

Vol. 9(8), pp. 257-263, 30 April, 2014
DOI: 10.5897/SRE2014.5846
Article Number: 91C18ED44201
ISSN 1992-2248 © 2014
Copyright©2014
Author(s) retain the copyright of this article
http://www.academicjournals.org/SRE

 Scientific Research and Essays

Full Length Research Paper

Synthesis of Chebyshev-I filter using folding and
retiming

Nongmaithem Lalleima Chanu1* and Vimal Kant Pandey2

Department of ECE, M-Tech Digital Electronics, DIT Dehradun, India – 248009.

Received 25 February 2014; Accepted 9 April, 2014

In synthesizing Digital signal processing (DSP) architecture, maintaining low silicon area and high
performance becomes an important factor which can be achieved by various optimization techniques.
To achieve this, we employ two design optimization techniques: folding and retiming, which are applied
to 3rd order Chebyshev I high pass digital filter to minimize the functional units (adders, multipliers) and
to reduce the number of registers. Folding transformation is used to determine the control circuits in
DSP architecture by executing multiple algorithm operation on a single functional unit. Retiming using
register minimization is applied after folding, thereby reducing the numbers of multipliers and adders
from 7 to 1 and 6 to 1, respectively, without affecting the input and output characteristics of the filter.

Key words: Data flow graph (DFG), Chebyshev filter, folding, retiming, lifetime analysis.

INTRODUCTION

Tremendous growth of digital signal processing (DSP)
and its importance promotes advances in certain fields of
applications such as telecommunication, military,
instrumentation and control, image processing,
seismology, speech processing and biomedical signal
processing. DSP programs are executed repetitively for
an infinite number of times and they are assumed to be
non-terminating (Jackson et al., 2003; Salivahanan et al.,
2010). This can be exploited by designing more efficient
DSP system in terms of speed, area and power. The
strategy of designing an efficient filter also needs to
concentrate on reducing the number of functional units.

Advancement in technology and emerging trends
required DSP architecture with less space and power
consumption where the signal processing algorithm are

modified to accommodate the circuit. To achieve the
goals such as less area, high speed and low power
different algorithms are proposed such as pipelining,
folding, retiming etc. The transformation in which multiple
algorithm operations are time multiplexed to a single
functional unit is known as folding. This algorithm
provides a technique for designing control circuits for
hardware and helps to synthesize DSP architecture that
can be operated using single or multiple clocks. Folding
reduces the number of functional units; it may also lead
to the usage of large number of registers (Keshab, 2012;
Rajalakshmi et al., 2013). To avoid this, retiming
technique is used to compute the minimum number of
registers require to implement a folded DSP architecture
and to allocate data to these registers to provide

*Corresponding author. E-mail: lallei.chanu98@gmail.com
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution
License 4.0 International License

258 Sci. Res. Essay

 ܽ2 (n) ܽ3(n)

 ܽ1ሺ݊ሻ y(n)

 (a)

 2l+0 2l+1

 ܽ2ሺ݊ሻ ܽ3(n) 2l+0

 y(n)

 ܽ1 (n) 2l+1

 (b)

D

Figure 1. (a) A DSP program with 2 addition operations;
(b) A folded architecture where the 2 addition operations
are folded to a single pipelined adder.

 x(n) (1) y(n)

 D D 2D

(1) z(n) (2) a

 b

 (2)

(a)

x(n) (1) y(n)

 D D a 2D

(1) D 1ݖ(n) (2)

D b

 (2) (n)2ݖ

 (b)

Figure 2. Two versions of an IIR filter and the computation times of the nodes are in parentheses.

architecture with low silicon area (Rajapadhy and Kiaei,
1991). This design optimization platform is designed
using MATLAB/Simulink and Xilinx.

