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Abstract
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve
the optimality condition of an unconstrained optimization, they only utilize gradient
information and have broader application scope. Under suitable conditions, the
developed methods are globally convergent. Numerical tests and comparisons with
the PRP+ conjugate gradient method only using gradient show that the methods are
efficient.
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1 Introduction
Consider the following problem of finding x ∈ Rn such that

g(x) = , ()

where g : Rn → Rn is continuous. Throughout this paper, problem () corresponds to the
first-order optimality condition of the unconstrained optimization

min f (x), ()

where f : Rn → R is the function whose gradient is g .
Conjugate gradient methods are very efficient in solving large scale problem (), if f is

known, due to their simple iteration and their low memory requirements. For any given
starting point x ∈ Rn, an iterative sequence {xk} is generated by the following form:

xk+ = xk + αkdk , ()

where αk is a step-length obtained by some line search, and dk is a search direction gen-
erated by

dk =

⎧
⎨

⎩

–gk , if k = ,

–gk + βkdk–, if k ≥ ,
()

where gk = g(xk). Different choices of the parameter βk in () lead to different nonlinear
conjugate gradient methods. The Fletcher-Reeves [], Hestenes-Stiefel [], Polak-Ribiére-
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Polyak [, ], Dai-Yuan [] and Liu-Storey [] formulas, and so on, are well-known formu-
las for βk . Particularly, conjugate gradient methods with the following (sufficient) descent
condition

gT
k dk ≤ –c‖gk‖, ∀k ≥ , c > , ()

are very important and are always more efficient.
Recently, Dai and Kou [] designed a family of conjugate gradient methods for the un-

constrained nonlinear problems, the corresponding search direction is close to the direc-
tion of the scaled memoryless BFGS method. More importantly, they satisfied the suf-
ficient descent condition (). Numerical experiments illustrated that the Dai-Kou type
conjugate gradient methods are more efficient than the Hager-Zhang type methods []
presented by Hager and Zhang [, ]. For other descent conjugate gradient methods pro-
posed by researchers, please see [, –] and the references therein.

For conjugate gradient methods, line search plays an important role for the global con-
vergence. In general, the weak Wolfe line search,

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk , ()

σ gT
k dk ≤ g(xk + αkdk)T dk , ()

where  < δ < σ < , was used to obtain the step-length αk . Hager and Zhang [] showed
that the first condition () may never be satisfied due to the existence of the numerical
errors (see also []). Thus, in order to avoid the numerical drawback of the weak Wolfe
line search, they proposed approximate Wolfe conditions [, ], which was a combination
of the weak Wolfe line search and

σ gT
k dk ≤ g(xk + αkdk)T dk ≤ (δ – )gT

k dk , ()

where  < δ < / and δ < σ < . Numerical tests showed that the combined line search
performed well, but there is no theory to guarantee the global convergence. Then Dai
and Kou proposed an improved Wolfe line search, that is, the step-length αk satisfied ()
and

f (xk + αkdk) ≤ f (xk) + min
{
ε
∣
∣gT

k dk
∣
∣, δαk

∣
∣gT

k dk
∣
∣ + ηk

}
, ()

where  < δ < σ < , ε >  is a constant parameter and {ηk} is a positive sequence satisfying
∑

k≥ ηk < +∞. With the improved Wolfe line search, the global convergence of Dai-Kou
type conjugate gradient methods was guaranteed.

Although the Hager-Zhang type and Dai-Kou type conjugate gradient methods are effi-
cient in solving problem (), during the implementation of the methods, function evalua-
tions are required. The goal of this paper is to solve problem () which is more general and
includes some nonlinear equations, such as boundary value problems []. So, we hope to
improve the Dai-Kou type conjugate gradient methods to directly solve problem () and re-
tain their high numerical efficiency. More recently, Dong [] embedded an Armijo-type
line search only using gradient into the PRP+ conjugate gradient method [] to solve
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problem (), the step-length αk satisfied

g(xk + αkdk)T dk +



max{–μk , }αk‖dk‖ ≤ σ gT
k dk , ()

where μk is a determined real number and  < σ < . The line search allowed small choices
of αk . In order to avoid this drawback, Dong [] considered the following line search:

σ gT
k dk ≤ g(xk + αkdk)T dk ≤ δgT

k dk , ()

where  < δ < σ < . Motivated by the work of [], we embed the line search () into
the Dai-Kou type conjugate gradient methods, then the improved methods of this paper
have several advantages. They have the positive features of the Dai-Kou type methods
for problem (), they can be used to solve the nonlinear optimization () only requiring
gradient information, and they can be used to solve some systems of nonlinear equations,
such as those arising in boundary value problems and others.

