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The determination of G⊗⊗⊗⊗G for linear groups was mentioned as an open problem by Brown et al. (1987). 
Hannebauer focused on  the nonabelian tensor square of SL(2, q), PSL(2, q), GL(2, q) and PGL(2, q) for 
all q ≥ 5 and q = 9 in a contribution of 1990. The aim of this paper is to determine the nonabelian tensor 
square G⊗⊗⊗⊗G for these groups up to isomorphism by the use of the commutator subgroup and Schur 
multiplier.  
 
Key words: 2000 mathematics subject classification, Primary, 20J99, secondary, 20J06, 19C09,  and phrases, 
commutator subgroup, Schur multiplier, nonabelian tensor square. 

 
 
INTRODUCTION 
 
For a group G, the nonabelian tensor square G⊗G is the 
group generated the symbols  g⊗h  and defined by the 
relations 

 
gg′⊗h=( 

g
g′⊗

g
h)(g⊗h), g⊗hh′=(g⊗h)(

h
g⊗

h
h′). 

 
for all g, g′, h, h′∈ G, where 

g
g′=gg′g 

-1
. The nonabelian 

tensor square is a special case of the nonabelian tensor 
product which has its origin in homotopy theory and was 
introduced by Brown and Loday (1984, 1987). The 
exterior square G⋀G is obtained by imposing the 
additional relations g⊗g =1⊗ for all g∈G on G⊗G. The 
commutator map induces homomorphisms  � : g⊗h ∈ 
G⊗G → �(g⊗h)= [g, h] ∈ G' and �′ : g⋀h ∈ G⋀G  → 
�′(g⋀h)= [g, h]  ∈ G' and J2(G) =ker(�). The results of 
Brown and Loday (1984, 1987) give the commutative 
diagram given as in Figure 1 with exact rows and central 
extensions as columns, where G’ is the commutator 
subgroup of G, M(G) is  the  multiplicator  of  G  and  Γ  is  
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Whitehead’s quadratic function   (Whitehead, 1950). 
The determination of G⊗G for G = GL (2, q) and other 

linear groups was mentioned as an open problem by 
Brown et al. (1987) and was pointed out in a more 
general form in (Kappe, 1999). In the latter paper, there is 
a list of open problems on the computation of the 
nonabelian tensor square of finite groups. Among these, 
there is the problem to find an explicit value of the 
nonabelian tensor square of linear groups. Hannebauer 
(1990) determined  the nonabelian tensor square of SL(2, 
q), PSL(2, q), GL(2, q) and PGL(2, q) for all q ≥ 5 and q = 
9. Later, Erfanian et al. (2008) determined the nonabelian 
tensor square of SL (n, q), PSL (n, q), GL (n, q) and PGL 
(n, q) for all n, q ≥ 2. This work continues the 
investigations in the same area, focusing on symplectic 
groups and projective symplectic groups. We also 
determine this structure for special linear groups and 
projective special linear groups, but the method used for 
computing this structure is different from the method that 
has been used by Erfanian et al. (2008).  As an 
application we determine the Schur multiplier of these 
groups. The epicentre and exterior centre of these groups 
are also determined in the sense of Beyl et al. (1979).  

We will prove the following two main theorems: 
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Theorem 1.1:  Let �q be a finite field with q elements, |�q 
|> 4 and SL (2, 9) is excluded, then 

(i)  SL (n, q) ⊗ SL (n, q)  SL (n, q). 

(ii) PSL (n, q) ⊗ PSL (n, q) SL(n, q). 

 
Theorem 1.2:  Let �q be a finite field with q elements and 
|�q | > 4, then 

(i)  Sp (2n, q) ⊗ Sp (2n, q) Sp (2n, q). 

(ii) PSp (2n, q) ⊗ PSp (2n, q)  S p(2n, q). 

 
 
Preliminaries 
 
This section includes some results on the commutator 
subgroup, Schur multiplier and nonabelian tensor square 
which play an important rule for proving our main 
theorems.  

A group G is perfect if G  = G′. Special linear groups SL 
(n, q) and projective special linear groups PSL (n, q) are 
perfect groups, except (n, q) = (2, 2), (2, 3). Moreover, 
Sp(2n, q) and PSp(2n, q) are perfect groups, except (n, 

q) = (2, 2), (4, 2), (2, 3), where PSp(2, 2)  PSL(2, 2) , 

PSp(4, 2)  and PSp(2, 3)  PSL(2, 3) (Huppert, 1967).  

