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Introduction

The mammalian innate immune system is composed of phagocytes such as macrophages and

dendritic cells that serve as the first line of defense against microbial infections. These cells

express various pattern recognition receptors (PRRs) that recognize specific pathogen-associ-

ated molecular patterns (PAMPs) on the surface of or inside microorganisms [1]. PRRs such

as Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nucleotide-binding Oligo-

merization Domain (NOD)-like receptors (NLRs) have been widely studied in antimicrobial

immunity and homeostasis. These PRRs have also been implicated in antimycobacterial

immunity, with CLRs recently receiving considerable attention. CLRs are a large family of pro-

teins containing at least 1 carbohydrate-recognition domain (CRD) that in most cases binds a

range of carbohydrate-based PAMPs, including trehalose 6,6’ dimycolate (TDM), lipoarabino-

mannan (LAM), lipomannan (LM), and phosphatidylinositol mannosides (PIMs) [2–4]. Inter-

actions of CLRs with mycobacterial PAMPs induce intracellular signaling that triggers

responses ranging from cytokine production to induction of adaptive immunity (Table 1).

Here, we discuss signaling CLRs that recognize mycobacterial PAMPs and contribute to anti-

mycobacterial immunity. We focus on the receptors that signal through the Spleen tyrosine

kinase (Syk)/Caspase recruitment domain family member 9 (CARD9) pathway, including

Dectin-1, Dectin-2, macrophage-inducible C-type lectin (Mincle), C-type lectin superfamily

member 8 (Clecsf8) also called macrophage C-type lectin (MCL), and dendritic cell immu-

noactivating receptor (DCAR) (Fig 1).

Dectin-1

Dectin-1 is a glycosylated transmembrane receptor possessing an extracellular C-type lectin-

like domain (CRD) and a cytoplasmic immunoreceptor tyrosine-based activation motif

(ITAM)-like domain, also known as hemITAM, which initiates downstream signaling and cel-

lular activation [5]. This archetypical CLR has been extensively characterized as a major fungal

β-1,3-glucan receptor that can mediate various immune responses, including phagocytosis,

respiratory burst, cytokine and chemokine production, and direct instruction of Type 1 T-

helper (Th1) and Type 17 T-helper (Th17) immunity [5]. Dectin-1 is predominantly expressed

on macrophages, dendritic cells, neutrophils, and a subset of T cells. Consistent with its poten-

tial role in immune surveillance, Dectin-1 is highly expressed in portals of pathogen entry,

including the intestines and the lung [5]. A number of studies have associated Dectin-1 with a

role in antimycobacterial immunity, although its mycobacterial ligand remains unknown.

Dectin-1 promotes production of IL-6, G-CSF, and RANTES in bone marrow—derived mac-

rophages stimulated with attenuated Mycobacterium bovis (M. bovis) and avirulent H37Ra
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Mycobacterium tuberculosis (Mtb) strain [6]. In splenic dendritic cells (DCs) infected with M.

bovis or pathogenic Mtb, Dectin-1 triggers IL-12p40 production in a Syk-dependent manner

[7]. Dectin-1 has also been demonstrated to cooperate with TLR2 for efficient uptake of M.

abscessus by murine macrophages and subsequent induction of pro-inflammatory cytokines

[8]. The cooperation between the 2 receptors has also been reported in human A549 airway

epithelial cells infected with Mtb [9]. Further studies on human cells have shown that stimula-

tion of monocyte-derived DCs with Mtb leads to Dectin-1–dependent production of pro-

inflammatory responses, facilitating the DCs to instruct T cells to produce IFN-γ and IL-17

[10]. However, Dectin-1–deficient mice are resistant to Mtb infection, similarly to wild-type

mice, despite slightly reduced lung bacterial burdens [11]. Thus, Dectin-1 seems to play a

redundant role in antimycobacterial defense in vivo, despite inducing impressive pro-inflam-

matory cytokine responses in vitro. There is currently no known association of human Dectin-

1 polymorphisms with Tuberculosis (TB) disease susceptibility.