DESIGN OPTIMIZATION TECHNIQUE

Folding

This transformation technique helps to determine the control circuits
in DSP system in which multiple algorithm operations are time
multiplexed to a single functional unit which leads to the reduction
of functional units (such as adders, multipliers) resulting with low
silicon area. Figure 1a shows an example of a DSP program for
adding two samples where the operation computes

Y(n) = (n) + (n) + (n)

Here, one output sample is produced every 2 clock cycles and
hence the input is valid for 2 clock cycles (2l+0 and 2l+1, where l is
the iteration). In 0 cycle, (n)+ (n) is performed. In cycle

2l+1(second), (n)+ (n) is switch to the adder along with (n)
and the sum is stored in the unit cycle 2. Folded architecture in
which 2 addition operation are folded to a single pipelined adder is
shown in Figure 1(b).

Retiming

It is used to change locations of delay elements without changing
the input/output characteristic of the system which is illustrated
using Figure 2a and b. The filter 2(a) is described by

z(n) = ay(n-1)+by(n-2)
y(n) = z(n-1)+x(n)
 = ay(n-2)+by(n-3)+x(n)

And filter 2(b) is described by

(n) = ay(n-1)

(n) = by(n-2)

y(n) = (n-1)+ (n-1)+x(n)
 = ay(n-2)+by(n-3)+x(n)

These two filters are having the same input-output characteristics
and can be derived from one another with the help of retiming, even
though these filters are having delays at different locations.

Retiming can be used to increase the clock rate, to decrease the
number of registers and to reduce the power consumption of a
circuit (Keshab et al., 1992).

CHEBYSHEV FILTER

Type I Chebyshev filters are all-pole filters that exhibit equiripple
behavior in the passband and monotonic characteristic in the
stopband. By increasing the order N, the Chebyshev response
approximates the ideal response. It has the property that they
minimize the error between the idealized and the actual filter
characteristic over the range of the filter. This type of filter is named
after Pafnuty Chebyshev (John and Dimitris, 1996). The magnitude
response of Chebyshev type I filter can be expressed as:

|H(jΩ)| =

Where A is the filter gain, is the constant, is the 3dB cutoff

frequency. (x) is the order chebyshev polynomial defined as

(x) = cos (N), |x| (passband)

(x)= cos(N), |x| (stopband) and the chebyshev
polynomial is defined by the recursive formula:

 = 2x - , N > 1

Where = 1 and = x

DATA FLOW GRAPH (DFG)

The operations of DSP algorithm are assumed to be executed
repetitively. The DSP filter blocks needed to be optimized can be
represented by DFG due to its easier, efficient and compactness.
DFG is a directed graph G with sets of nodes/vertices V and sets of
edges E (Edward, 1991; Rakshi et al., 2010). Each node in the
DFG represents an algorithm operation and any arc U → V with
w(e) delays states that the output of the iteration of U is used to

execute the iteration of V. The arc with and without
delays represent the inter iteration and intra iteration precedence
constraint, respectively (John and Dimitris, 1996).

DFG is used to described hardware architecture which depends
on folding factor (N), number of operation folded to a single
functional unit. Hu and Hv denote the operators that execute the
operation U and V in the hardware DFG. Operations processed by
the operators form a folding set S. Each folding sets contains N
entries, some of which may be a null operations denoted as . A
delay or register elements in the hardware represents a storage
unit.

Chanu and Pandey 259

 (S1|4) (S2|6) b1 (S1|5)

1 7 2

3 (S1|3) 8 a1 9 b2 (S1|2) 4

 (S2|0) (S2|2)
 10 a2 b3 (S1|0) 6

 5 (S1|1) (S2|5) 11 (S2|4)

 b4

 a3 12 13 (S2|1)

 (S2|3)

 D

 D

 D

Figure 3. Direct form II, 3rd order Chebyshev I filter.

