

Scientific Research and Essays Vol. 6(30), pp. 6382-6382, 9 December, 2011
Available online at http://www.academicjournals.org/SRE
DOI: 10.5897/SRE11.1736
ISSN 1992-2248 ©2011 Academic Journals

Full Length Research Paper

A hybrid method for increasing the accuracy of
software development effort estimation

Vahid Khatibi B.1, Dayang N. A. Jawawi1*, Siti Zaiton Mohd Hashim1 and Elham Khatibi2

1
Department of Software Engineering, Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia (UTM), Skudai 81300, Johor Bahru, Malaysia.
2
Department of Computer Engineering, Bardsir Branch, Islamic Azad University, Kerman, Iran.

Accepted 18 October, 2011

Since software development environments, methods and tools are changing rapidly, the importance of
accurate estimations in software projects is increasing significantly. Inaccurate estimations can lead to
unpleasant results in the software projects so that many projects are failed at the early stages of the
project. During the recent years, numerous estimation methods have been proposed that most of which
are based on statistical techniques. Among all existing methods, simplicity of analogy based method
makes it so common in this field. Analogy methods usually present accurate estimations but if the level
of non normality in the software project datasets is high or type of most project features is categorical,
these methods are confronted with inaccurate estimation problem. In this paper, genetic algorithm has
been used under a new framework to improve the performance of analogy methods. A large dataset has
been employed to evaluate the performance of the proposed method and the results have been
compared with the other estimation methods. The results showed that the proposed method
outperformed the other methods considerably.

Key words: Effort estimation, analogy method, feature weighting, genetic algorithm.

INTRODUCTION

Since the role of software in today‟s business market is
undeniable, accurate estimation of software effort is very
important. Planning, developing, constructing and all
aspects of the software projects are affected by accurate
estimations. During the recent decades, many methods
for software effort estimation have been presented.
Selecting a method as the best seems impossible
because the performance of each method depends on
the various factors such as available information, used
technique, project features and so on, but the main aim of
all methods is presenting the results which are more

*Corresponding author. E-mail: dayang@utm.my.

accurate. Since at the early stages of the project, all the
earned information is incomplete, the predictions may be
inaccurate and this problem is seen in software projects
rather than the other project types. The first idea for
software effort estimation returns to 1950 by presenting
the manual rule of thumb (Jones, 2007). By increasing
the number of software projects and need of user society
to earn high quality software, some models based on the
linear equations were presented as the software effort
techniques in 1965 (Boehm and Valerdi, 2008). As the
pioneers of software estimation methods we can consider
the name of Larry Putnam, Barry Bohem and Joe Aron
(Jones 2007). Afterward in 1973, the IBM researchers
presented the first automated tool, interactive productivity
and quality (IPQ) (Jones, 2007). Barry Boehm proposed

a new method based on computing some of the software
project factors by means of several mathematical
equations called COCOMO (Boehm, 1981). In addition,
Boehm explained several algorithms in his book
“Software Engineering Economics” (Boehm, 1981) that
still are used by researchers. Other models such as
Putnam Lifecycle Management (SLIM) (Putnam, 1987)
and software evaluation and estimation of resources –
software estimating model (SEER - SEM) continued the
principals of COCOMO (Boehm and Valerdi, 2008).
Introducing the function point (FP) as a metric for
software size estimation by Albrecht and Gaffney (1983)
was the other important event in that decade. Analogy
based method was proposed in 1997 (Shepperd and
Schofield, 1997) and its usage was increased
significantly because it follows the human manners to
solve the problems. Although this method usually present
acceptable results but there are some constraints. For
example, the software project indicators may
demonstrate unnecessary or unreal specifications of the
projects and particularly in some projects the amount of
effort is surprising. In addition, achieving to detailed
information in many projects is impossible and we have
to predict the amount of effort with limited features.