Dectin-2

Dectin-2 structure is made up of a CRD, a transmembrane domain, and a short cytoplasmic

tail. Although Dectin-2 expression was originally proposed to be specific to Langerhans cells,

subsequent work has demonstrated that this PRR is predominantly expressed on myeloid

cells, including tissue macrophages, some subsets of dendritic cells, and peripheral blood

Table 1. C-type lectin receptors, mycobacterial ligands, and their effects on pro-inflammatory cytokine production and contributions in host resis-

tance to mycobacterial infections in vivo.

C-type

lectin

receptor

Mtb ligand Cellular expression Effects on pro-

inflammatory cytokine

production

Role in host resistance to

mycobacterial infection

References

Dectin-1 unknown DCs, monocytes,

macrophages, neutrophils,

eosinophils, mast cells, and

lung epithelium

"IL-6, IL-23, IL-1β,

TNF-α, IL-12p40, and

IL-17

Dispensable for host resistance to

Mycobacterium tuberculosis H37Rv

infection in mice

[5, 7, 9–11,

35]

Dectin-2 ManLAM DCs, monocytes, tissue

macrophages, CD8+ T cells,

and CD19+ B cells

"TNF-α, IL-6, and IL-17 Survival studies not performed.

Required to control lung damage during

M. avium infection.

[4, 12, 14,

36]

Mincle TDM Monocytes, macrophages,

neutrophils, myeloid DCs, and B

cells.

"IL-8, IL-6 andIL-1β Required for bacterial clearance.

Inconsistent results on essentiality.

[4, 17, 19,

21–23]

ClecSF8

(MCL)

TDM Neutrophils, monocytes, and

DCs

"IL-6, TNF-α and IL-1β Required for resistance to M. bovis

BCG and M. tuberculosis H37Rv

infection in mice

[25, 28, 29]

Mannose

receptor

ManLAM, DIM,

mannosylated

proteins

Macrophages and MDCs "IFN-γ Survival studies not performed [10, 34, 37,

38]

DC-SIGN ManLAM, PIMs,

mannosylated

glycoproteins

Myeloid DCs and macrophages "IFN-γ hSIGN transgenic mice resistant to

high-dose M. tuberculosis H37Rv

infection. SIGNR3 KO mice have

elevated CFUs.

[10, 32, 33,

39]

DCAR PIMs Peritoneal macrophages,

monocyte-derived inflammatory

cells in lung and spleen

"IFN-γ and IL-12 Survival studies not performed. High

CFU in DCAR KO mice infected with

BCG or H37Rv.

[4, 31]

Abbreviations: CFU, colony-forming unit; ClecSF8, C-type lectin superfamily member 8; DC, dendritic cells; DC-SIGN, Dendritic Cell-Specific Intercellular

adhesion molecule-3-Grabbing Non-integrin; DCAR, dendritic cell immunoactivating receptor; DIM, Phthiol Dimycocerosates; KO, knock-out; ManLAM,

Mannose-caped Lipoarabinomannan; Mincle, macrophage-inducible C-type lectin; MCL, macrophage C-type lectin; Mtb, Mycobacterium tuberculosis; PIM,

Phosphatidyinositol Mannosides; TDM, Trehalose Dimycolate.

https://doi.org/10.1371/journal.ppat.1006333.t001
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monocytes, in which its expression can be up-regulated by various inflammatory stimuli

[12,13]. Dectin-2 specifically recognizes mycobacterial mannosylated lipoarabinomannan

(ManLAM), resulting in a cascade of downstream signaling and cellular activation [13,14].

Unlike Dectin-1, the short cytoplasmic tail of Dectin-2 does not contain an ITAM-like motif.

Instead, it recruits an ITAM-linked FcRγ, which initiates signaling through Syk and likely the

Caspase recruitment domain family member 9/B-Cell CLL/lymphoma 10/Mucosa-associated

lymphoid tissue lymphoma translocation protein 1 (CARD9/BCL10/MALT1) complex [13].

