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PROBING METHODS FOR SADDLE-POINT PROBLEMS*

CHRIS SIEFERT! AND ERIC DE STURLER?

Abstract. Several Schur complement-based preconditioners have been proposed for solving (generalized)
saddle-point problems. We consider matrices where the Schur complement has rapid decay over some graph known
a priori. This occurs for many matrices arising from the discretization of systems of partial differential equations,
and this graph is then related to the mesh. We propose the use of probing methods to approximate these Schur com-
plements in preconditioners for saddle-point problems. We demonstrate these techniques for the block-diagonal and
constraint preconditioners proposed by [Murphy, Golub and Wathen *00], [de Sturler and Liesen ’04] and [Siefert
and de Sturler "05]. However, these techniques are applicable to many other preconditioners as well. We discuss the
implementation of probing methods, and we consider the application of those approximations in preconditioners for
Navier-Stokes problems and metal deformation problems. Finally, we study eigenvalue clustering for the precondi-
tioned matrices, and we present convergence and timing results for various problem sizes. These results demonstrate
the effectiveness of the proposed preconditioners with probing-based approximate Schur complements.
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1. Introduction. We are concerned with preconditioning problems of the form

z]_[A BT z | | f ]

(b A[y]_[c DH@/] [9 ’
where A € R™”, D € IR™*™, and here n > m. These problems are referred to as
(generalized) saddle-point problems. Specifically, we are concerned with problems where the
Schur complement matrix has rapid decay over some a priori known graph. These problems
can have a number of different characteristics. For some problems, especially those arising
in constrained optimization, D = 0. For others, such as those arising from stabilized finite
elements [2, 12, 24], D # 0, but ||D|| is small. For still others, the non-zero D arises
from another source, such as a very slight compressibility in metal deformation problems
[29]. We consider problems where D = 0 or ||D|| is small, so that our problems retain
the character of a (generalized) saddle-point problem. In addition, certain finite element
stabilization schemes yield B # C [1, 22] and [24, Sections 7.5 and 9.4], while many other
schemes yield B = C. We consider the problem and preconditioners in the generalized form,
B # C, mainly to emphasize the general applicability of the proposed methods. However,
the methods proposed in this paper are equally applicable to special cases, especially the
symmetric (B = C) case. A number of preconditioners for this class of problems have been
developed that employ a Schur complement [3, 9, 10, 18, 21], or some approximation thereof
[11, 13,19, 23,27]. Section 2 will present a summary of the convergence results for one such
family of preconditioners [27].

For some problems, an approximation to the Schur complement in the preconditioner
that yields good convergence is known, like the pressure mass matrix for the Navier-Stokes
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problem [28]. For other problems, however, no such approximation is known. Probing [4, 17]
provides a general, algebraic method for building matrix approximations. Based on the key
idea of exploiting decay properties in the underlying operator to efficiently capture large
matrix entries, it was used successfully to build narrowly banded approximations to Schur
complement matrices corresponding to 1-D interfaces arising in 2-D non-overlapping do-
main decomposition with an appropriate ordering of the unknowns [4]. Following the same
underlying idea, we can extend this approach to applications with a more complicated decay
structure. For these applications, we require approximations with a more general sparsity
pattern. Recently, graph coloring techniques used by the optimization community for sparse
Jacobian and Hessian approximations [6, 7, 15, 16, 20] have been adapted to allow the ap-
proximation of any matrix, so long as the sparsity pattern is known a priori [8].

We propose these techniques for approximating Schur complements that have entries
which decay with distance on some underlying graph. For example, a graph derived from
an underlying finite element mesh might be a candidate for these more advanced probing
methods. This relationship will be explained in more detail in Sections 3 and 4.

A potential problem is that the matrices formed by these more general probing techniques
may be expensive to factor. However, in previous experiments we found that replacing an ex-
act Schur complement by an incomplete factorization has a negligible effect on convergence
[27]. Therefore, we propose to use incomplete factorizations for these probing-based ap-
proximate Schur complements. This keeps the total cost of constructing and applying the
approximate Schur complement to O(m). Algorithmic details will be the focus of Section 5.

Approximating Schur complements by probing with general sparsity patterns combined
with incomplete factorizations of the resulting approximations gives cheap and effective pre-
conditioners with excellent performance. We demonstrate our preconditioners for two appli-
cations, the first in fluid flow and the second in metal deformation. Analysis of the eigenval-
ues of the preconditioned systems, as well as GMRES convergence results and timings will
be provided in Section 6. Section 7 summarizes our conclusions and presents directions for
future work.