Several studies have tried to improve the performance
of analogy methods and overcome the mentioned
limitations by using mathematical and statistical methods
(Keung and Kitchenham, 2007; Jingzhou and Guenther,
2008; Keung, 2008; Jianfeng et al., 2009; Tosun et al.,
2009). Since software projects are usually complicated
and relations between features are hard to understand,
soft computing techniques are widely used to improve the
performance of analogy methods (Chiu, 2007; Li et al.,
2009; Pahariya et al., 2009; Oliveira et al., 2010). In
current study we are going to use genetic algorithm and
hybrid optimization functions to improve the performance
of analogy method. This paper is organized as follows:
Subsequently, it includes principals of analogy methods,
after which it describes the genetic algorithm, there after
the performance metrics are presented; then, the
proposed method is presented and numerical results are
described; finally, conclusion and future works are
presented.

ANALOGY BASED ESTIMATION (ABE)

ABE method was produced by Shepperd in 1997 as a
substitute for algorithmic methods (Shepperd and
Schofield, 1997). Structure of this method is based on
comparison of new software project with some same
historical projects to do the estimation. Usually, ABE
includes four parts:

Khatibi et al. 6383

i) Historical dataset.
ii) Similarity function.
iii) Solution function.
iv) The associated retrieval rules.

Each part can be described as follows:

i) Gathering the previous projects data and producing the
historical dataset.
ii) Choosing new proper features of the project such as
(FP) and line of code (LOC).
iii) Retrieving the previous projects and calculating the
similarities between the target project and the previous
projects. Usually the weighted Euclidean distance and
the weighted Manhattan distance are used at this stage.
iv) Estimating the effort of the target project.

Similarity function

ABE uses a similarity function which compares the
features of two projects. There are two popular similarity
functions, Euclidean similarity (ES) and Manhattan
similarity (MS) (Shepperd and Schofield, 1997). Equation
1 shows the Euclidean similarity function:

 (1)

Where, p and p' are the projects, wi is the weight
assigned to each feature and varies between 0 and 1. Fi
and fi' display the ith feature of each project and n
demonstrates the number of features. δ is used for
obtaining the none zero results.

The MS formula is very similar to the ES but it
computes the absolute difference between the features.
Equation 2 shows the Manhattan similarity function.

 (2)

Solution functions

After choosing the K most similar projects, it is possible to

6384 Sci. Res. Essays

estimate the effort and cost of the new project according
to the selected features. The common solution functions
are: the closest analogy as most similar project
(Walkerden and Jeffery, 1999), the average of most
similar projects (Shepperd and Schofield, 1997), the
median of most similar projects (Angelis and Stamelos,
2000) and the inverse distance weighted mean (Kadoda
et al., 2000). The mean describes the average of the
effort of K most similar projects, where K > 1. The median
describes the median of the effort of K most similar
projects, where K > 2. The inverse distance weighted
mean adjusts the portion of each project in estimation by
using Equation 3.

 (3)

Where p shows the new project, pk illustrates the kth
most similar project, Cpk is the effort value of the kth most
similar project pk, Sim (p, pk) is the similarity between
projects pk and p and K is the total number of most similar
projects.

GENETIC ALGORITHM

Genetic algorithm is a search based algorithm which
follows the concept of natural evolution. Optimization
problems are the main domain of genetic algorithm
usage. An initial solution is determined as a genome or a
chromosome. A population including several solutions
(chromosomes) is constructed and it is treated as the first
generation. Each solution (chromosome) is given a
fitness value based on its merit and next generation is
produced by using some operators called selection,
mutation and crossover. Some irrelevant and unsuitable
solutions are omitted during the generation production.
The main operators of genetic algorithm are described as
follows:

Selection operator

This operator selects the best solutions to go to the next
generation. The amount of fitness value is the most
important factor considered by selection operator.

