15rs— 75— 7r +4) = Tr+4+15rs— 75
AO=C 2t —t*(3s+3r—4)—t*(-5rs+2s+2r +4)
BT |t (Brs—125—12r +16)+18r +18s — 25rs —14
2t' —t°(3s+3r—7)—t*(-5rs+7s+7r -8)
B (1) =G,
—t(—55r +3s+3r —2)—5rs+3s+3r -2
2t* —t3(3s-1)-t*(-3s+6
() =G, ( ) ( )
—t(-7s+4)-7s+4
0)=G 2t* +t°(-3r +1)+t*(3r-6)
T =
2 Y| t(7r—4)-Tr+4
9)
where
h2
G = 120sr t(t+)
h? L
&=~ go g p Y
hZ
G = o262 Y
2
G,=— h t(t+1)
60r(r—2)(s-r)(r-1
h2

G = t(t+1)
60s(s—2)(s—1)(s-r)

1 1
a,'t)=—-= o 't)==
Q= O]
O —12t° +t* (155 —15+15r ) + t* (~20rs + 20)
© ] 442 (30rs —30s —30r +30) + 75+ 7r —15rs — 4
—12t° +t* (155 +15r —30) +t° (—20rs + 20s + 20r)
B,'(t) = H,{ +t*(~30s —30r + 60) +t (60+ 60rs — 60r — 60s)
+25rs—18s-18r +14

—12t° +t* (155 +15r —45)+t* (40s — 20rs + 40r — 60)
+t? (—30rs +30s +30r —30t ) — 35 —3r + 2+ 5rs) }
—12t° +t* (155 —15) + 20t°

+t?(-30s+30)+7s—4 }

,Bz I(t) = H3{

5'(t)= H4{



125 +t* (15-15r) - 20t°

7,'(t)=H
’ * | +t(30r —30) - 7r + 4
(10)
Where
H,=— h
120rs
h
H —_— —
> 60(s-1)(r-1)
oo h
* 120r(r—2)(s-2)
H, = h
60r (r—2)(s—r)(r-1)
h

M = 80s(s—2)(s—1)(s—r)

Evaluating Equation (8) at the last end grid point where t=1
yields the discrete scheme

Yoo =00Ypa + Yo H (ATt + ATt f 4 B fL) (11)
Where

o, (t) =-1. a,(t) = 2;

B, (t) =(5sr—3)J,

B, (t) =(25sr —25s +28—-25r)J,

B, (t) =(5sr —10r =105 +17) J,

7,(t)=J,, 7,(t) = J,
and
J, = h*
60sr
hZ
Jy=———
30(s-1(r-1)
h2
Jyj=————
60(r—2)(s-2)
hZ
J, =
10r(r-)(s—r)(r-2)
h2

J =—
® 10s(s—1)(s—r)(s—2)
The first derivative of Equation (11) is
y|'1+2 = allyml + a(‘)yn + (ﬂo fn + Tl. fn+r +ﬂ1 fml + T‘Z fn+s +ﬁ2 fn+2) (12)

where
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)=, =)

B,'(t) =K (8r+8s+5rs-19)

B ) =K, (73r +735-65r5-92)

B, =K, (45rs-825-82r +145)
)

=K
=K,
7 0)=K, (8s-19)
70)= K, (6r-19)

and
K, =——"
120rs
h
Ky=—— '
2 60(r-1)(s-1)
K, = h
120r(r—2)(s-2)
K — h
‘o eor(r-s)(r-1)(r-2)

_ h
s = 508 (r—s)(5-1)(5-2)

Implementation of the CHLMM

A sample discrete scheme is obtained for the implementation of the
method by taking the values of r and s at the mid-point of the
subintervals containing r and s respectively to obtain

2
Yoz = 2yn+1 —Ya +%(fn +16 fm_l +26 fn+l +16 fn+§ + fn+2)
2 2

(13)

And

Y= %( Vo= Yo )+ 3720 (3f, +112f , +126f,,+240f ,+59f,,)

2 2 (14)

The discrete scheme (13) is zero stable, normalized (Lambert,

1973) and its order of accuracy is 6. The absolute error

C,.,=8.2672x10°

constant P . The derivative (14) is also of

_ -4
order P = 6 and Cp+2 =1.9841x10 |

The Predictors

The major disadvantage of predictor-corrector mode has been the
use of predictors of lower order to implement the scheme. In order
to overcome this setback, we developed a predictor that is of the
same order as the scheme. The predictor and its first derivative are
developed using Chebyshev series as a basic function as
discussed above to obtain

2

yn+2 = _16yn+s + 34yn+1 _16yn+r - yn + %(2 1;n+r +11f , +2 fn+—s)

n+l

(15)
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Table 1. Numerical results for Problem 1 h=0.1

X y-exact y-computed

0.2 -0.22140275816 -0.22140194098
0.3 -0.34985880757 -0.34985570401
0.4 -0.49182469764 -0.49181812807
0.5 -0.64872127070 -0.64870983266
0.6 -0.82211880039 -0.82210083478
0.7 -1.01375270747 -1.01372626007
0.8 -1.22554092849 -1.22550370623
0.9 -1.45960311115 -1.45955243246
1.0 -1.71828182845 -1.71821456690

and

L1 h (-18f +33041
Y., = ﬂ(—2920ymS +6245y, , -3176y,,, —149y, )+

630 +19531fm+2818fms] (16)

The main predictor (14) and its derivative (15) are also of order 6

C,,, =2.3768x10°°

with absolute error constant and

C,,, =2 2821x10™
y

1
n+=
for 2 was adopted from (Yahaya and Badmus, 2009).

respectively. Taylor's series expansion

NUMERICAL EXPERIMENTS
Test problems
The usability of the derived schemes is confirmed with

three test problems and the results are compared with
the results of some existing methods.