Dectin-2 induces production of pro- and anti-inflammatory cytokines, including IL-10, IL-2,

IL-6, MIP-2, and TNF after stimulation of DCs with ManLAM and BCG [14]. The Dectin-2–

ManLAM interaction also induces T-cell responses. Dectin-2 deficiency results in enhanced

Fig 1. Recognition of mycobacterial pathogen-associated molecular patterns (PAMPs) by C-type lectin receptors (CLRs). Dectin-2 recognizes

mannosylated lipoarabinomannan (ManLAM), dendritic cell immunoactivating receptor (DCAR) recognizes phosphatidylinositol mannosides (PIMs),

macrophage-inducible C-type lectin (Mincle) and C-type lectin superfamily member 8 (Clecsf8) recognize the glycolipid trehalose 6,6’ dimycolate (TDM),

while the mycobacterial ligand of Dectin-1 is yet to be identified. The interaction of the CLRs with mycobacterial PAMPs triggers cytoplasmic signaling and

a number of cellular responses. The CLRs signal via Spleen tyrosine kinase (Syk), which associates with the Caspase recruitment domain family member

9 (CARD9)/B-Cell CLL/lymphoma 10 (BCL-10)/Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) complex, resulting in the

production of pro-inflammatory cytokines and induction of adaptive T-cell immunity.

https://doi.org/10.1371/journal.ppat.1006333.g001
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pathology in mice infected with nontuberculous M. avium [14]. Dectin-2 has been demon-

strated to recognize the virulent Mtb H37Rv strain [14]; however, the protective role of this

receptor against Mtb has not been shown in vivo.

Mincle

Mincle is predominantly expressed on cells of myeloid lineage, including macrophages, neu-

trophils, and DCs, as well as other cell types, such as B cells and microglia in the brain [15].

Mincle structure is composed of a CRD, a transmembrane domain, and a short cytoplasmic

tail with a positively charged residue, through which it associates with the adaptor molecule

FcRγ and initiates intracellular signaling via the Syk/CARD9 pathway [16, 17]. The major

mycobacterial ligand for Mincle is TDM (also known as the cord factor), the most abundant

mycobacterial cell wall glycolipid [18,19]. Deletion of Mincle results in impaired production

of pro-inflammatory cytokines and nitric oxide by macrophages after stimulation with TDM

or its synthetic analog, trehalose 6,6-dibehenate (TDB). Moreover, treatment of mice defi-

cient of Mincle with TDM results in significantly reduced TNF-α and IL-6 production. Min-

cle can also trigger robust Th1 and Th17 immunity in mice treated with TDB as an adjuvant

to H1 subunit vaccine (an Mtb fusion protein of antigen 85 B [Ag85B] and the 6kDa early

secreted antigenic target [ESAT-6]) [18–20]. Mincle signaling on neutrophils has been dem-

onstrated to drive TDM-induced lung inflammation and promote cell adherence by enhanc-

ing F-actin polymerization and CD11b/CD18 surface expression. These Mincle-driven

responses are dependent on Src, Syk, and mitogen-activated protein kinases (MAPK)/extra-

cellular-signal-regulated kinase (ERK) kinases and can also be augmented by TLR2 coactiva-

tion [21]. Mincle requirement in the control of TB in vivo remains unclear, with some

contradictory findings [4,17]. A study by Lee et al. showed that Mincle deficiency results in

elevated bacterial burdens in the lungs of mice infected with Mtb [21]. The requirement of

Mincle for bacterial clearance has also been demonstrated in mice infected with M. bovis
BCG [22]. Another study, however, has demonstrated that the receptor is dispensable for

Mtb control, with Mincle-deficient mice mounting the same immune response as wild-type

mice, with similar T-helper immunity, lung bacterial burdens, and macrophage effector

mechanisms [23]. A recent report has also demonstrated that Mincle is not associated with

TB disease susceptibility or protection in humans [24]. The redundancy of Mincle in humans

and possibly in mice is still poorly understood, but it is possible that other receptors that

engage the same signaling pathway may compensate for the loss of Mincle. One such candi-

date is Clecsf8, which can engage the same mycobacterial ligand and trigger the same intra-

cellular signaling pathway as Mincle. The next section will focus on Clecsf8 and its potential

cooperation with Mincle.