Crossover operator

Crossover makes the genetic algorithm different as

compared to the other optimization methods. The idea
behind this operator is that by combining two parents
(chromosomes) we can obtain two new children which
are better than their parents. Some random interchanges
are performed on two parents and two new children are
produced. Several types of crossover are used in genetic
algorithm based on user definitions.

Mutation operator

This operator is used to hold the diversity of the
population and is comparable with biological mutation. In
addition, by using mutation, the problem of local minimum
will be solved because chromosomes will be sufficiently
different in each population. Mutation operator changes
some bits in a solution and produces new solution which
may be better than the first one. The overall genetic
algorithm based on previous concepts can be simply
described as follows:

i) Randomly generate a population.
ii) Compute the fitness of each individual in population.
iii) Repeat.

1) Select parents from population.
2) Performing the „crossover‟ on parents to generate next
population.
3) Performing the „mutation‟ on parents to generate next
population.
4) Compute the fitness of each individual in new
population.

iv) Until the best individuals are collected.

PERFORMANCE METRICS

Performance of estimation methods is evaluated by
several metrics including RE (relative error), MRE
(magnitude of relative error) and MMRE (mean
magnitude of relative error) which are computed as
follows (Shepperd and Schofield, 1997):

RE = (estimated – actual)/(actual) (4)

MRE = |Estimated – Actual |/(Actual) (5)

MMRE = ∑MRE/N (6)

The other parameter used in evaluation of performance is
PRED (percentage of the prediction) which is determined
as:

PRED(X) = A/N (7)

Where, A is the number of projects with MRE less than or
equal to X and N is the number of considered projects.
Usually, the acceptable level of X in software cost
estimation methods is 0.25 and the various methods are
compared based on this level. Decreasing of MMRE and
increasing of PRED is the main aim of all estimation
techniques regarding the software cost.

THE PROPOSED METHOD

Here, we are going to propose a new method for increasing the
accuracy of software cost estimations by combining analogy
method and genetic algorithm. As software projects are naturally
complicated and ambiguous, the analogy method cannot present
precise estimations to stand alone. High level of non normality and
high number of outliers in software project datasets lead to
inaccurate estimations. Outlier refers to a project in which there is
no significant relation between the amount of effort and features
which describe the project. Existing high number of outliers in a
dataset leads to increase in the degree of non normality. In

addition, high number of categorical features decreases the
accuracy of analogy methods. Therefore, in this study the genetic
algorithm has been used as a complement method for improving
the performance of analogy method. More details about proposed
method are presented subsequently.

Methodology

As can be seen in Equation 1, several weights are used as an
adjustment to determine the similarity of projects. We can use the
genetic algorithm to optimize the amount of MMRE by varying the
weight of each feature. Therefore, finding the best weights is our
main goal. Achieving to the best possible optimization needs to
adjust the genetic algorithm parameters accurately. Our
methodology comprises of two studies. Firstly, settings of genetic
algorithm are presented and afterward training and testing stage
are described. Selected dataset is presented thereafter.

Genetic algorithm settings

Here, all settings regarding the genetic algorithm are described. An
intensive search has been performed to find the best parameters
for high accurate estimation. In current study, 250 individuals are
considered in first population; because in selected dataset each

project has 26 features which 25 out of them are used in genetic
algorithm. Final feature is effort which should be estimated. As our
main goal is minimizing the MMRE and increasing the accurate of
estimations, the fitness function is defined based on MMRE
because this metric can clarify the real amount of error regarding
the estimation method. PRED is not a suitable metric to use as
fitness function because the amount of PRED is determined based
on the specified limit and the process of specifying the mentioned

limit is performed subjectively. Minimizing of MMRE can ensure
achieving to proper estimation model based on analogy method.
Gaussian is used as mutation function and the amount of „scale‟

Khatibi et al. 6385

and „shrink‟ are adjusted to 1. Scattered type of crossover functions
is selected to produce the next generation. Number of generations
is 100 and the amount of „function tolerance‟ is determined by
0.000001.