A group G is capable, if there exists a group H such 

that G  H/Z(H) (Hall, 1964). Ellis (1995) proved that a 

group G is capable if and only if its exterior center Z
ᴧ
(G) 

is trivial, where Z
ᴧ
(G) = {g ∈ G | g ⋀ x = 1ᴧ  for all x ∈ G 

}. Here, 1ᴧ denotes the identity in G⋀G.  
A central extension of a group G is a short exact 

sequence of groups 

 
                  φ                 ψ 
1         A             E                 G        1 
      
Such that φ(A) ⊆ Z (E) is in the center of E. Given a 
central extension 
 

1           A          H         G          1 
 
And a central extension 

 

1           B          K          G         1 

 
We say that the first extension covers, (respectively. 
uniquely covers) the second extension, if there exists a 
homomorphism   such   that   the   following   diagram   is  

 
 
 
 
commutative: 
 

1         A         H        G        1 
 
 
1        B         K       G        1 
                                                                            
A central extension is universal, if it uniquely covers any 
central extension of G. Beyl et al. (1979) established that 
a group is capable, if and only if its epicenter Z

*
(G) = 

∩{φZ (E) | (E, φ) is a central extension of G} is trivial. 
They showed that a perfect group is capable if and only if 
Z (G) = 1.   According to Karpilovsky (1987), a group G

*
 is 

said to be a covering group of G if Z
*
(G) has a subgroup 

A such that 
 

(i) A ⊆ Z (G
*
) ∩ [G

*
, G

*
], 

 

(ii) A  M (G), 

 

(iii) G  G
*
/A.     

 

In the following theorem, the Schur multiplier and 
covering group of a finite perfect group is stated. 
 

Theorem 2.1:  Karpilovsky (1987) Let G be a finite 
perfect group and 1 → A → G

*
 → G → 1 be a universal 

central extension.  Then A  M (G) and G
*
 is a covering 

group of G. Steinberg (1968) obtained a universal central 
extension for PSL (n, q) and PSp (2n, q) in the next 
theorem.  
 

Theorem 2.2:  Steinberg (1968) If q is finite, |�q |> 4 and 
SL (2, 9) is excluded, then the natural extension  
(i) 1 → Z(SL(n, q)) → SL(n, q) → PSL(n, q) → 1 is 
universal. 
(ii) 1 → {-1, +1} → Sp(2n, q) → PSp(2n, q) → 1 is 
universal. 
 

Corollary 2.3:  If q is finite, |�q| > 4 and SL(2, 9) is 
excluded, then 
 

(i) SL(n, q) is a covering group of PSL(n, q). 
(ii) Sp(2n, q) is a covering group of PSp(2n, q). 
 

Proof: (i) By Theorem 2.2, 1 → Z(SL(n, q)) → SL(n, q) → 
PSL(n, q) →1 is a universal central extension. By 
Theorem 2.1, SL(n, q) is a covering group of PSL(n, q). 
(ii) By the similar way, 1 → {-1, +1} → Sp(2n, q) →  
PSp(2n, q) → 1 is a universal central extension. Then 
Sp(2n, q) is a covering group of PSp(2n, q).     
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Figure  1. The commutative diagram.  

 
 
 

In 1987, Brown et al. (1987) proved that the nonabelian 
tensor square is the (unique) covering group for a perfect 
group as follows: 
 
Theorem 2.4:  Brown et al. (1987) If G is a perfect group, 
then G⊗G is the (unique) covering group G

*
 of G. Since 

SL(n, q), PSL(n, q), Sp(2n, q) and PSp(2n, q) are perfect, 
Theorem 2.4 motivates us to concentrate on the covering 
group for these groups.  
 
 
The proofs of main theorems 
 
We prove our main theorems mentioned in section 1. 
First, we compute the Schur multiplier of the special 
linear groups, projective special linear groups, symplectic 
groups and projective symplectic groups. 
 
Lemma 3.1:  Karpilovsky (1987) If q is finite,  |�q| > 4 and 
SL(2, 9) is excluded, then 
(i) M(SL(n, q)) = 1. 

(ii) M(PSL(n, q))  ℤm where m = gcd(q − 1, n). 