The rest of this paper is organized as follows. In the next section, we simply review
the Dai-Kou type conjugate gradient methods for unconstrained minimization and de-
velop them to solve problem (). In Section , we prove the global convergence of the
improved methods under some suitable conditions. In Section , we select two classes
of test problems to test the improved methods. One class is composed of test problems
from the CUTEst test environment, and the other class is composed of some boundary
value problems. The numerical performance is used to confirm their broader application
and to compare with that of the PRP+ conjugate gradient method in []. Finally, some
conclusions are given in Section .

2 Algorithm
In this section, we describe the details of the proposed methods. First, we briefly review the
Dai-Kou type conjugate gradient methods in the setting of unconstrained minimization
(). We have mentioned above that nonlinear conjugate gradient methods are identified
by the definitions of the parameter βk in (). For the family of Dai-Kou type conjugate
gradient methods, the parameter βk is defined as

βN
k (τk–) = max

{

βk(τk–),η
gT

k dk–

‖dk–‖

}

. ()

Here,

βk(τk–) =
gT

k yk–

dT
k–yk–

–
(

τk– +
‖yk–‖

sT
k–yk–

–
sT

k–yk–

‖sk–‖

)
gT

k sk–

dT
k–yk–

, ()

where yk– = gk – gk–, sk– = αk–dk– = xk – xk–, τk– is a parameter corresponding to the
scaling parameter in the scaled memoryless BFGS method, and η ∈ [, ). The parameters
βk in the Dai-Liao type methods [] and the Hager-Zhang type methods [] are special
cases of formula (). If τk– is specially defined as

τk– = λτA
k– + ( – λ)τB

k– ()
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with λ ∈ [, ] and

τA
k– =

‖yk–‖

sT
k–yk–

, ()

τB
k– =

sT
k–yk–

‖sk–‖ , ()

then the Dai-Kou type conjugate gradient methods satisfy the sufficient descent condi-
tion ().

The Dai-Kou type methods are very efficient in solving the unconstrained minimization,
so we hope they can be used to solve problem () only requiring gradient information. Now
we describe the improved methods in detail.

Algorithm .

Step . Choose x ∈ Rn, constants σ ∈ (, ), δ ∈ (,σ ), λ ∈ [, ], η ∈ [, ), ε > . Set g :=
g(x) and k := .

Step . If ‖gk‖∞ ≤ ε, then stop.
Step . Generate the search direction dk by () with βk from (), where τk– is defined

by ().
Step . Find αk such that condition () holds, then compute the new iterate xk+ = xk +

αkdk . Set k := k +  and go to Step .

In Step , the step-length αk is determined following the inexact line search strategies
of Algorithm . in []. Detailed steps are described in the following line search algo-
rithm.

Algorithm .

Step . Set u =  and v = +∞. Choose α > . Set j := .
Step . If α does not satisfy

g(xk + αdk)T dk ≤ δgT
k dk ,

then set j:=j+, and go to Step . If α does not satisfy

σ gT
k dk ≤ g(xk + αdk)T dk ,

then set j := j + , and go to Step . Otherwise, set αk := α, and return.
Step . Set v = α, α = (u + v)/. Then go to Step .
Step . Set u = α, α = u. Then go to Step .