Training stage

All data is divided into three sets called D1, D2 and D3 which are
equaled (approximately equal). D1 and D2 are considered as
training sets and D3 is used as test set. In training stage, genetic
algorithm tries to minimize the amount of MMRE for set D2. Indeed,
analogy method is performed on two sets: D1 is used as basic
dataset (prediction of projects of D2 by using projects of D1).
Genetic algorithm adjusts the weights so that the MMRE is
minimized. For more optimizing the MMRE, a hybrid optimization
function is used after obtaining the results from genetic algorithm.

Indeed the output of genetic algorithm is treated as input of this
function. The mentioned function attempts to find a constrained
minimum of a scalar function of several variables starting at an
initial estimate. This is generally referred to as constrained
nonlinear optimization or nonlinear programming. Several trial and
error processes showed that hybrid function could decrease the
MMRE by more optimizing the weights. In this study, Fmincon (has
been implemented in Matlab software) has been used as hybrid
function (letcher and Powell, 1963; Goldfarb, 1970).

Testing stage

After finding the most suitable weights, test stage is started. In this
stage all projects of D3 are treated as test set and analogy method
is used to estimate the projects effort. The most important point is
that the obtained weights from previous section are applied to the
analogy method for estimating in this stage. Figure 1 shows the
framework of proposed method.

Dataset

For the purpose of evaluating the proposed method, Maxwell
dataset (Maxwell, 2002) is used because this dataset is relatively
new and comprises of 62 software projects (enough large). Each

project in this dataset is described by 26 features and this high
number of features is useful to show the performance of proposed
method. All features excluding features 1, 24, 25, 26 are categorical
and the mentioned features are numerical. High number of
categorical features usually decreases the accuracy of analogy
method. Therefore, we selected this dataset with 22 categorical
features to appear as the real improvement of analogy method by
using proposed method. Table 1 gives some statistical information

about Maxwell dataset.

NUMERICAL RESULTS

At first, all 62 projects are divided into three sets D1, D2
and D3 randomly with 22, 20 and 20 projects. Training
stage is started by two first sets to find the best weights.
As mentioned previously, 25 features are applied to the
genetic algorithm to find the best values for weights. After

6386 Sci. Res. Essays

Training Stage

Dataset

Basic Data (D1)

Underestimate Data

(D2)

Genetic

Algorithm

Analogy

Method

Basic Data (D1)

Test Data (D3)

Testing Stage

Hybrid

Function

D1

D2

D3

Best Weights

Final Results

Figure 1. Proposed framework.

finding the best weights, test stage is started, D1 is
treated as the basic set and D3 as test set. In this stage
analogy method is used for forecasting the development
effort for projects in D3 by using the obtained weights
from training stage. To earn more reliable results, this
process is repeated three times (round) so that each
time, three sets D1, D2 and D3 are produced randomly.
Train and test stages are applied and the results of each
round are recorded. In the following study, more details
about the executing of the proposed method are
presented. Figure 2 shows the trend of minimizing the
MMRE regarding round one. 52 generations are seen in
the mentioned figure. Regarding each generation, the
best MMRE and mean MMRE have been computed.
According to Figure 2, the best MMRE in round one is
close to 0.47 and the best mean MMRE among all
generations is related to generation 31. In addition, the
amount of MMRE has been decreased significantly

during the generations 1 to 25; afterward there is no high
decrease regarding MMRE. Figure 3 shows the trend of
minimizing the MMRE regarding round two. As seen in
Figure 3, genetic algorithm has reduced the amount of
MMRE from 0.79 to less than 0.65 for sets D1 and D2 as
basic and test sets respectively. The best amount of
MMRE is a little more than 0.64 obtained on generation
54. The best mean MMRE is obtained on generation 31.
Most significant decreasing of MMRE has happened
during generations 1 to 15; afterward there is no
significant decrease regarding MMRE. Figure 4 shows
the trend of minimizing the MMRE regarding round three.
The best value of MMRE is obtained on generation 55
and the best mean MMRE is obtained also on generation
55. As seen in Figure 4, „genetic algorithm‟ has reduced
the amount of MMRE from above 0.59 to less than 0.53
for sets D1 and D2 as basic and test sets respectively.