Problem 1
y'=y,y(0)=0,y'(0)=-1
Exact solution: Y(X) =1—¢€”
Problem 2

N2
y"=%—2y, y(%}z, y(%jzg
Exact solution: Y(¥) =Sin°x

Problem 3

Brown (1977)

Yo ==Y, +C0sx, ¥, (0)=-1 ¥, (0)=-1
Y, =Y, +sinx, y,(0)=1, y,(0)=0

Exact solution: Y1 (X)=—cosx—sinx; ¥, (X)=cosX

Problem 4
Suleiman (1989) in Majid et al. (2009)

¥, =% %,(0)=1 %(0)=0,

y; :_Tyzl yz(O)ZO’ y'2(0)=1

- ; X)=sinx
Exact solution: ¥ (x)=cosx; Y,(x)

RESULTS

Results are explained in Tables 1-6

Conclusion

This work has produced a two-point hybrid method for the
direct solution of general second order initial value non-
stiff and mildly-stiff problems. Chebyshev series was
used as basic function for the approximate solution to the



Table 2. Comparison of errors for Problem 1.

Kayode and Adeyeye

X Errors in Yahaya and Badmus (2009) Errors in Ehigie et al. (2010) Method (13)
0.2 3.27E-04 1.16E-02 8.17176E-07
0.3 2.22E-03 3.50E-02 3.10356E-06
0.4 4.86E-03 7.18E-02 6.56957E-06
0.5 9.10E-03 1.23E-01 1.14380E-05
0.6 1.44E-02 1.91E-01 1.79656E-05
0.7 2.15E-02 2.77E-01 2.64474E-05
0.8 2.99E-02 3.84E-01 3.72222E-05
0.9 4.03E-02 5.12E-01 5.06786E-05
1.0 5.26E-02 6.65E-01 6.72615E-05
Table 3. Numerical results for Problem 2 N = 0-01.
X y-exact y-computed

0.544 0.26751586298 0.26751586348

0.554 0.27641504148 0.27641504257

0.564 0.28540365098 0.28540365300

0.574 0.29447809616 0.29447809933

0.584 0.30363474736 0.30363475191

0.594 0.31286994205 0.31286994820

0.604 0.32217998626 0.32217999423

0.614 0.33156115611 0.33156116611

0.624 0.34100969925 0.34100971149

Table 4. Comparison of errors of Problem 2.

X Errors in Ehigie et al. (2010) Error in new method (13)
0.544 4.70E-08 4.04E-10
0.554 1.46E-07 1.10E-09
0.564 3.09E-07 2.02E-09
0.574 5.45E-07 3.17E-09
0.584 8.65E-07 4.55E-09
0.594 1.28E-06 6.15E-09
0.604 1.79E-06 7.97E-09
0.614 2.42E-06 9.99E-09
0.624 3.17E-06 1.22E-08

Table 5. Comparison of errors for Problem 3.

Results in Majid et al (2009)

Results in New Scheme (13)

MTD TS MAXE TIME NMTD TS MAXE TIME
1072 2P4SDIR 33 2.73003E-2 710 2PHM 33 2.768463E-10 119
107 2P4SDIR 42 1.72828E-3 837 2PHM 55 1.275646E-13 213
1078 2P4SDIR 69 6.87609E-6 1182 2PHM 74 3.519407E-14 262
1078 2P4SDIR 84 9.64221E-7 1552 2PHM 130 7.510659E-13 447
107%° 2P4SDIR 160 2.04449E-9 2485 2PHM 278 3.088640E-13 922
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Table 6. Comparison of errors for Problem 4.

Results in Majid et al. (2009)

Results in New Scheme (13)

TOL

MTD TS MAXE TIME MTD TS MAXE TIME
107 2PFDIR 67 7.98175E-2 938 2-STEP 67 9.763298E-08 635
10 2PFDIR 140 6.93117E-4 1472 2-STEP 140 4.170707E-10 1346
10°° 2PFDIR 316 7.46033E-6 3318 2-STEP 316 2.100171E-12 2614
1078 2PFDIR 394 2.45673E-6 4181 2-STEP 394 3.214551E-15 2788
1071 2PFDIR 938 2.53897E-8 9932 2-STEP 938 2.473336E-17 5590

TOL - Tolerance, MTD - Method employed, TS - Total steps taken, MAXE - Magnitude of the maximum error of the computed solution,
TIME - The execution time taken in microseconds, 2P4SDIR - Direct two point four step implicit block method of variable step size [9], NMTD

- New method employed, 2PHM

given problem. A discrete scheme from the derived
methods was implemented to test its usability and
accuracy using the main predictor of the same order of
accuracy. The results, as shown in the Tables 1 to 6,
revealed that the developed methods are significantly
better than those of the existing methods.
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