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Thin plate splines are utilized in the construction of a non-oscillatory finite volume method for the 
inviscid Burgers’ equation which is a prototype nonlinear conservation law. To capture the sharp 
features that occur during numerical simulation, the method is implemented on an adaptive 
triangulation. An a posteriori error indicator is used to detect regions where the solution varies rapidly. 
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INTRODUCTION 
 
A wide range of problems in science and engineering are 
modeled with time-dependent hyperbolic conservation 
laws of which the inviscid Burgers’ equation is a typical 
example. When developing numerical methods for this 
class of problems, care must be taken so that the 
presence of a discontinuity in the numerical solution does 
not induce spurious oscillations that affect the overall 
quality of the approximation. To this end, in the past few 
decades, a large class of high-resolution methods has 
been developed to handle the discontinuous solutions 
that are typical of hyperbolic conservation laws, while 
providing high order convergence rates. 

Finite volume methods are well-established conserva-
tive methods for solving hyperbolic conservation laws. In 
general, the design of a finite volume method consists of 
two steps. In the first step, given initial conditions, con-
stant, linear or high order polynomials are defined within 
the control volume from the cell average values of the 
variables. The second step involves the interface fluxes 
of the control volume, from which the cell averages of the 
variables are then obtained for a solution at the next time 
level (Liu et al., 2007). 

Over the past few decades, the use of adaptive 
methods has become an integral part of many solvers for 
PDEs. Indeed, to enhance the  quality  of  the  numerical 

approximation and reduce the computational costs, espe-
cially for multidimensional problems, numerical methods 
may require the use of fine resolution over only some 
portions of the computational domain where the solution 
is singular (Kaser and Iske, 2005). 

Essentially non-oscillatory (ENO) and weighted essen-
tially non-oscillatory (WENO) reconstructions are used in 
combination with appropriate time stepping methods to 
obtain high order finite volume methods for hyperbolic 
conservation laws. The ENO method for one-dimensional 
conservation problems were developed by Harten et al. 
(1987). Two-dimensional extensions were proposed by 
Abgrall (1994), Harten and Chakravarthy (1991) and 
Sonar (1997). 

In the ENO scheme, one first selects for each cell a set 
of stencils, each comprising a set of neighboring cells. 
Then, for each stencil, a recovery polynomial is com-
puted, which interpolates given cell averages over the 
cells in the stencil. Amongst the different recovery 
polynomials, one for each stencil, the least oscillatory is 
selected by using a suitable oscillation indicator. 

WENO schemes were developed as an improvement of 
ENO schemes. The WENO schemes for one-dimensional 
conservation laws were first proposed by Liu et al. (1994) 
and Jiang and Shu (1996),  and  were  formulated  in  the  
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two-dimensional case by Friedrich (1998) and Hu and 
Shu (1999). In the WENO framework, the whole set of 
stencils and their corresponding polynomial 
reconstructions are used to construct a weighted sum of 
reconstruction polynomials to approximate the solution 
over a control volume of the finite volume method.  

In this paper, we will utilize a WENO reconstruction 
using thin plate splines, a type of polyharmonic spline, on 
an adaptive unstructured triangular mesh. Polyharmonic 
splines yield flexible and numerically stable 
reconstruction schemes.  

They are a class of radial basis functions which are 
powerful tools from multivariate scattered data approxi-
mation. Moreover, polyharmonic splines yield optimal 
reconstructions in their associated native Sobolev-type 
spaces called Beppo Levi spaces (Michelli and Rivlin, 
1977). The semi-norm of the Beppo Levi spaces gives 
rise to a natural choice for the required oscillation 
indicator. 

 
 
THE FINITE VOLUME METHOD 
 
The 2-dimensional scalar conservation law is given as 
 
 

                                                               (1) 
 

Where for Burgers’ equation  In this paper, we will 

solve equation (1) numerically on a computational domain Ω with 
polygonal boundary and for compact time interval  subject to 

suitable initial and boundary conditions. The function u denotes the 
unknown solution of equation (1). In addition, denotes the flux 

function, which we assume to be sufficiently smooth. For a 
nonlinear flux function, it is well known that the solution of the 
conservation law develops discontinuities, called shocks, in finite 
time.  