FOLDING EQUATIONS

Folding is a transformation technique used to reduce the silicon
area by time multiplexing many algorithm operations into single
functional units, such as adders and multipliers. It provides a
systematic process to design control circuit for hardware. Folding is
applied to the filter to reduce the chip area (Keshab, 2012).
Consider an edge e connecting the nodes U and V with w(e)
delays. Let the execution of iteration of the nodes U and V be
scheduled at the time units Nl+u and Nl+v, respectively, where u
and v are the folding orders of nodes U and V that satisfy 0≤u, v≤N-
1. Hu and Hv denote the functional unit that executes the nodes U
and V. If Hu is pipelined by Pu stages, the iteration of node U is

available at time unit Nl+u+Pu. The result of iteration of node U

is used by iteration of the node V which is executed
at N(l+w(e)) + v. Thus, the result must be stored for:

(U→V) = [N(l + w(e)) + v] - [Nl + Pu + u]
 = Nw(e) - Pu + v - u (1)

Time units, which is independent of l, a folding set is an ordered set
of N operations executed by the same functional unit which
depends on the folding order. The folding order of a node is the
block of time to which the node is scheduled to execute the
operation in the hardware. The folding sets of 3rd ordered
Chebyshev filter is shown in Figure 3 and are given by

 = S1= {1, 2, 3, 4, 5, 6, } and

= S2= {7, 8, 9, 10, 11, 12, 13}

Using the above folding sets, the filter is folded with folding factor 6
which means that the iteration period of the folding architecture is 6
units of time (u.t). Here, each node of the filter is executed once
every 6 u.t in the folded architecture that is the folded hardware
executes six operations. The folding set contains one null
operation in Position 6 during which no operation is performed by
the adder. The folding equations for each edge are given in Table 1

260 Sci. Res. Essay

Table 1. Folding equations.

Edge Folding equation

1 (1) = 6(0)-1+6-4 = 1

1 (1) = 6(1)-1+0-4 = 1

1 (1) = 6(1)-1+2-4 = 3

1 (1) = 6(2)-1+5-4 = 12

1 (1) = 6(2)-1+4-4 = 11

1 (1) = 6(3)-1+3-4 = 16

1 (1) = 6(3)-1+1-4 = 14

8 (8) = 6(0)-2+3-0 = 1

3 (3) = 6(0)-1+4-3 = 0

10 (10) = 6(0)-2+1-5 = -6

5 (5) = 6(0)-1+3-1 = 1

12 (12) = 6(0)-2+1-3 = -4

7 2 (7) = 6(0)-2+5-6 = -3

9 (9) = 6(0)-2+2-2 = -2

4 () = 6(0)-1+5-2 = 2

11 (11) = 6(0)-2+0-4 = -6

6 (6) = 6(0)-1+2-0 = 1

13 (13) = 6(0)-2+0-1 = -3

using Equation 1. Here, the equations are derived with an
assumption that addition and multiplication operations require 1 and
2 units of time, respectively.

RETIMING

Basically, retiming is also a transformation technique used to
change the location of the delay elements without affecting the
input and output characteristic of the circuit. Retiming has to be
performed before folding to forced causality of the system
(Leiserson et al., 1986; Monteiro et al., 1993). The negative values
of the above folding equations are made positive by using cutest
retiming; a special case of retiming which only affects the weights of
the edges of the cutest. It consist of adding k delays to each edge
from disconnected subgraphs G1 to G2 and removing k delays from
G2 to G1. Using retiming the weight of the edge U is computed
as:

= w(e)+r(V)-r(U) (2)

The retiming folding constraints are obtained using the relation

r(U)-r(V)≤ , (3)

Where ہxۂ is the floor of x, which is the largest integer less than or
equal to x. The retimed folding constraints are:

r(1)-r(7)≤0, r(1)-r(8)≤0, r(1)-r(9)≤0

r(1)-r(10)≤2, r(1)-r(11)≤2, r(1)-r(12)≤3,

r(1)-r(13)≤2, r(8)-r(3)≤0, r(3)-r(1)≤0,

r(10)-r(5)≤-1, r(5)-r(3)≤0, r(12)-r(5)≤-1,

r(7)-r(2)≤0, r(9)-r(4)≤0, r(4)-r(2)≤0,r(11)-r(6)≤-1,
r(6)-r(4)≤0, r(13)-r(6)≤0

From these folding constraints, we can form the constraint graph.
The inequalities can be solved using Floyd–Warshall algorithm and
the final constraints after applying algorithm are:

r(1)=0, r(2)=0,r(3)=0,r(4)=0,r(5)=0,r(6)=0,

 r(7)=0, r(8)=0, r(9)=0, r(10)=-1, r(11)=-1,

r (12)=-1, r(13)=0.