2. Preconditioning Saddle-Point Problems. In [27], we developed two classes of pre-
conditioners for (1.1) and provided eigenvalue bounds for the corresponding preconditioned
systems that allow for the use of approximate Schur complements. Both classes of precondi-
tioners require the choice of a splitting of the (1,1) block of (1.1), namely A = F' — E, where
F is cheap to solve with. We can make such a splitting even in the case where A is singular

or ill-conditioned. Let S; = —(D — CF~1BT) be the Schur complement of the matrix
F BT
¢ D |’

We will refer to S7 as the exact Schur complement for this preconditioner. Let So be an
approximation to S1, and, let £ = Sy 16, — I. If we precondition from the left using the
block-diagonal preconditioner from [27], we get,

o F7t 0 A BT"][=z]_[I-T N\[=z]_TFf

’ 0 Sy ! C D y | M Q y | | gl
where T = F~'E, N = F~'BT, M = S, 'C and Q = S, ' D. We refer to this system as
the block-diagonally preconditioned system. The second preconditioned system, which will

be referred to as the related system, is derived from a further splitting of the block-diagonally
preconditioned system (2.1) as follows [27],

(2.2>[IX4T g][ﬂ:([z@ szfv—l]_[g g])[ﬂ:[ﬂ
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Note that,
23) I N 1" [I-NM N
‘ M MN-I| = M-I

Multiplying (2.2) by (2.3) yields

(2.4) [I_(I_;;M)T I_ivg][;:]:[f]

9

This is the related system for the fixed-point iteration associated with the splitting in (2.2).
Multiplying by this matrix is more expensive than with the block-diagonally preconditioned
matrix. It requires two additional applications of F~!, and one additional multiplication with
C and BT. However, the greatly improved eigenvalue clustering of (2.4) usually makes the
second preconditioner much cheaper in practice, and in general we recommend solving the
related system over solving the block-diagonally preconditioned system.

In [27], we also provide bounds that describe the eigenvalue clustering of the proposed
preconditioned systems. Eigenvalue clustering is a key factor in the convergence of Krylov
subspace methods, although for non-symmetric problems the eigenvector matrix also plays a
role. Tight clustering of the eigenvalues generally leads to fast convergence. We now briefly
summarize the eigenvalue bounds from [27].

For the related system (2.4), the eigenvalues are clustered around 1, and we have the
following bound [27, Theorem 4.2]. Let Ay be an eigenvalue of the matrix in (2.4). Then

2.5) Mg = 11 < /14 [INIBy/1+ M masx (1T ] 1€]l2)

Eigenvalue bounds for the block-diagonally preconditioned system (2.1) are discussed in de-
tail in [27]. For both preconditioned systems, the eigenvalue clustering depends on two key
factors, ||T']|2 and ||€]|2. As (2.5) shows, both of these must be small in order to assure good
clustering and rapid convergence. This means that the splitting of the (1,1) block, F', must be
chosen such that ||T||2 = ||F~1E||2 is small, and S must be a good approximation of the
Schur complement S;. There is little to be gained by making one approximation significantly
more accurate than the other, and our results in Section 6 will illustrate this.

3. Probing. The key idea behind the probing method in [4] is to efficiently capture
large entries in the Schur complement matrices arising from the 1-D interfaces in 2-D non-
overlapping domain decomposition methods without explicitly forming the Schur comple-
ments. For this isotropic diffusion application, with an appropriate ordering of the un-
knowns, the entries of the exact Schur complement decay with distance from the diagonal as
O(Ji — 5|72) (in the anisotropic case, things are slightly different, see [17]). Thus, a banded
approximation computed by probing approximates the large entries in the Schur complement
accurately and yields a good approximation. In fact, if all of the non-zero entries occur within
the chosen band width for probing, then probing is exact. If not, probing yields a banded
approximation that lumps matrix entries outside the band into the band of the approximate
matrix. In such a case, probing for a banded matrix will miss important entries outside the
band and pollute entries inside the band with contributions from entries outside the band. For
this reason, it is clear that to accurately capture the large entries for matrices with more gen-
eral decay patterns we need to derive or compute a good pattern to probe for. In this respect,
we note that Chan and Mathew [4] did not propose to use banded approximations per se;
however, they used probing for a problem where a banded approximation is very appropriate.

The probing method approximates a matrix using only matrix-vector multiplication. We
multiply a few carefully constructed vectors by the matrix, and then construct the approximate
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matrix from the results, based on an a priori chosen sparsity pattern. For example, consider
the tridiagonal matrix shown in Figure 3.1. We choose e; + e4, e2 + €5 and e3 as our probing
vectors and we multiply these by the matrix. The resulting product recovers all the non-zero
entries in the original matrix exactly. To approximate large entries in more general matrices,

ay b2 1 0 0 ay b2 0
C1 G2 b3 01 0 C1 Q2 b3
Cy a3 b4 0 0 1 = b4 Co a3

C3 Q4 b5 1 0 0 a4 b5 C3

C4 Q5 010 C4 Q5 0

FI1G. 3.1. Probing on a tridiagonal matrix using the vectors e1 + e4,e2 + es and e3.

we need to extend this approach to more general probing patterns. However, we will show
that probing can be applied successfully, so long as the entries of the matrix decay sufficiently
rapidly over some underlying graph.