When solving equation (1), we will use the finite volume method 
on unstructured triangulations. To this end, the computational 
domain Ω is partitioned through a triangulation T containing finitely 
many closed triangles with disjoint interior and whose union is Ω. 
Moreover, the intersection of two distinct triangles in T may either 
be empty, or an edge in T, or a vertex in T. This means that T is a 
conforming triangulation of Ω (Hu and Shu, 1999). 

For any triangle , the semi-discrete finite volume method is 

given as 
 
 

 (2) 
 
 
Where 
 

 

 
 
 
 
is the cell average of u on the triangle  and time . In 

addition, n in equation (2) is the outward normal to the triangles 
boundary and |T| is the area of the triangle. 

The boundary ∂T of triangle  is given by the union of three 

edges which we give by , that is,  so that the 

line integral in equation (2) can be represented as 
 
 

                                  (3) 
 

Where nj is the outward normal for the edge . We discretize the 

integral on the right hand side of equation (3) by using a q-point 
Gaussian integration formula. To this end, suppose G1,. . .,Gq and 
w1,. . .,wq denote the Gaussian points and weights for the triangle 
edge . Then the Gaussian integration formula yields a high order 

approximation to the line integral (3) and so equation (2) becomes 
 
 

 
 
 
We then replace the terms  , by a numerical 

flux function to approximate the flux across the boundaries of the 
neighboring triangles. In this work we will use the Lax-Friedrichs 
flux given by 

 

                       
                                                                                                       (4) 
 
Where α is an upper bound for the flux function’s Jacobian matrix in 
the normal direction n. Moreover, for time t,  in equation (4) 

is the function value of the solution's representation over triangle T 
and  is the function value of the corresponding 

representation over the neighboring triangle that shares the edge 
with T. 

The finite volume method now requires us solving a system of 
equations 
 

                                        (5) 
 
Where 
 
 

 
 
 
The solution of this system of differential equations provides 
approximations to the cell averages for the triangle T at time t. 

The system (5) of ODEs is solved by using a suitable Strong 
Stability Preserving Runge-Kutta method (SSPRK). This family of 
Runge-Kutta   methods   was   first  introduced  by  Shu  and  Osher
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Table 1. Radial basis functions (RBFs) and their orders. 
 

RBF  Parameter Order 

Polyharmonic splines 
r
2k-d 

for d odd 

r
2k-d 

log(r)
 
for d even 

 

 

k 

k 

Gaussians exp(-r
2
)  0 

Multiquadrics (1+ r
2
)
ν 

  

Inverse multiquadrics (1+ r
2
)
ν
  0 

 
 
 
(1988). In this paper, we will use the third order SSP Runge-Kutta 
method given as 

 

 
 

 
 

 
 
Where denotes the time step. 

To obtain the high order spatial integration, a suitable 
reconstruction from current cell averages is required. Traditional 
methods are based on polynomial interpolation but in this paper we 
propose the use of polyharmonic splines, a class of radial basis 
functions, which we will describe in the next section. This is 
because, as observed by Abgrall (1994), polynomial reconstruction 
may lead to severe numerical instabilities. 
 
 
Reconstruction of polyharmonic splines from cell averages 
 
We will begin the discussion with the more general radial basis 
function method before turning to polyharmonic splines. 

Given a conforming triangulation T and a triangle T, consider a 
stencil 
 

 
 
of size n containing T. We now suppose that the triangles in the 
stencil S are associated with the functional  for , defined as 

 

 
 
Where for any the linear functional  is known as the cell 

average operator for the triangle T. 
Now for the given cell averages {  in any stencil 

,  we  consider  solving  the  reconstruction  problem 

                       (6) 
 
Where 
 

                    (7) 
 
 
is the form of the reconstruction s,  is a fixed radial basis 

function,  is the Euclidean norm on  and  is the space of 

all polynomials in d variables of degree at most k-1 (order k). In 
addition,  in equation (7) denotes the action of the linear 

functional  with respect to y, that is, 

  
 

 
 
 
The order K of P is determined by the order  of the radial 

basis function  shown in Table 1. 