We can find the new retimed value using Equation 2. By applying
the folding equations the new delays can be obtained and then
cutest retiming is applied to have positive values from which the
architecture can be derived.

REGISTER MINIMIZATION TECHNIQUE

The main objective here is to minimize the architectural area by
minimizing the number of registers. The folded structure contains a
higher number of register because the intermediate results need to
be stored (Keshab, 2012; Parhi, 1992; Rajapadhy and Kiaei, 1991).
This minimization process follows two steps:

(a) Lifetime analysis table and lifetime chart.
(b) Data allocation using forward and backward register allocation.

Table 2. Lifetime table.

Node

1 5

2
3
4
5 2

6 1

7 11

8 2

9 8

10 7

11 6

12
13

In lifetime analysis, a data sample (variable) is live from the time it
is produced through the time it is consumed. It is dead, after the
variable is consumed. When the variable is live, it occupies one
register (Deepa and Vijaya, 2012). Here, the number of live
variables at each time unit is computed and the number of registers
needed by the folded architecture is computed. Lifetime table can
be constructed by considering the two parameters and their
relations:

 = u+ (Table 2).

= +max{ (U)}

The linear lifetime chart is shown in Figure 4, which graphically
represents the lifetime of each variable.

Here, the horizontal lines represent the clock cycle and vertical
lines represent the lifetime of a variable. With the help of this chart,
the resultant minimum number of registers is obtained as the
maximum number of live variable at any time step. The maximum
number of register is Max{0,0,1,1,2,3,4.4,3,4,4,5,5,5,5,4,5,5,6,6} =
6. After lifetime chart, the minimum number of register required to
implement the architecture is found to be 6 and data are allocated
to the registers. The registers are named as R1, R2, R3, R4, R5
and R6. This allocation scheme dictates how the variables are
assign to registers (Figure 5).

Folded architecture

The folded architecture with respect to the folding equations and
allocation table with a minimum of 6 registers is derived and shown
in Figure 6.

RESULTS

Tables 3 and 4 show the comparison of unfolded and
folded filter with respect to adders, multipliers and
number of registers, and the device utilization for both the
architecture. These architectures (unfolded and folded

Chanu and Pandey 261

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 #Live

 0 0

 1 0

 2 1

 3 1

 4 2

 5 3

 6 4

 7 4

 8 3

 9 4

 10 4

 11 5

 12 5

 13 5

 14 5

 15 4

 16 5

 17 5

 18 6

 19 6

Figure 4. Lifetime analysis chart.

with register minimization) are synthesized using Spartan
3A/3AN device. Here the number of functional units such
as adders and multipliers are reduced to 1 each, with 6
registers. In addition to these, the number of components
namely slices, slice flip flop, look up tables (LTU) and
input-output blocks (IOs), present in Spartan are reduced
due to the reduction in functional units.

Conclusion

This paper addresses the challenges and opportunity of
minimizing the filter architecture by the growing trend of
VLSI DSP systems. It has been demonstrated that the

262 Sci. Res. Essay

Cycle i/p R1 R2 R3 R4 R5 R6 o/p
0

1 6

2 5,8
6

6

3 4,1
3

5

 8

5,8

4 3,9
13

 4

3

5 1,1
2

9

13

4

4

6 11
 1

9

13

12

13

7 10 11
1

9

12

10,12

8 7
11

1

9

9

9
7

11

1

10
7

11

1

11
7

11

1

7

12
1

11

11

13
1

14
1

15
1

16
1

17
1

18
1

19
1

1

Figure 5. The allocation table.