As an example, consider the partial differential equation

(3.1 —Au+.25u=0

on the unit square with homogeneous Dirichlet boundary conditions. We discretize the prob-
lem with finite differences, using 15 grid points in each dimension. Figure 3.2 plots a typical
column of the inverse of the matrix from (3.1) over the finite difference grid. Let this be
the ¢—th column. We can see that this column has entries j that rapidly decay in magnitude
as the distance between nodes ¢ and j on the grid increases. Such a matrix can be approx-

0.35
0.3
0.25
0.2
0.15
0.1
0.05

15

FIG. 3.2. One column of the inverse of the matrix from (3.1) graphed over the underlying finite difference mesh.

imated accurately with a probing-based method as long as an appropriate sparsity pattern is
chosen and the right probing vectors are chosen. Following the original idea of capturing
the large entries, we can extend the probing approach using more general probing patterns
to capture more general decay patterns. This is even more important for problems in three
spatial dimensions and for systems of partial differential equations. A pictorial example of
the proposed extension to probing for matrices with more general decay patterns is shown in
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Figure 3.3 (see discussion below). To show that for more general matrices probing for more
general sparsity patterns is worth the extra work, we also include an approximation computed
by probing for a banded matrix in Figure 3.3. We refer to probing for banded matrices as
banded probing, and in the discussion below and Section 6 we include some examples of
banded probing mainly to motivate the additional work in our more general probing algo-
rithms. For completeness, we note that banded probing should not be confused with probing
as suggested by Chan and Mathew [4]. They suggested probing for large entries in Schur
complements arising in domain decomposition, and applied this idea to matrices that are well
approximated by a banded matrix.

The partial matrix estimation technique [8], which has been used in the estimation of
sparse Jacobians and Hessians under various names [0, 7, 15, 16, 20], provides a way for
approximating more general matrices. In the context of approximating Schur complements,
we shall refer to this method as structured probing. In this technique, we first choose a spar-
sity pattern, H € {0, 1}™*™, for the approximate matrix, based on some a priori knowledge
of the matrix we are approximating (see Section 4). Second, we use graph coloring tech-
niques to compute probing vectors such that a matrix of our chosen sparsity pattern would be
reconstructed exactly (see Section 5). Third, we multiply the probing vectors by the matrix.
Finally, we use the results of the matrix-vector multiplications to approximate the matrix with
the sparsity pattern, H. Algorithm 1 outlines the process for a given input matrix K.

Algorithm 1: K = Structured Probing(K € R™" H € {0,1}"*")

1: Compute a graph G derived from H [See Section 4].

2: Perform a graph coloring on G to generate a mapping ¢ : {1,...,n} = {1,...,p},
where p is the number of colors. The color for vertex 7 is given by ¢(i) [See Section
5].

3: Generate the matrix of probing vectors X € {0, 1}™*? such that

S

0 otherwise.

4: Compute W = KX.
5: Build the approximation K,

=4 Wiew ifHi;=1,
b 0 otherwise.

To illustrate Algorithm 1, we use probing to approximate the inverse of the matrix that
arises from discretizing the problem (3.1). Figure 3.3 shows a column of this inverse as
well as the corresponding columns in the approximations generated by banded and structured
probing. For structured probing, we assume a 13-pt stencil, which for our particular choice
of graph coloring, requires 15 vectors. For proper comparison, we also use 15 vectors for
banded probing. This serves to illustrate the effect of choosing an appropriate sparsity pattern
rather than using a banded pattern for a problem where it is not appropriate. The banded
reconstruction will only capture decay in one direction, corresponding to neighbors that are
“close” in the node numbering.

4. Choosing the Sparsity Pattern H. Choosing a good sparsity pattern, H, in Step
1 of Algorithm 1, requires some a priori knowledge, but not detailed knowledge, about the
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FIG. 3.3. A typical column of the inverse of the matrix from (3.1) and the approximations generated by banded
and structured probing with 15 vectors.

matrix K. If the “big” entries in K are in a certain pattern, we can choose the a priori sparsity
pattern accordingly. For many applications these large entries are related to locality on some
graph. If the problem is derived from a finite element discretization, the finite element mesh
or a subset thereof may provide such a graph. If such a graph is not available immediately
from the problem, we can often derive a suitable graph from the matrices involved at some
additional cost.

In our case we are interested in matrices K = (D — CF~'BT), where F — F is the
splitting of A in (1.1). If A is the discretization of an elliptic partial differential operator, we
can expect the entries of F~! to decay with distance over the graph of F or A. These same
principles have been exploited successfully in the computation of sparse approximate inverse
preconditioners [5]. If the matrices B, C, and D are also sparse, the entries of K will decay
with distance over the graph of (D — CFBT). Since D is explicitly known, we will focus on
the large entries of CF 1 BT,

Consider the (i, 5) entry of the matrix CF~1B”. For example, assume that C' and BT
have four non-zero entries in row ¢ (columns k1, k2, k3, k4) and column j (rows l1,2,13,14),
respectively, and that none of the entries is large in a relative sense. Let k = {k1, ko, k3, ks }
and l_ = {ll, l2, l3, l4} Then,

(B r u VJ

-1 T -1 (B T)l2 j

(4.1) (CF™"B")i;j = [Ciky Cisks Ciks Cikal(F™ )ixr (BT)IS’;
(B T) la)j

If MAX{k, ko ks ka} x {la ool la} |Fk_’ll| < €, a small threshold value, then |(CF~'BT), ;| will
also be small. This will occur if i and j are “far” from each other on the graph of CFBT . In
many cases, we have good estimates of the decay of F~!.

When information on the underlying discretization is available, the selection of the spar-
sity pattern is cheap. When it is not, the sparsity pattern of —(D — CFBT) or —(D —
CF*BT), for some k, can provide a sparsity pattern for H. Since we do not need the actual
entries of these matrices, in most cases the costs remain modest.