The choice of the initial step-length is important for a line search. For conjugate gradient
methods, it is important to make an initial guess of the step-length by utilizing the current
iterative information about the problem. So, in Algorithm ., we choose the initial step-
length α = /‖g‖ if k = , and α = αk–gT

k–dk–/yT
k–dk– if k ≥ .
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3 Convergence analysis
Assumption  Assume that f : Rn → R is bounded below, that is, f (x) > –∞ for all x ∈ Rn,
and f is continuously differentiable. Its gradient g : Rn → Rn is L-Lipschitz continuous,
that is, there exists a constant L >  such that

∥
∥g(x) – g(y)

∥
∥ ≤ L‖x – y‖, ∀x, y ∈ Rn. ()

Assumption  implies that there exists a positive constant γ̂ such that

∥
∥g(x)

∥
∥ ≤ γ̂ , ∀x ∈ Rn. ()

Lemma . Assume that g : Rn → Rn satisfies Assumption . If d = –g and dT
k–yk– 	= 

for all k ≥ , then

gT
k dk ≤ – min

{



,  – η

}

‖gk‖. ()

Proof Since d = –g, we have gT
 d = –‖g‖, which satisfies (). If

βN
k (τk–) =

gT
k yk–

dT
k–yk–

–
(

τk– +
‖yk–‖

sT
k–yk–

–
sT

k–yk–

‖sk–‖

)
gT

k sk–

dT
k–yk–

,

from Lemma . in [], we have the result that

gT
k dk ≤ –




‖gk‖.

And if

βN
k (τk–) = η

gT
k dk–

‖dk–‖ ,

it is easy to know that

gT
k dk ≤ –( – η)‖gk‖.

The proof is complete. �

Lemma . Suppose that f : Rn → R is bounded below along the ray {xk + αdk|α > }, its
gradient g is continuous, dk is a search direction at xk , and gT

k dk < . Then if  < δ < σ < ,
there exists αk >  satisfying the line search ().

Proof Define φ(α) = f (xk + αdk) and ψ(α) = f (xk) + αδgT
k dk . Since φ(α) is bounded below

for all α > ,  < δ <  and gT
k dk < , the functions φ(α) and ψ(α) must intersect at at least

one point. Let α∗
k >  be the smallest intersecting value of α, i.e.,

f
(
xk + α∗

k dk
)

= f (xk) + α∗
k δgT

k dk . ()
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Since f is continuously differentiable, by the mean value theorem, there exists αk ∈ (,α∗
k )

such that

f
(
xk + α∗

k dk
)

– f (xk) = α∗
k g(xk + αkdk)T dk . ()

By combining () and (), we obtain

δgT
k dk = g(xk + αkdk)T dk . ()

Furthermore,

σ gT
k dk ≤ g(xk + αkdk)T dk = δgT

k dk , ()

since  < δ < σ <  and gT
k dk < . �

Lemma . Assume that g : Rn → Rn is monotone on the interval {xk + αdk :  ≤ α ≤ αk},
where αk satisfies the line search (), then the following inequality holds:

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk , ()

where f : Rn → R is the function whose gradient is g .

Proof Since g is monotone on the interval {xk + αdk :  ≤ α ≤ αk}, then

(
g(xk + αkdk) – g(xk + αdk)

)T(
(xk + αkdk) – (xk + αdk)

) ≥ .

Since α ≤ αk , it is not difficult to get that

g(xk + αdk)T dk ≤ g(xk + αkdk)T dk ≤ δgT
k dk .

Applying this inequality to the following relation

f (xk + αkdk) = f (xk) +
∫ αk


g(xk + αdk)T dk dα

yields inequality (). �

Now, we state the Zoutendijk condition [] for the line search ().

Lemma . Assume that g : Rn → Rn satisfies Assumption . Consider any iterative
method in the form (), where dk is a descent direction and αk satisfies the line search (),
then

∑

k≥

(gT
k dk)

‖dk‖ < +∞. ()
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Proof It follows from the Cauchy-Schwarz inequality, the Lipschitz condition () and the
line search () that

(σ – )gT
k dk ≤ (gk+ – gk)T dk ≤ αkL‖dk‖. ()

Then we have

αk ≥  – σ

L
–gT

k dk

‖dk‖ . ()

The formula with () implies that

(gT
k dk)

‖dk‖ ≤ L
( – σ )δ

(
f (xk) – f (xk+)

)
. ()

Summing () over k and noting that f is bounded below, we have that the desired result
holds. �

Now we discus the convergence properties of Algorithm .. In the following, we will
prove that if the gradient g : Rn → Rn is μ-strongly monotone, that is, there exists a con-
stant μ >  such that

(
g(x) – g(y)

)T (x – y) ≥ μ‖x – y‖, ∀x, y ∈ Rn, ()

Algorithm . is globally convergent with limk→∞ ‖gk‖ = , and for more general gradient
g : Rn → Rn, Algorithm . is convergent in the sense that lim infk→∞ ‖gk‖ = .