Chebyshev I high pass filter architecture in terms of
required number of functional unit such as adder and
multiplier is substantially reduced from 6 adders to 1 and
7 multipliers to 1 by the folding and retiming with register
minimization techniques. This context describes an
effective and efficient heuristic and provides an optimized
environment for digital filter. Our experimental results
demonstrate that folding and retiming can significantly
reduce the silicon area and therefore providing flexibility
to the cost and effort of the designers.

 {2} OUT

 ܽ1 ܽ2 ܽ3 ܾ1 ܾ2 ܾ3	ܾ4

{0} {1} {4} {0} {5} {3} {6} {2} {4} {1}

 {1,2}

 {0,5}

 {3}

 {2,3} {0,6} {2} {3} {1,4} {5}

 {0,1,3,4,5} {0,1,2,4,5}

 {1,2, 3} {0,3,4}

 {5} {5} {4,5}

D
2D

Figure 6. Folded architecture for Chebyshev I filter.

Table 3. Comparison between unfolded and folded filter.

Architecture Adder Multiplier No. of register

Unfolded 6 7 3
Folded 1 1 6

Table 4. Comparison of unfolded and folded architecture.

Architecture Unfolded Folded

No. of Slices 112 9
No. of Slice flip flop 24 16
No. of 4 input LTUs 194 8
No. of IOs 76 68

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Deepa Y, Vijaya K (2012). High Speed Digital Filter using register

minimization retiming and Parallel Prefix Adders. IEEE 3rd
International Conference on EAIT. pp. 449-453.

Edward AL (1991). Consistency in Data Flow Graph. IEEE Trans.

Parallel Distrib. Syst. 2:225-235.
Jackson LB, Keiser JF, Donald HS (2003). An approach to

implementation of Digital Filters. IEEE Trans. Audio Electroacoust.
16(3):413-421. http://dx.doi.org/10.1109/TAU.1968.1162002

John GP Dimitris GM (1996). Digital Signal Processing Principles,
Algorithms and Applications. Pearson Education (3rd ed.), Chapters
7 and 8.

Keshab KP (2012). VLSI Digital Signal Processing Design and
Implementation. In Wiley Student (ed.), Chapters 4 and 5.

Keshab PK, Wang CY, Brown AP (1992). Synthesis of Control Circuits
in Folded Pipelined Architecture. IEEE J. Solid State Circuit.
27(1):29-43. http://dx.doi.org/10.1109/4.109555

Leiserson C, Rose F, Saxe J (1986). Optimizing Synchronous Circuitry
by Retiming. Third Caltech Conf. VLS I:87-116.

Monteiro DS, Ghosh A (1993). Retimimg Sequential Circuit for low
power. In Proc. IEEE Int. Conf. Comput. Aided Design. pp. 398-402.

Parhi KK (1992). Synthesis of DSP data format converted using lifetime
analysis and forward-backward register allocation. IEEE Trans.

Chanu and Pandey 263

Circuit Systems-II. 39(7):423-440.
http://dx.doi.org/10.1109/82.160168

Rajalakshmi K, Arumugam K, Priya MS (2013). Folded Architecture for
Digital Gammatone Filter used in Speech Processor of Cochlear
Implant. ETRI. J. 35(4).

Rajapadhy S, Kiaei S (1991). A folding transformation for VLSI IIR filter
array design. Int. Conf. Acoust. Speed Sig. Process. 9:1237-1240.

Rakshi S, Premananda BS, Mahir NM (2010). Synthesis of DSP System
using Data Flow Graph for silicon area reduction. IJCSIT. 1(5).337-
341.

Salivahanan S, Vallavaraj A, Gnanapriya C (2010). Digital Signal
Processing. (2nd ed.), Tata McGraw Hill.