Figure 4.1 shows a staggered finite difference mesh. As D is typically very simple, we
consider D = 0 for our example in Figure 4.1. The x-variables in (1.1) are represented
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by blue x’s and the y-variables are represented by blue circles. We consider the y-variable
corresponding to node j and the jth column of CF~'B7, and represent it by a black node
in Figure 4.1. Black arrows point to the z-variables, [, such that (BT)l,j # 0. These are the
z-variables “affected” by the y-variable at node j. The neighboring z-variables are labeled
l1,...,14, as in (4.1). Blue arrows show the effect of the large entries of F1, pointing to
the z-variables k, such that |(F~1BT); ;| is large. Here we assume that all entries that are
further than one link away on the adjacency graph of F' are small. Red arrows show the effect
of C, pointing to the y-variables, 4, such that |(CF 1 BT);, ;| is large. Note that point iy is
“far” from j on the graph of CFBY, and therefore |(CF1B7);, ;| is small. Point iy is
“close” to j, and therefore [(CF*BT);, ;| may be large. In both cases, we have labeled
the neighboring xz-unknowns ki, ..., ks, as in (4.1). In a situation like this, we can derive
appropriate stencils for the Schur complement over the finite difference or finite element
mesh as the sparsity pattern for H. This is the approach we take in Section 6.

I, K, x «
o

I K, x «
o

x x
o

x x x k3 x k4 x
o o o L o

x x x k1 x k2 x

FIG. 4.1. Entries of the Schur complement affected by node j through BT (black arrows), F~'BT (blue
arrows), assuming that the entries of F~' decay sufficiently (become small) over the distance of one edge on
the adjacency graph and CF~'BT (red arrows). The value |(CF_lBT)i1,j| is guaranteed to be small and
[(CF~1BT);, ;| may be large.

5. Graphs and Colorings. The goal of our graph coloring is to ensure that any single
probing vector does not capture data from columns of H with overlapping nonzero patterns.
Methods known as substitution methods [8, 16] allow this condition to be relaxed. However,
they introduce other complications, and we will not consider them in this paper. With the
above condition in mind, we must consider two important issues. The first is which graph can
we use to generate vectors that meet this requirement. The second is how should we color
this graph.

A graph G = (V, E) is defined by a set of vertices V' and a set of edges E connecting
vertices. Let Ni(v;) represent the set of neighbors of vertex v;, namely {v; € V| (v;,v;) €
E}. Let Na(v;) represent the set of distance-2 neighbors of v;, namely the set of all v; € V/
such that (1) v; € Ni(v;) or (2) v; € Ni(vg) for some vy, € Ny (v;).
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We consider approximating the sparse matrix X with at most b non-zero entries per row,
using a matrix with the same sparsity as H € {0,1}"*". We discuss two different graphs
in Section 5.1, but they have the same vertex set, V' = {vy,...,vp}, corresponding to the n
unknowns or n rows/columns of the matrix. For each algorithm, let p be the number of colors
used.

Graph coloring defines a mapping ¢ : V. — {1,...,p} that assigns a color to each
vertex. This mapping is generated in Step 2 of Algorithm 1, and it is subsequently used in the
construction of the probing vectors. Various graph coloring algorithms are detailed in Section
5.2.

(From the perspective of efficiency, we would like these methods to have about the same
cost as the necessary matrix-vector multiplications. For a sparse matrix K with at most b
non-zero entries per row, the matrix-vector multiplications cost O(nbp) '. For all problems,
it is known that p > b+ 1 [16].

5.1. Choosing a Graph to Color. The first graph we consider is the adjacency graph
of H, also referred to as “the graph of H”, G1(H) = (V, E4), where (v;,v;) € E; if and
onlyif H; ; = 1or H;; = 17, 20]. A distance-1 coloring of G does not guarantee that our
condition on the probing vectors holds; however, a distance-2 coloring does. In a distance-2
coloring, Vv, € Na(v;), ¢(vg) # ¢(v;) [20]. If H is stored in a suitable sparse format,
generating the graph has negligible cost.

The second graph we consider is the column intersection graph, Go(H) = (V, E3),
where (v;,vj) € E, if and only if there is a k such that Hx; = 1 and Hy; = 1 [6].
For this graph, a distance-1 graph coloring satisfies our condition for the probing vectors.
This graph has O(nb?) edges, so it takes at least that much work to construct [15]. If the
graphs of both H and HT are available, one can color the column intersection graph without
forming it explicitly [6]. In general, coloring the column intersection graph takes more work
than coloring the adjacency graph [16]. Therefore, we will use the adjacency graph for the
experiments in Section 6.

5.2. Choosing the Coloring Algorithm. After we choose the graph to color, we must
choose an algorithm to compute the coloring. We present three such algorithms. Since we
use the adjacency graph of H (see Section 5.1), the algorithms discussed in this section will
be distance-2 colorings. The first and simplest choice is the greedy algorithm. Following the
description in [16], the greedy algorithm for distance-2 coloring is described in Algorithm
2. If §, is the average number of distance-2 neighbors for v € V, then this algorithm takes
O(ngg) time [16, Lemma 3.9].  The second algorithm, balanced coloring, as described in

Algorithm 2: ¢ = Greedy Distance-2 Coloring(G = (V, E))
1: Initialize forbiddenColors with some a & V.