Theorem . Assume that g : Rn → Rn satisfies Assumption  and is μ-strongly monotone.
The sequence {xk} is generated by Algorithm ., then

lim
k→∞

‖gk‖ = . ()

Proof It follows from () and () that

sT
k–yk– ≤ ‖sk–‖‖yk–‖ ≤ L‖sk–‖, ()

μ‖sk–‖ ≤ sT
k–yk–. ()

By () and (), it is easy to see that

sT
k–yk–

‖sk–‖ ≤ L, ()

‖yk–‖

sT
k–yk–

≤ L

μ
. ()

Then we have that

|τk–| ≤ ( – λ)
L

μ
+ λL.
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Consequently, we have that

∣
∣βk(τk–)

∣
∣ =

∣
∣
∣
∣

gT
k yk–

dT
k–yk–

–
(

τk– +
‖yk–‖

sT
k–yk–

–
sT

k–yk–

‖sk–‖

)
gT

k sk–

dT
k–yk–

∣
∣
∣
∣

≤
[

( – λ)L

μ +
( + λ)L

μ

] ‖gk‖
‖dk–‖ .

Furthermore,

∣
∣βN

k (τk–)
∣
∣ ≤ max

{
( – λ)L

μ +
( + λ)L

μ
,η

} ‖gk‖
‖dk–‖ .

Then

‖dk‖ =
∥
∥–gk + βN

k (τk–)dk–
∥
∥

≤ ‖gk‖ +
∣
∣βN

k (τk–)
∣
∣‖dk–‖

≤ ζ‖gk‖, ()

where ζ =  + max{ (–λ)L

μ + (+λ)L
μ

,η}.
By Lemmas . and ., we have that

∑

k≥

‖gk‖

‖dk‖ < ∞.

It follows from this and () that

∑

k≥

‖gk‖ < ∞,

which implies the desired result. �

Theorem . Assume that g : Rn → Rn satisfies Assumption . Then Algorithm . is con-
vergent in the sense that

lim inf
k→∞

‖gk‖ = . ()

Proof We prove the theorem by contradiction. Assume that both gk 	=  for all k and
lim infk→∞ ‖gk‖ > , then there must exist some γ >  such that

‖gk‖ ≥ γ , ∀k ≥ , ()

then dk 	= , otherwise Lemma . would imply gk = .
It follows from (), Lemma . and Lemma . that

γ 
∑

k≥


‖dk‖ ≤

∑

k≥

‖gk‖

‖dk‖
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and

∑

k≥

‖gk‖

‖dk‖ ≤
∑

k≥


γ 

‖gk‖

‖dk‖ ≤ 
γ c̄

∑

k≥

(gT
k dk)

‖dk‖ < ∞, ()

where c̄ = min{ 
 ,  – η}, then we have that

‖dk‖ → +∞. ()

This means that there exists a positive integer N , for all k ≥ N ,

βN
k (τk–) = βk(τk–)

=
gT

k yk–

dT
k–yk–

–
(

τk– +
‖yk–‖

sT
k–yk–

–
sT

k–yk–

‖sk–‖

)
gT

k sk–

dT
k–yk–

=
gT

k yk–

dT
k–yk–

–
(

( + λ)
‖yk–‖

sT
k–yk–

– λ
sT

k–yk–

‖sk–‖

)
gT

k sk–

dT
k–yk–

. ()

It follows from Lemma ., () and () that

dT
k–yk– ≥ –( – σ )gT

k–dk– ≥ c̄( – σ )γ . ()

It follows from (), (), (), (), () and the L-Lipschitz continuity of g that, for all
k ≥ N ,

∣
∣βN

k (τk–)
∣
∣ ≤ γ̂ ( + λ)

c̄( – σ )γ 

(

L +
L

μ

)

‖sk–‖. ()

Define uk = dk/‖dk‖, then similarly to the proof of Lemma . in [], we can get the result
that