Lemma 3.2:  If q is finite,  |�q| > 4, then 
(i) M(Sp(2n, q)) = 1. 
(ii) M(PSp(2n, q)) = ℤ2. 
 
Proof : (i) Refer to Steinberg (1968). 
(ii) Since  1 → {-1, +1 } → Sp(2n, q) → PSp(2n, q) → 1 is 
a universal central extension. By Theorem 2.1, 
M(PSp(2n, q)) = ℤ2. □ 

 
 
Proof of Theorem 1.1 
 
Let �q be a finite field with q elements, |�q| > 4 and SL(2, 

9) is excluded; 
(i) Since SL(n, q) is a perfect group and M (SL(n, q)) = 1, 
then �(G

ab
) = 1. Thus the diagram in Figure 1 implies  

that J2(SL(n, q)) = M(SL(n, q)) = 1.  The same diagram 
shows that 

SL(n, q) ⊗ SL(n, q)  (SL(n, q))′  SL(n, q). 

(ii) According to Corollary 2.3, SL(n, q) is a covering 
group of PSL(n, q). Since PSL(n, q) is perfect, this 
covering group is the nonabelian tensor square of PSL(n, 
q), that is,  

PSL(n, q) ⊗ PSL(n, q)  (P SL(n, q))
*
   SL(n, q). 

 
 

Proof of Theorem 1.2 
 
Let �q be a finite field with q elements, |�q| > 4; 
(i) Since Sp(2n, q) is a perfect group and M(Sp(2n, q)) = 
1, then �(G

ab
) = 1.  Thus the diagram in Figure 1.1  

implies that J2(Sp(2n, q)) = M(Sp(2n, q)) = 1. Therefore, 
the same diagram shows that 

Sp(2n, q) ⊗ Sp(2n, q)  (Sp(2n, q))′ Sp(2n, q).  

(ii) As we know PSp(2n, q) is a perfect group and by 
Corollary  2.3, Sp(2n, q) is a covering group of PSp(2n, 
q). Therefore, 

PSp(2n, q) ⊗ PSp(2n, q)  (PSp(2n, q))
*

Sp(2n, q). 

It is clear that special linear groups and symplectic 
groups are not capable, but projective special linear 
groups and projective symplectic groups are. The 
following corollary can be obtained easily. 
Corollary 3.3:  Let �q be a finite field with q elements, 
|�q| > 4 with SL(2, 9) excluded and G a projective special  
linear groups PSL(n, q) or projective symplectic  groups 
PSp(2n, q). Then Z

ᴧ
(G) = Z

*
(G) = 1. 



 

 

5264           Sci. Res. Essays 
 
 
 
REFERENCES 
 
Beyl FR, Felgner U, Schmid P (1979). On Groups Occurring as Center 

Factor  Groups. J. Algebra, 61: 161-177. 
Brown R, Johnson DL, Robertson EF (1987).  Some computations of 

nonabelian  tensor products of groups. J. Algebra, 111: 177-202. 
Brown R, Loday JL (1984). Excision  homotopique en basse dimension. 

C. R. Acad.  Sci.  Paris Ser.  I  Math., 298: 353-356. 
Brown R, Loday JL (1987). Van Kampen  theorems for diagrams of 

spaces. Topology, 26: 311-335. 
Ellis G (1995). Tensor products and q-crossed modules. J.  Lond.  

Math. Soc., 51: 243-258. 
Erfanian  A, Rezaei A, Jafari SH (2008). Computing the nonabelian 

tensor square of general linear groups. Italian J. Pure Appl. Math., 
24: 203-210.  

Hall M, Senior JK (1964). The groups of order 2
n
, n ≤ 6. Macmillan. New 

York.  
Hannebauer  T (1990). On nonabelian tensor square of linear groups. 

Arch. Math., 55: 30–34. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
Huppert B (1967). Endliche Gruppen, Springer-Verlag, Berlin. 
Kappe LC (1999). Non abelian tensor products of groups. the 

commutator connection. Proceedings Groups St Andrews at Bath 
1997, Lecture Notes LMS, 261: 447-454.   

Karpilovsky G (1987). The Schur Multiplier. Clarendon Press, Oxford. 
Steinberg R (1968). Lectures on Chevalley  groups, Mimeographed 

lecture notes.  Yale  University  Notes, New Haven. 
Whitehead  JHC (1950).  A certain exact sequence. Ann. Math., 52: 51-

110. 
 