2: Fori=1,...,n

3: For each colored vertex w € Na(v;)

4: forbiddenColors[¢(w)] = v;.

5 Set ¢(v;) = minimum c s.t. forbiddenColors[c] # v;.

[8], may yield a more efficient coloring. In this approach, we balance the number of nodes
assigned to each color. Our version of this heuristic algorithm assigns a color to each node
sequentially. It builds a list of forbidden colors for each node, and then chooses the valid

!n practice, of course, K is only available implicitly through matrix-vector products. The cost then depends on
how the required data is available and the implementation of the matrix-vector products.
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color that has been used to color the smallest number of nodes. Since we need at least as
many colors as the highest degree of any node plus one [15], we start the algorithm with
that many colors. We increase the number of colors when a node cannot be assigned any of
the existing colors. Algorithm 3 outlines this method for computing a balanced distance-2
coloring of a graph.  Computing the forbidden colors list for each node takes O(b?) time,

Algorithm 3: ¢ = Balanced Distance-2 Coloring(G = (V, E))

1: Set p = b+ 1, the initial number of colors to consider.

2: Sete; =0, forj =1,...,p, be the number of times each color has been used.
3: Initialize forbiddenColors with some a ¢ V.

4 Fori=1,...,n

5 For each colored vertex w € Ny (v;)

6 forbiddenColors[¢(w)] = v;.

7: Set colored = false and nuses = 0o.

8 Forj=1,...,p

9 if forbiddenColors[j] # v; and ¢; < nuses then
10: Set nuses = c¢;, colored = true and ¢(v;) = j.
11: if colored = false then

12: Set p(v;) =p+1,¢cp41 = 0.

13: p=p+1

14: Set Co(vi) = Co(v;) T 1.

and choosing the appropriate color takes O(p) time. Therefore, the overall time complexity
of doing a balanced distance-2 coloring is O(n(b* + p)).

The third algorithm we propose uses probing vectors with the same {0, 1} patterns as
banded probing [4], but picks the number of vectors such that we can exactly reconstruct the
desired sparsity pattern. We choose the number of colors p such that p is relatively prime to
all elements of the set { ¢ — j | 3k : Hp; = land Hy; = 1}. We refer to this method
as the prime divisor coloring. This algorithm implicitly performs a distance-2 coloring on
the adjacency graph of H, although we do not use the graph explicitly. Instead, we operate
directly on H. The algorithm is given as Algorithm 4. The great advantage of this approach

Algorithm 4: ¢ = Prime Divisor Distance-2 Coloring(H € {0,1}™")
1: Initialize illegalP with the empty set.

2: Fori=1,...,n

3: For j s.t. Hi,j ;é 0

4 Forks.t H;p #Z0Oand k > j
5 illegalP « (k — j)

6: Fori =2,....n
7

8

9

if Vj € illegalP, j mod ¢ # 0 then
p=1
break
10: Fore=1,...,n
11: Set ¢(v;) = imod p.

is that if H comes from a fixed stencil on a regular grid, we need only consider a single
“representative” row of the matrix (i.e., a row for a point away from the boundaries), and use
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that row to choose the number of colors p. For such problems, this algorithm takes O(p + b?)
work. However, this algorithm takes O(n(p + b%)) work for unstructured meshes. It can be
accelerated somewhat by only using prime numbers in Step 5 of Algorithm 4, but that does
not improve the asymptotic efficiency.

Finally, as noted in [6], graph coloring heuristics are sensitive to the ordering of the
nodes. A good ordering reduces the number of colors, and thus makes the underlying probing
process computationally less expensive. One strategy is to order the nodes so that all of
the high-degree vertices are numbered first. This is referred to as the largest-first ordering
(LFO) in [6]. More complicated orderings, where nodes are colored based on the topology of
particular subgraphs, are discussed in [6].

6. Results. We consider two applications for our numerical experiments. The first ap-
plication models a leaky lid-driven cavity using the Navier-Stokes equations. For this ap-
plication we use the MATLAB software of [12]. This particular problem has A # A7,
B = C and D # 0 in the notation of (1.1). To analyze the eigenvalue clustering and con-
vergence of the preconditioned systems with various choices for the approximate Schur com-
plement, we use a 16 x 16 grid with viscosity parameter v = 0.1 and stabilization parameter
B = 0.25. After removing the constant pressure mode, this system has 705 unknowns. For
the splitting of the (1,1) block, A = F' — E, we use one multi-grid V-cycle with three SOR-
Jacobi pre- and post-smoothing steps and relaxation parameter w = 0.25. We also consider
the effects of h-refinement on the preconditioned systems. We consider N x N grids with
N = 16,32,64,128. For all of these problems we order velocities in X-direction first, then
velocities in y-direction, and then the pressures; within each group of unknowns we use a
standard lexicographic ordering.