‖uk – uk–‖ ≤ ( + η)
‖gk‖
‖dk‖ . ()

Then it follows from () and () that

∑

k≥

‖uk – uk–‖ < ∞. ()

From Assumption  and Lemma ., we know that the generated sequence {xk} is
bounded, then there exists some positive constant γ̄ such that

‖xk‖ ≤ γ̄ , ∀k ≥ . ()

By using inequalities (), () and (), we can get the desired result similarly to the proof
of items II and III of Theorem . in []. �

4 Numerical experiments
In this section, we did some numerical experiments to test the performance of the pro-
posed method and compared it with the PRP+ conjugate gradient method in []. All codes
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were written in Matlab and run on a notebook computer with an Intel(R) Core(TM) i-
U . GHz CPU, . GB of RAM and Linux operation system Ubuntu .. All
test problems were drawn from the CUTEst test library [, ] and the literature []. For
the test problems from the CUTEst test library, we particularly chose the unconstrained
optimization problems whose dimensions were at least . Different from the work in the
literature such as [, ], we solved them only using gradient information. In order to con-
firm the broader application scope of the proposed method, some boundary value prob-
lems were selected from []. See Chapter  in [] for the background of the boundary
value problems.

In practical implementations, the stopping criterion used was ‖gk‖∞ ≤ –. For the
proposed method in this paper, the values of σ and δ in the line search () were taken to
be . and ., respectively, λ = ., and η = .. For the PRP+ conjugate gradient, all
the initial values came from the reference [].

The numerical results are reported in Tables  and , where Name, Dim, Iter, Ng and
CPU represent the name of the test problem, the dimension, the number of iterations,
the number of gradient evaluations and the CPU time elapsed in seconds, respectively.
‘-’ means the method failed to achieve the prescribed accuracy when the number of itera-

Table 1 Numerical results for test problems from the CUTEst library

Name (Dim) Method Iter/Ng/CPU

ARGLINA (200) Dai_Kou 14/28/1.673e–02
PRP+ 13/25/2.309e–02

ARGLINB (200) Dai_Kou 22 /43/2.577e–02
PRP+ 47/93/6.121e–02

ARGLINC (200) Dai_Kou 22/43/2.420e–02
PRP+ 47/92/6.144e–02

BDQRTIC (500) Dai_Kou 118/264/3.731e–02
PRP+ 181/317/6.208e–02

BOX (10,000) Dai_Kou 30/100/1.662e–01
PRP+ 56/104/2.615e–01

BROWNAL (200) Dai_Kou 22/42/1.004e–02
PRP+ -/-/-

BROWNALE (200) Dai_Kou 1/1/9.500e–05
PRP+ 1/1/1.070e–04

BRYBND (5,000) Dai_Kou 24/34/3.827e–02
PRP+ 32/62/9.025e–02

CHAINWOO (4,000) Dai_Kou 223/361/2.337e–01
PRP+ 271/480/4.458e–01

CHNROSNB (50) Dai_Kou 344/548/3.404e–02
PRP+ 564/952/8.028e–02

CRAGGLVY (5,000) Dai_Kou 142/273/2.638e–01
PRP+ -/-/-

COSINE (1,000) Dai_Kou 9/22/6.495e–03
PRP+ 14/25/1.433e–02

CURLY10 (10,000) Dai_Kou -/-/-
PRP+ 20,040/39,984/6.169e+01

CURLY20 (10,000) Dai_Kou -/-/-
PRP+ 27,216/54,259/1.278e+02

DIXMAANA (3,000) Dai_Kou 10/12/5.625e–03
PRP+ 16/27/2.274e–02

DIXMAANB (3,000) Dai_Kou 10/12/5.704e–03
PRP+ 11/15/1.145e–02

DIXMAANC (3,000) Dai_Kou 12/15/6.271e–03
PRP+ 14/21/1.697e–02

DIXMAAND (3,000) Dai_Kou 14/17/1.011e–02
PRP+ 16/24/1.547e–02
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Table 1 (Continued)