The reconstruction s in equation (7) contains n+q parameters, n 
for its major part and q for its polynomial part, but at only n 
interpolation point’s conditions in equation (6). To eliminate the 
remaining q degrees of freedom, we solve equation (6) under the 
linear constraints 
 
 

               (8) 
 
 
This leads to the  linear system 

 
 

                                                     (9) 
 
 
Where ; 

   and        . 

 
 
We will now focus  on   reconstruction   with   polyharmonic   splines 
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which are due to Duchon (1977). In the polyharmonic spline 
reconstruction method, the radial basis function 

 in equation (7) is, for  with , 

given by 

  
 

 
  
 

Where d denotes the space dimension and k is the order of the 
basis function  

The important case for us is when . This leads us to 

the well-known thin plate splines  , which is a 

fundamental solution of the biharmonic equation. In this case, the 
reconstruction s in equation (7) has the form 
 
 

 
 

Where we let  and  be the coordinates of . 

 
An important feature of the polyharmonic spline method is their 
optimal reconstruction property in the Beppo Levi space 
 
 

 
 
 
which is equipped with the semi-norm 
 

 
 
This property says that for  the reconstruction  

in equation (7) minimizes the semi-norm  among all the 

interpolants in  satisfying equation (6) (Duchon, 1977). 

Thus, for thin plate splines, the semi-norm  of the 

corresponding Beppo-Levi space  is for and  

given by 

 

 
 
 
 

THE POLYHARMONIC SPLINE WENO RECONSTRUCTION 
 

Following Hu and Shu (1999), the WENO reconstruction is done as 
follows. For each triangle we select stencils  satisfying 

 for all i. For each stencil we compute a reconstruction 

 from  satisfying . In addition, for each 

reconstruction  

 
 
 
 

 we compute an oscillation indicator  which measures its 

smoothness. Fortunately for polyharmonic splines, their optimal 
recovery spaces, the Beppo-Levi spaces, provide a natural 
oscillation indicator. Thus, 
 
 

           (10) 
 
For each triangle we use the oscillation indicator to compute 

for each polyharmonic spline reconstruction with its 

corresponding weight  To compute these weights we first of all 

compute the values 
 
 

     (11) 
 
 
The non-negative weights of the WENO reconstruction are given as 
 

 
 
The polyharmonic spline WENO reconstruction is thus given as 
 
 

               (12) 
 
For any triangle the resulting reconstruction of s to u over T 

is used to replace u in the numerical flux (4), where  is 

replaced with  and  is replaced with  

 
 
MESH ADAPTATION 
 
We will now describe how the WENO method can be combined with 
mesh adaptation. This enables us optimize computing time as well 
as the use of storage. The design and implementation of any 
adaptive method is usually guided by a suitable error indicator, 
which is combined with refinement and coarsening strategies for 
the triangular cells. We will use thin plate spline interpolation in 
computing an error indicator for each triangle in a triangulation  as 

shown in Kaser and Iske (2005). We first of all assume that each 
cell average   is assigned to the barycenter  of the 

triangle T that is,  We then compute a thin plate spline 

interpolant of the form 
 
 

 
 
 

Where the barycenters  of the Moore neighbourhood  of 

T are regarded as the interpolation points, that is, s satisfies the 
interpolation condition. 
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Table 2. Results for the thin plate spline WENO method for Burgers’ equation. 
 

h       

1/8 7.9604 · 10
-2

 - 6.2258 · 10
-2

 - 1.3799 · 10
-1

 - 

1/16 1.8440 · 10
-2

 2.11 1.4125 · 10
-2

 2.14 3.5223 · 10
-2

 1.97 

1/32 5.3053 · 10
-3

 1.80 4.3031 · 10
-3

 1.72 9.9759 · 10
-2

 1.82 

1/64 1.3533 · 10
-3

 1.97 1.3173 · 10
-3

 1.71 3.2681 · 10
-2

 1.61 

 
 
 

 
 
 
By way of definition, for any triangle T in a conforming triangulation 
T, the set 
 
 

 
 
is called a Moore neighbourhood of T. Note that the Moore 
neighbourhood does not include T itself so that  

The error indicator is  The error indicator 
 estimates the local approximation behaviour in the 

neighbourhood of each triangle in . 