In addition to demonstrating the effectiveness of our preconditioners with approximate
Schur complements generated by probing, we use the Navier-Stokes problem to illustrate
the importance of using general probing and reconstruction techniques that capture the de-
cay pattern for matrices with complex decay patterns. Specifically, we compare structured
probing with banded probing as a cheap and simple alternative to focus on the role of the
sparsity pattern chosen for the approximate Schur complement matrix. We use the prime di-
visor method for graph coloring to isolate the role of this chosen sparsity pattern. In fact, this
method allows us to use the same probing vectors (X) for structured probing and for banded
probing; so, the only difference between the two methods is in the sparsity pattern that we use
for the construction of the approximate matrix. The resulting experiments demonstrate that
even using the same vectors as banded probing, reconstruction based on a more appropriate
sparsity pattern leads to much better eigenvalue clustering and convergence. This provides a
justification for the computational expense of the graph coloring. Furthermore, we examine
the use of incomplete factorizations (ILU(0)) for the approximate Schur complement matrices
generated by structured probing as a means of further reducing the cost of the preconditioners
(2.1) and (2.4).

The second application uses the modified Hart’s model [14] to model elastic, plastic,
anelastic, micro-plastic and micro-anelastic strain and their effects on the permanent defor-
mation of bent beams [29]. We first consider a small linear system with 6422 unknowns
that arises from a Newton iteration to solve the nonlinear problem at each timestep. For this
problem, we study the following structural splittings of the (1,1) block A: the diagonal of
A, a banded splitting of A with a semi-bandwidth of four, and the ILU(0) factorization of
A. In addition, we compare the convergence using an exact Schur complement and using
approximations from structured probing. We also use ILU(0) to factor the approximate Schur
complements generated by structured probing. We provide timing results for the iterations
with approximate Schur complements. The structured probing approximations were obtained
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with the distance-2 balanced coloring algorithm of [8]. For this problem we focus on GM-
RES convergence and wall-clock time. Finally, we consider the effects of h-refinement on
the convergence of the related system (2.4) using various algorithmic choices in computing
the structured probing approximations to the Schur complement. For all of these problems
we use a minimum bandwidth ordering.

Our experiments are run using our structured probing software library [26]. All the
graphs and coloring methods discussed above are included in the software package. A more
extensive C++ library (focusing on sparse Jacobians and Hessians) is under development by
Alex Pothen and his collaborators. We use GMRES as the iterative solver and we iterate until
we obtain a relative residual tolerance of 1e — 10.

6.1. Eigenvalue Clustering and Convergence for the Navier-Stokes Problem. We
first analyze the eigenvalue clustering and convergence for a small Navier-Stokes problem.
Figures 6.1(a) and 6.1(b) show the eigenvalue distributions for the related system (2.4) with
banded probing and with structured probing using 13 probing vectors. For scaling purposes,
we exclude two negative eigenvalues for the banded probing case at approximately (—73,0)
and (—113,0). We use a nine-point stencil on the element connectivity graph to define the
sparsity pattern H for structured probing (SP). The prime divisor method described in Section
5, yields a graph coloring requiring 13 vectors. The vectors used for structured probing
and banded probing are the same. The only difference between the two methods is in the
construction of the approximate Schur complement matrix.

Structured probing yields much better clustering than banded probing, especially near
the origin. Structured probing has only one small eigenvalue (about 0.01); the others are well
separated from zero. Banded probing has many eigenvalues clustering near the origin. This
leads to worse convergence behavior; see Figure 6.3(a).

We see similar results for the eigenvalues of the block-diagonally preconditioned system
(2.1) with banded and structured probing; see Figures 6.2(a) and 6.2(b). Both banded probing
and structured probing lead to one small eigenvalue (about 0.01), but structured probing yields
eigenvalue clusters much further away from the origin.

Figures 6.3(a) and 6.3(b) show the convergence of GMRES for the preconditioned sys-
tems. The difference between banded and structured probing is quite pronounced. For both
preconditioned systems, structured probing using a five-point stencil with seven vectors re-
sults in a lower iteration count than banded probing even with thirteen vectors. We also note
that using the related system (2.4) leads to significantly faster convergence than using the
block-diagonally preconditioned system (2.1) for all probing variants.

Figures 6.4(a) and 6.4(b) show the eigenvalues for the related system and block-diagonally
preconditioned system for structured probing with both five-point (seven vector) and nine-
point (thirteen vector) stencils. Note that, barring a few outliers, for both types of precon-
ditioners the eigenvalue clustering is significantly better for the nine-point stencil, especially
near the origin. Krylov-subspace methods tend to find and “remove” outlying eigenvalues
quickly. Therefore, these eigenvalues do not affect the convergence rate after a small number
of initial iterations. Thus, the significantly better eigenvalue clustering obtained using the
nine-point stencil leads to a significantly improved convergence rate for GMRES.

6.2. ILU(0) for the Approximate Schur Complement from Structured Probing. The
benefits of structured probing come at the cost of having an approximate Schur complement
that is more expensive to factor. For instance, if the chosen sparsity pattern looks similar to a
d-dimensional Laplacian (if A and hence F' are related to a Laplacian), the large bandwidth
can yield significant fill-in, making the exact factorization of the approximate Schur com-
plement matrix expensive to compute and apply. Therefore, we use an inexact factorization
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FIG. 6.1. Eigenvalues for the related system (2.4) derived from the Navier-Stokes problem with one V-cycle as
splitting of the (1,1) block and with approximate Schur complements from banded and structured probing with exact
factorizations.

of the approximate Schur complement to define S5 L. In practice, this leads to a negligi-
ble deterioration in convergence while reducing the overhead of applying structured probing
significantly. We use an ILU(0) factorization for this problem. For symmetric problems an
IC(0) factorization should be used. Since ILU(0) and IC(0) have linear cost in the number of
unknowns, the overall cost remains O(m).