Clecsf8 (MCL or Clec4d)

Clecsf8 is an endocytic receptor that interacts with mycobacteria through the cell-wall glyco-

lipid, TDM. This PRR is predominantly expressed on macrophages, peripheral blood neutro-

phils, classical monocytes, and some subsets of DCs. Upon engagement of TDM, Clecsf8

positively regulates Mincle expression through a protein—protein interaction, resulting in aug-

mented cellular responses [25,26]. Downstream signaling of this FcRγ-coupled receptor is

mediated through Syk kinase and CARD9/BCL10/MALT1 pathways and induces various intra-

cellular responses, including NFκβ activation, pro-inflammatory cytokine production, phago-

cytosis, and respiratory burst. Clecsf8 interaction with TDM also induces DC maturation and

T-cell priming [26–28]. Loss of this receptor in mice results in increased susceptibility to Mtb

infection, with disease phenotypes characterized by high bacterial loads in the lung, augmented
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inflammatory responses, increased pathological damage accompanied by neutrophilic infiltra-

tion, and early mortality [29]. Thus, Clecsf8 seems to be essential for TB control in vivo. How-

ever, disease effects associated with Clecsf8 deficiency are only a fraction compared to the

susceptibility associated with the loss of the central downstream adaptor, CARD9 [30]. This

suggests some level of compensation by other receptors in addition to Clecsf8 that might be

operating in collaboration to drive the CARD9-mediated antimycobacterial responses. The

cooperation of Clecsf8 and other CLRs will be an interesting area of exploration in TB infection

in vivo. In humans, polymorphisms of Clecsf8 are associated with TB susceptibility [29], mak-

ing this CLR a key component of antimycobacterial defense.

Other CLRs

DCAR is an FcRγ-coupled receptor that is predominantly expressed on monocyte-derived

inflammatory cells and recognizes mycobacterial glycolipids called PIMs. DCAR-deficient

mice have impaired IFNγ production by T cells and increased bacterial loads, indicating the

importance of this receptor in the induction of antimycobacterial Th1 immune response [31].

Another extensively studied CLR is Dendritic Cell-Specific Intercellular adhesion molecule-

3-Grabbing Non-integrin (DC-SIGN), which recognizes a number of mycobacterial ligands,

including mannose-containing ManLAM and LMs. DC-SIGN recognition of mannose-con-

taining PAMPs leads to a RAF-1 signalosome that induces cytokine production and promotes

Th1 and Th17 differentiation [32]. A mouse homolog of DC-SIGN, SIGNR3, has been shown

to recognize mycobacterial ManLAM, leading to production of IL-6 and TNF-α in a Syk-

dependent manner [33]. Mannose Receptor (MR) also recognizes a number of mycobacterial

mannose-containing PAMPs, including ManLAM, higher PIMs, LM, and other mannosylated

proteins. MR is predominantly expressed on alveolar macrophages, and its interaction with

ManLAM induces production of anti-inflammatory cytokines [34]. More work is still required

in understanding downstream signaling of MR.

Concluding remarks

Studies of CLR interaction with mycobacterial PAMPs have revealed novel insights into signal-

ing mechanisms that drive antimycobacterial immunity. CLRs such as Mincle and Clecsf8 rec-

ognize mycobacterial glycolipids TDM and TDB and induce various innate immune responses

and T-cell immunity. Recognition of ManLAM by Dectin-2 and DC-SIGN also induce pro-

inflammatory cytokine production and T-cell responses. Thus, the immunomodulatory effects

induced by these CLR—PAMPs interactions present an exciting area that can be explored for

vaccine development. TDM and TDB have demonstrated great potential as adjuvants for H1

subunit vaccines, indicating a promising therapeutic potential for other mycobacterial ligands.

Most of the CLRs discussed here signal via the Syk/CARD9 downstream pathway, which is

essential for TB control. However, many of these CLRs seem to be individually dispensable in

vivo, possibly due to compensation by other receptors. Such redundancies are still poorly

understood and warrant further research. Moreover, there is a need to explore in detail the

synergistic cooperation between the CLRs and other receptors such as TLRs and how this

would affect the outcome of TB disease in vivo.
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