For any triangle , the error indicator  is small, whenever 

the approximation quality of  by s around  is good, whereas a 

high value  indicates that  is subject to strong variation locally 

around  Thus, the error indicator allows us to effectively locate 

discontinuities of u quite effectively. 
The error indicator is used to determine which portion of the 

computational mesh to refine and coarsen. The strategy we use in 
marking cells for refining or coarsening is summarized in the 
definition below. 

 
 
Definition 1 

 
Let , and let  be two threshold values 

satisfying . We say that a cell  is to be 

refined if and only if , and  is coarsened or derefined if 

and only if  In our numerical experiments, we will use 

 and  

A triangle  is refined by inserting its barycenter  as a new 

node of the triangulation . A cell is coarsened by removing its 

nodes from the triangulation. At each time step, after all the new 
nodes have been inserted and the nodes for coarsening have been 

removed, the triangulation  is updated by a local Delaunay re-

triangulation. This enables an adaptive modification of the current 
triangulation  yielding a modified triangulation    at the 

next time step. 

 

NUMERICAL EXAMPLES AND DISCUSSIONS 
 
Example 1 
 
We will first of all test the accuracy of the thin plate spline 
WENO method on the two-dimensional inviscid Burgers’ 
equation; 
 
 

                  (13) 
 
with the initial condition 
 
 

 
 
on the computational domain and 

with periodic boundary conditions. We carry out 
computations to time  The exact solution is 

obtained by Newton’s method from the relation 
 

 
 
We perform the numerical experiments on a sequence of 
triangular meshes of sizes . The results are 

shown in Table 2. 
We denote the numerical solution by  and the errors 

and corresponding convergence rates are computed as 
 
 

 
 
for the norms  . We implemented the 

method on seven stencils of size four and we
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Figure 1. Solution of Burgers' equation at times (A) t = 0, (B) t = 0.4, (C) t = 0.8, and (D) t = 1.2 using the thin plate spline WENO 
method. 

 
 
 
obtained a second order convergence. This agrees with 
the work of Iske (2003). 

 
 
Example 2 
 

In this example we look at the Burgers’ equation with the 
initial condition 

 

 

with R = 0.15, c = (-0.2, 0.2)
T
 on the computational 

domain . Even for smooth initial 

data, the solution of Burgers equation typically develops 
discontinuities corresponding to shocks. 

We start our simulation on a base mesh of 288 
triangles which we adapt to the initial conditions. The 
plots for the numerical solution are shown in Figure 1.  

They are displayed four different times: t = 0, t = 0.4, t = 
0.8 and t = 1.2. The corresponding meshes on which the 
numerical solution is obtained are given in Figure 2. 

We notice that the initial condition, which is a 
Gaussian-shaped   function  deforms,  as  the   simulation  
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(A) t = 0 

X1 

X2 

 (B) t = 0.4 

X1 

X2 

 

(C) t = 0.8 

X1 

X2 

 (D) t = 1.2 

X1 

X2 

 

C D 
 

 

Figure 2. Adapted meshes for Burgers' equation at times (A) t = 0, (B) t = 0.4, (C) t = 0.8, and (D) t = 1.2 using the 
thin plate spline WENO method. 

 
 
 

advances in time because of the nonlinearity of the 
Burgers' equation.  

The shock is propagated throughout the simulation 
along the diagonal of the computational domain, and by t 
= 0.8 a very strong shock is present. The shock is how-
ever well resolved by the adaptive mesh and in regions 
where the solution becomes smooth, the mesh is de-
refined. This confirms the effectiveness of our adaptive 
strategy. 
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