Name (Dim) Method Iter/Ng/CPU

DIXMAANE (3,000) Dai_Kou 85/123/4.520e–02
PRP+ 80/152/8.792e–02

DIXMAANF (3,000) Dai_Kou 31/42/2.522e–02
PRP+ 30/41/4.214e–02

DIXMAANG (3,000) Dai_Kou 29/40/2.873e–02
PRP+ 27/35/2.557e–02

DIXMAANH (3,000) Dai_Kou 28/37/1.468e–02
PRP+ 26/34/2.635e–02

DIXMAANI (3,000) Dai_Kou 124/186/6.319e–02
PRP+ 124/239/1.124e–01

DIXMAANJ (3,000) Dai_Kou 36/52/2.502e–02
PRP+ 31/43/3.019e–02

DIXMAANK (3,000) Dai_Kou 34/48/2.063e–02
PRP+ 28/37/2.864e–02

DIXMAANL (3,000) Dai_Kou 29/40/1.661e–02
PRP+ 30/40/3.369e–02

DIXMAANM (3,000) Dai_Kou 104/154/6.135e–02
PRP+ 157/305/1.407e–01

DIXMAANN (3,000) Dai_Kou 63/93/3.813e–02
PRP+ 98/164/8.303e–02

DIXMAANO (3,000) Dai_Kou 59/86/2.737e–02
PRP+ 80/130/7.730e–02

DIXMAANP (3,000) Dai_Kou 56/77/3.176e–02
PRP+ 72/111/6.704e–02

DIXON3DQ (10,000) Dai_Kou 620/945/5.557e–01
PRP+ 1,467/2,933/2.524e+00

DMN15103LS (99) Dai_Kou 119/206/1.417e+00
PRP+ 39/106/1.053e+00

DMN15333LS (99) Dai_Kou 80/171/1.143e+00
PRP+ -/-/-

DQDRTIC (5,000) Dai_Kou 53/100/6.594e–02
PRP+ 76/151/1.327e–01

DQRTIC (5,000) Dai_Kou 18/31/1.109e–02
PRP+ 25/25/2.123e–02

EDENSCH (1,000) Dai_Kou 28/43/1.159e–02
PRP+ 31/51/1.590e–02

EG2 (1,000) Dai_Kou 19/37/9.933e–03
PRP+ 32/58/2.803e–02

EIGENALS (2,550) Dai_Kou 24,758/37,853/2.181e+02
PRP+ 21,640/41,892/3.618e+02

ENGVAL1 (1,000) Dai_Kou 25/35/6.147e–03
PRP+ 20/28/1.253e–02

ERRINROS (50) Dai_Kou 111/171 /1.860e–02
PRP+ 25,995/48,312/3.756e+00

ERRINRSM (50) Dai_Kou 419/805/4.634e–02
PRP+ -/-/-

EXTROSNB (1,000) Dai_Kou 652/1,063/1.300e–01
PRP+ 906/1,611/2.639e–01

FLETBV3M (5,000) Dai_Kou 115/263/4.331e–01
PRP+ 33/61/1.482e–01

FLETCBV2 (5,000) Dai_Kou 1/1/1.099e–03
PRP+ 1/1/1.283e–03

FMINSRF2 (5,625) Dai_Kou 251/386/2.966e–01
PRP+ 338/567/6.821e–01

FREUROTH (5,000) Dai_Kou 191/331 /2.437e–01
PRP+ 75/133/1.523e–01

GENHUMPS (5,000) Dai_Kou 9,378/20,870/3.155e+01
PRP+ 10,235/17,320/3.504e+01

GENROSE (1,000) Dai_Kou 3,054/4,706/7.083e–01
PRP+ 4,947/8,388/1.792e+00

HYDC20LS (99) Dai_Kou 2,541/3,952/4.016e–01
PRP+ -/-/-
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Table 1 (Continued)