Process of deceasing the MMRE has been continued

Khatibi et al. 6387

Table 1. Maxwell dataset details.

Feature Description Mean Std Dev Min Max

Time Time 5.58 2.13 1 9

App Application type 2.35 0.99 1 5

Har Hardware platform 2.61 1 1 5

Dba Database 1.03 0.44 0 4

Ifc User interface 1.94 0.25 1 2

Source Where developed 1.87 0.34 1 2

Telon use Telon use 2.55 1.02 1 4

Nlan Number of different development languages used 0.24 0.43 0 1

T01 Customer participation 3.05 1 1 5

T02 Development environment adequacy 3.05 0.71 1 5

T03 Staff availability 3.03 0.89 2 5

T04 Standards use 3.19 0.70 2 5

T05 Methods use 3.05 0.71 1 5

T06 Tools use 2.90 0.69 1 4

T07 Software‟s logical complexity 3.24 0.90 1 5

T08 Requirements volatility 3.81 0.96 2 5

T09 Quality requirements 4.06 0.74 2 5

T10 Efficiency requirements 3.61 0.89 2 5

T11 Installation requirements 3.42 0.98 2 5

T12 Staff analysis skills 3.82 0.69 2 5

T13 Staff application knowledge 3.06 0.96 1 5

T14 Staff tool skills 3.26 1.01 1 5

T15 Staff team skills 3.34 0.75 1 5

Duration Duration 17.21 10.65 4 54

Size Application size 673.31 784.08 48 3,643

Effort Effort 8,223.21 10,499.90 583 63,694

during all generations. Table 2 shows the overall results
after completing all the three rounds. Each round in Table
2 has been divided into two sections; showed results of
the first section (analogy) have been computed by
applying analogy method without weighting (w = 1 in
Equation 1) on D1 and D3 as basic and test sets
respectively. Showed results of second section
(proposed) have been computed by applying analogy
method with weighting (best weights from train stage) on
D1 and D3 as basic and test sets respectively. As can be
seen in Table 2, the performance of proposed method
regarding all three rounds based on MMRE and PRED
(0.25) is better than analogy method. This means that
genetic algorithm can improve the accuracy level of
predictions computed by analogy method. Figure 5
depicts the percentage of improvement in terms of
MMRE and PRED (0.25) obtained from each round.

According to Figure 5, the most improvement is related
to the first round with about 50% for MMRE and 36% for

PRED (0.25). Also the least improvement is seen in
round two. Since performance metrics are computed
based on the mean of results, we can say that the
percentage of improvement regarding the proposed
method is significant. An important point about choosing
the test sets is that if the test set is selected from various
types of projects in dataset, the performance of proposed
method will be better. This means that there is the
significant relation between the diversity of training set
and the level of estimation accuracy in proposed method.

Evaluation of proposed method

Here, we are going to evaluate the proposed method
against the other estimation methods. Several common
methods like ANN (artificial neural network) (Mair et al.,
2000), classification and regression trees (CART)
(Stensrud, 2001), stepwise regression (SWR) (Mendes et

6388 Sci. Res. Essays

Figure 2. Performance of Genetic Algorithm in round 1.

Figure 3. Performance of „genetic algorithm‟ in round 2.

Khatibi et al. 6389

Figure 4. Performance of Genetic Algorithm in round 3.

Table 2. Overall results on three rounds.