Figure 6.5 shows the eigenvalue distributions for both types of preconditioned systems
with structured probing. We use a nine point stencil (13 vectors) and the exact as well as
the ILU(O) factorization of the approximate Schur complement. Figure 6.6 shows the con-
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FIG. 6.2. Eigenvalues for the block-diagonally preconditioned system (2.1) derived from the Navier-Stokes
problem with one V-cycle as splitting of the (1,1) block and approximate Schur complements using banded and
structured probing with exact factorizations.

vergence results for both types of preconditioned systems, using structured probing with 9
and with 13 vectors. Using ILU(0) instead of an exact factorization changes the eigenvalue
distribution slightly, but leaves the clustering essentially equivalent. The impact of such a
change on the convergence behavior is negligible. Given the significant difference in cost
between exact and inexact factorizations, using ILU(0) is more cost-effective than an exact
factorization.
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FI1G. 6.3. GMRES convergence for the Navier-Stokes problem with one V-cycle as splitting of the (1,1) block
and approximate Schur complements using banded and structured probing with exact factorizations.

6.3. Probing and h-refinement for the Navier-Stokes Problem. We consider the ef-
fect of h-refinement on the convergence of the related system (2.4). We vary the number
of elements from 16 x 16 to 128 x 128, with the largest system having 48, 641 unknowns.
As before, we use a single multigrid V-cycle as the splitting of the (1,1) block of (1.1). We
consider structured probing using 5, 9 and 13 point stencils to define the sparsity pattern, H,
for the approximate Schur complement. We compare the number of (GMRES) iterations with
those for banded probing using the same number of vectors as used for structured probing.
Table 6.1 shows the convergence results in terms of GMRES iterations.
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FIG. 6.4. Eigenvalues for the related system (2.4) and the block-diagonally preconditioned system (2.1) derived
from the Navier-Stokes problem with one V-cycle as splitting of the (1,1) block and approximate Schur complements
using structured probing with exact factorizations.

We see that the related system (2.4) with structured probing has mild dependence on
h = 1/N. This is true for each of the sparsity patterns we consider; however, note that the
increase in GMRES iterations slowly declines with increasing N. Probing for sparsity pat-
terns, H, in the Schur complement derived from discretization stencils (structured probing)
yields faster convergence than probing for banded patterns (banded probing). This is ex-
plained by the fact that the decay of F~! has a two-dimensional structure. Our results show
that the original ideas behind probing can be extended effectively to more general patterns.
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FIG. 6.5. Eigenvalues for the related system (2.4) and the block-diagonally preconditioned system (2.1)
derived from the Navier-Stokes problem with one V-cycle as splitting of the (1,1) block and approximate Schur
complements using structured probing (13 vectors) with exact and ILU(0) factorizations.

Even though the test problems have only modest convection, the banded Schur complement
approximations are progressively worse conditioned, culminating in some numerically singu-
lar approximations for the largest problems. The approximations based on a 2-D stencil are
significantly better conditioned and lead to rapid GMRES convergence.

6.4. Computational Results for Metal Deformation. The metal deformation problem
arises from a finite element mesh, where the second set of variables corresponds to nodes in
the center of the elements. For structured probing, we approximate the Schur complement
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FIG. 6.6. GMRES convergence for the Navier-Stokes problem with one V-cycle as the splitting of the (1,1) block
and with an inexact Schur complement based on structured probing, using both exact and ILU(0) factorizations.

with a matrix that has the sparsity pattern, H, of the element-element connectivity graph of
the original problem. Using a distance-2 balanced coloring on the adjacency graph of H, we
can build our approximation using only nine probing vectors.

We present GMRES convergence results and wall clock time for a single linear system
from the metal deformation problem in Figures 6.7(a) and 6.7(b), respectively. For the con-
vergence results in Figure 6.7(a), we use an ILU(0) splitting of the (1,1) block, A, and we
compare the convergence for the exact Schur complement, and an approximate Schur com-
plement using structured probing with both exact and ILU(0) factorizations. Figure 6.7(a)
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TABLE 6.1
Number of GMRES iterations for the related system (2.4) using multigrid V-Cyles as a splitting of the (1,1)
block and structured probing with an ILU(0) factorization or banded probing to approximate the Schur complement,
for various levels of h-refinement in lid-driven cavity problem modelled with Navier-Stokes. Asterisks (x) indicate
very ill-conditioned preconditioners.

Structured Probing H Stencil || Banded Probing w/nvecs equal to
Splitting N || 5-pt | 9-pt | 13-pt 5-pt | 9-pt | 13-pt
16 || 75 36 32 107 | 71 107
1 V-Cycle 32 || 103 | 55 49 140 | 111 272
64 || 122 | 79 71 542 | 169 542
128 || 134 | 96 90 * 1307 *

shows that for this problem, probing-based approximations to the Schur complement lead to
effective preconditioners. In addition, using an incomplete decomposition of the approximate
Schur complement (by structured probing) does not lead to a deterioration of convergence.
Figure 6.7(b) shows that use of an inexact factorization with structured probing saves approx-
imately 5% of execution time.