Name (Dim) Method Iter/Ng/CPU

INDEF (5,000) Dai_Kou -/-/-
PRP+ -/-/-

INDEFM (1,000) Dai_Kou -/-/-
PRP+ 628/1,271/5.722e–01

JIMACK (3,549) Dai_Kou 716/1,098/4.231e+01
PRP+ 401/725/4.284e+01

LIARWHD (5,000) Dai_Kou 50/150/8.031e–02
PRP+ 124/223/1.945e–01

MANCINO (100) Dai_Kou 8/17/5.880e–02
PRP+ 31/59/2.788e–01

MODBEALE (10,000) Dai_Kou 371/738/1.879e+00
PRP+ -/-/-

MOREBV (5,000) Dai_Kou 1/1/5.170e–04
PRP+ 1/1/7.230e–04

MSQRTALS (1,024) Dai_Kou 749/1,148/1.534e+00
PRP+ 520/969/1.854e+00

MSQRTBLS (1,024) Dai_Kou 783/1,196/1.639e+00
PRP+ 681/1279/2.391e+00

NCB20 (5,010) Dai_Kou 365/688/1.466e+00
PRP+ 148/248/8.941e–01

NCB20B (5,000) Dai_Kou 98/172/3.661e–01
PRP+ 77/131/4.434e–01

NONCVXU2 (5,000) Dai_Kou 1,159/1,751/1.945e+00
PRP+ 4,582/8,610/1.396e+01

NONCVXUN (5,000) Dai_Kou 1,247/1,887/2.110e+00
PRP+ 9,929/18,942/3.063e+01

NONDIA (5,000) Dai_Kou 13/23/1.189e–02
PRP+ 54/103/8.099e–02

NONDQUAR (5,000) Dai_Kou 66/129/5.082e–02
PRP+ 139/202/1.238e–01

OSCIGRAD (10,000) Dai_Kou 31/44/5.616e–02
PRP+ -/-/-

OSCIPATH (500) Dai_Kou 30/78/6.678e–03
PRP+ -/-/-

PENALTY1 (1,000) Dai_Kou 18/28/4.520e–03
PRP+ -/-/-

PENALTY2 (200) Dai_Kou 112/164 /2.145e–02
PRP+ 173/304/5.560e–02

PENALTY3 (200) Dai_Kou -/-/-
PRP+ -/-/-

POWELLSG (5,000) Dai_Kou 118/225/7.709e–02
PRP+ 147/260/1.233e–01

POWER (10,000) Dai_Kou 22/25/1.965e–02
PRP+ -/-/-

QUARTC (5,000) Dai_Kou 18/31/9.852e–03
PRP+ 25/25/2.080e–02

SCHMVETT (5,000) Dai_Kou 38/68/1.145e–01
PRP+ 33/63/1.478e–01

SENSORS (100) Dai_Kou -/-/-
PRP+ 32/65/4.099e–01

SINQUAD (5,000) Dai_Kou 117/270/2.988e–01
PRP+ 182/342/5.408e–01

SPARSINE (5,000) Dai_Kou 875/1348/1.708e+00
PRP+ -/-/-

SPARSQUR (10,000) Dai_Kou 21/22/4.845e–02
PRP+ 16/16/6.262e–02

SPMSRTLS (4,999) Dai_Kou 136/219/1.742e–01
PRP+ 161/278/3.338e–01

SROSENBR (5,000) Dai_Kou 26/63/2.904e–02
PRP+ 33/57/4.532e–02

SSBRYBND (5,000) Dai_Kou 6,337/9,751/9.184e+00
PRP+ -/-/-
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Table 1 (Continued)

Name (Dim) Method Iter/Ng/CPU

SSCOSINE (5,000) Dai_Kou -/-/-
PRP+ -/-/-

TESTQUAD (5,000) Dai_Kou 5,068/7,734/1.948e+00
PRP+ 1,624/3,247/9.661e–01

TOINTGOR (50) Dai_Kou 131/195/1.998e–02
PRP+ 105/180/2.060e–02

TOINTGSS (5,000) Dai_Kou 18/37/2.997e–02
PRP+ 14/27/2.830e–02

TOINTPSP (50) Dai_Kou 142/268/2.158e–02
PRP+ 115/194/2.190e–02

TOINTQOR (50) Dai_Kou 43/64/7.463e–03
PRP+ 41/81/9.627e–03

TQUARTIC (5,000) Dai_Kou 35/103/4.848e–02
PRP+ 68/120/7.646e–02

TRIDIA (5,000) Dai_Kou 1,633/2,491/7.701e–01
PRP+ 628/1,255/5.693e–01

VARDIM (200) Dai_Kou 18/18/1.765e–03
PRP+ -/-/-

VAREIGVL (50) Dai_Kou 19/29/4.227e–03
PRP+ 23/39/6.727e–03

WOODS (4,000) Dai_Kou 36/67/3.083e–02
PRP+ 22/28/2.143e–02

Table 2 Numerical results for some boundary value problems

Name (Dim) Method Iter/Ng/CPU

Function2 (10,000) Dai_Kou 12/27/1.266e–02
PRP+ 12/23/1.529e–02

Function6 (10,000) Dai_Kou 1/1/5.010e–04
PRP+ 1/1/4.399e–04

Function8 (10,000) Dai_Kou 12/16/4.678e–02
PRP+ 10/17/7.151e–02

Function12 (10,000) Dai_Kou 10/21/1.206e–02
PRP+ 10/19/1.227e–02

Function13 (10,000) Dai_Kou 222/330/2.044e–01
PRP+ 346/691/5.704e–01

Function14 (10,000) Dai_Kou 12/17/4.554e–02
PRP+ 9/11/4.912e–02

Function18 (10,000) Dai_Kou 1/1/8.588e–04
PRP+ 1/1/7.632e–04

Function19 (10,000) Dai_Kou 9/14/1.084e–02
PRP+ 8/12/1.551e–02

Function20 (10,000) Dai_Kou 1/1/7.464e–04
PRP+ 1/1/9.391e–04

Function21 (10,000) Dai_Kou 75/81/5.441e–02
PRP+ -/-/-

Function22 (10,000) Dai_Kou 13/21/1.300e–02
PRP+ 12/21/1.580e–02

Function24 (10,000) Dai_Kou 5/7/7.387e+00
PRP+ 6/10/1.609e+01

Function25 (10,000) Dai_Kou 12/22/2.008e–02
PRP+ 16/26/4.658e–02

Function26 (10,000) Dai_Kou 258/387/1.890e–01
PRP+ 345/689/4.391e–01

Function27 (10,000) Dai_Kou 143/212/1.285e–01
PRP+ 171/341/2.837e–01

Function29 (10,000) Dai_Kou 2,211/3,355/6.638e+00
PRP+ 8,150/16,299/4.633e+01

Function31 (10,000) Dai_Kou 1/1/5.388e–04
PRP+ 1/1/9.083e–04
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Figure 1 Performance profile for the test
problems from the CUTEst library based on the
number of iterations.

Figure 2 Performance profile for the test
problems from the CUTEst library based on the
number of gradient evaluations.

Figure 3 Performance profile for the test
problems from the CUTEst library based on the
CPU time.

Figure 4 Performance profile for some
boundary value problems based on the number
of iterations.
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Figure 5 Performance profile for some boundary
value problems based on the number of
gradient evaluations.

Figure 6 Performance profile for some boundary
value problems based on the CPU time.

tions exceeded , or the gradient function generated ‘NaN’. The performances of the
two methods were evaluated using the profiles of Dolan and Morè []. That is, we plotted
the fraction P of the test problems for which each of the two methods was within a factor τ .
In the performance profiles, the top curve represents the most robust one within the same
factor τ , and the left curve represents the fastest one to solve the same percentage of test
problems. Figures - show the performance profiles for test problems from the CUTEst
library relating to the number of iterations, the number of gradient evaluations and the
CPU time, respectively. Figures - show the performance profiles for some boundary
value problems. These figures reveal that, for the test problems, the proposed method
is more efficient and robust than the PRP+ conjugate gradient method. Consequently,
the improved method not only can solve problems only referring to gradient information
but also inherits the good numerical performance of the Dai-Kou type conjugate gradient
methods.

5 Conclusions
In this paper, we discussed the improved Dai-Kou type conjugate gradient methods only
using gradient information. They inherited the advantages of the Dai-Kou type conjugate
gradient methods for solving the unconstrained minimization problems, but had broader
application scope. Moreover, the problem considered in this paper can be viewed as the
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nonlinear equation

F(x) =  ()

with F = g . While the convergence analysis of this paper needed some assumptions of the
function f whose gradient is g , our further investigation is to avoid the function f and to
solve general nonlinear equation () using different strategies from those of this paper
and literature [–].
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