Next, we consider how our preconditioners perform with respect to h-refinement. We
refine the metal deformation problem by multiplying the number of variables per dimension
by 2, 3 and 4, which yields systems up to 273,258 unknowns. For this study, we consider three
splittings for the (1,1) block, the ILU(O) splitting previously discussed, smoothed-aggregation
algebraic multigrid (AMG) using ML [25] and the exact splitting 7' = A. For ML, we do two
V-cycles with a single step of SOR-Jacobi as pre- and post-smoother and weighting parameter
w = 0.5. We also set the aggregation threshold to 0.1, meaning that entries are dropped
in the coarsening phase if |A4;;| < 0.14/|A4;;A;;|. All other parameters, including the
uncoupled coarsening technique, are set to the ML defaults. For each of these problems, we
use structured probing with the prime divisor, balanced and greedy colorings and an ILU(0)
factorization of the approximate Schur complement.

Table 6.2 shows the number of GMRES iterations necessary to solve the related system
(2.4) to a tolerance of 1e — 10. Table 6.3 shows the corresponding timing results. The timing
results represent a minimum over five runs on a machine with a 2.6GHz Intel Xeon CPU and
2 GB of RAM running version 2.6.8 of the Linux kernel.

It is well-known that elastic-plastic problems are difficult to precondition. Therefore, it is
not surprising that ILU(0) and AMG are not particularly effective splittings for this problem.
As stated in (2.5), the effectiveness of the overall preconditioner is limited by the accuracy
of both the splitting and the approximate Schur complement. If the splitting is poor, a better
approximation to the Schur complement is unlikely to yield a significant improvement in
convergence. We see this effect in Table 6.2. The difference between the prime divisor
coloring, which uses more vectors than the balanced or greedy colorings for a given stencil,
is most pronounced when we use the exact splitting, F' = A.

7. Conclusions and Future Work. We have shown that probing provides an effective
technique for approximating the Schur complement matrices that arise in saddle point pre-
conditioners. The probing technique proposed by Chan and Mathew [4] for applied to 2-D
domain decomposition problems can be adapted to reconstruct exactly matrices of arbitrary
sparsity structure or to approximate matrices that have a suitable decay property relative to a
chosen sparsity structure. This makes probing a very powerful technique in preconditioning
saddle-point problems, if a good estimate of the probing pattern can be made a priori. The
results presented in this paper show the effectiveness of using structured probing with these
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FIG. 6.7. GMRES convergence and wall clock time for a single non-linear iteration of the metal deformation
problem for various probing-based inexact Schur complements in the related system (2.4) and for three different
splittings of the (1,1) block (ILU(0), banded matrix with semibandwidth 4, and diagonal).

preconditioners in terms of eigenvalue clustering, rate of convergence and execution time.

As future work, we seek to develop estimates for ||€||2 for structured probing methods.
We also seek to dynamically adapt the a priori chosen sparsity structure for structured prob-
ing. Furthermore, we plan to identify additional problems that yield decay properties that can
be exploited by structured probing, especially based on more algebraic criteria. We will also
work on developing an accurate eigenvalue analysis for systems preconditioned using struc-
tured probing. Finally, we intend to look at schemes for updating and reusing (generalized)
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TABLE 6.2
Number of GMRES iterations for the related system (2.4) using an ILU(0) or AMG splitting of the (1,1) block
and structured probing to approximate the Schur complement, for various levels of h-refinement on a single non-
linear iteration in the metal deformation problem. Dashes indicate insufficient memory to run that particular com-
bination.

Structured Probing Coloring
Splitting | # Unknowns || Prime Divisor | Balanced | Greedy
6422 18 32 25
Exact 39722 23 38 31
121466 25 34 35
273258 — — —
6422 219 230 225
ILU(0) 39722 432 477 478
121466 644 700 730
273258 — — —
6422 153 159 159
AMG 39722 215 227 227
121466 223 241 249
273258 266 285 307
TABLE 6.3

Wall-clock time (seconds) for the related system (2.4) using an ILU(0) or AMG splitting of the (1,1) block and
structured probing to approximate the Schur complement, for various levels of h-refinement on a single non-linear
iteration in the metal deformation problem. Dashes indicate insufficient memory to run that particular combination.

Structured Probing Coloring
Splitting | # Unknowns || Prime Divisor | Balanced | Greedy
6422 7.79¢e-01 1.07e+00 | 8.91e-01
Exact 39722 1.32e+01 1.68e+01 | 1.46e+01
121466 9.91e+01 1.03e+02 | 1.04e+02
273258 — — —
6422 4.09e+00 4.31e+00 | 4.22e+00
ILU(0) 39722 1.17e+02 1.40e+02 | 1.38e+02
121466 1.44e+03 9.89e+02 | 1.08e+03
273258 — — —
6422 | 8.87¢+00 ] 9.100+00 | 9.06e+00
AMG 39722 9.80e+01 1.03e+02 | 1.03e+02
121466 3.80e+02 4.09e+02 | 4.25e+02
273258 8.20e+02 9.12e+02 | 1.01e+03

saddle point preconditioners with probing-based inexact Schur complements.
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