 Method MMRE PRED (0.25)

Round 1
Analogy 0.82 0.3

Proposed 0.52 0.45

Round 2
Analogy 0.88 0.2

Proposed 0.74 0.25

Round 3
Analogy 0.64 0.35

Proposed 0.50 0.45

Average
Analogy 0.78 0.28

Proposed 0.59 0.38

al., 2003) are considered for comparison. In addition,
several adjusting methods which have been proposed to

improve the analogy methods are participated in the
comparison. The adjusting methods include adjusting

6390 Sci. Res. Essays

0

10

20

30

40

50

60

P
e
rc

e
n

ta
g

e
 (

%
)

Figure 5. Percentage of improvement in each round.

MMRE

Figure 6. Evaluation of proposed method versus other methods based on MMRE.

with genetic algorithm (GA) (Chiu, 2007), linear adjusting
the ABE (LABE) (Walkerden and Jeffery, 1999),
regression adjusting the ABE (RABE) (Jorgensen et al.,
2003) and non linear adjusting the ABE (NABE) (Li et al.,
2009). All mentioned methods have been implemented in
Li et al., 2009) on Maxwell dataset. The results of the
proposed method should be compared with the other
methods based on average amount of MMRE and PRED

(0.25) in three rounds (Table 2). The following figures
shows the performance of proposed method compared
with the other estimation methods based on MMRE and
PRED (0.25) to show the obtained improvement. Figure 6
shows the comparison of all methods based on MMRE.
As can be seen in Figure 6, proposed method presents
the lowest MMRE among all methods; NABE and RABE
are located in next places. The worst amount of MMRE is

Khatibi et al. 6391

PERD (0.25)

Figure 7. Evaluation of proposed method versus other methods based on PRED (0.25).

related to CART method with 1.4 and above error. Figure
7 depicts the comparison of all mentioned methods
based on PRED (0.25). According to Figure 7, the
proposed method presents the highest amount of PRED
(0.25) among other methods; NABE and LABE are
located in next places. The least amount of PRED is
related to ANN method.

Conclusion

One of the most important goals of the project managers
is to estimate their own projects accurately because
inaccurate estimations can lead to project fail easily.
Since usually there are previous experiences regarding
the software projects, the analogy based methods could
be an ideal choice for estimating. This method has been
widely used in recent decade but if the level of non
normality in software projects is more than usual and
number of categorical features is high, some complement
techniques are necessary for avoiding from inaccurate
estimations. In this paper, genetic algorithm was
combined by analogy method to present the more
accurate results. By performing an intensive trial and
error, the best structure for genetic algorithm was found
and a hybrid function was added for more optimizing. For

the purpose of achieving more reliable results we
repeated our proposed framework three times with
random sets in training and testing stages. In addition,
evaluation of the proposed method was done by using a
large dataset with high number of projects and features.
The results showed that the proposed method can
improve the accuracy of estimations in analogy method
significantly. In addition, comparison of proposed method
with other methods showed that it outperforms the other
methods based on evaluation metrics. As future works
we are going to add other soft computing techniques to
analogy methods to present more accurate and reliable
estimations.

ACKNOWLEDGEMENTS

Special thanks to the Universiti Teknologi Malaysia for
financing and funding this research through Research
University Grant and also to our Embedded & Real-Time
Software Engineering Laboratory (EReTSEL) members
for their continuous support.

REFERENCES

Albrecht AJ, Gaffney JA (1983). Software function, source lines of

6392 Sci. Res. Essays

codes, and development effort prediction: a software science

validation. IEEE Trans Software Eng. SE., 9(6): 639-648.
Angelis L, Stamelos I (2000). A Simulation Tool for Efficient Analogy

Based Cost Estimation. Empirical Software Eng., 5(1): 35-68.

Boehm BW (1981). Software engineering economics. Englewood Cliffs,
NJ: Prentice Hall.

Boehm BW, Valerdi R (2008). Achievements and Challenges in

Cocomo-Based Software Resource Estimation. IEEE Softw., 25(5):
74-83.

Goldfarb D (1970). A Family of Variable Metric Updates Derived by

Variational Means. Math. Comput., 24: 23-26.
Jianfeng W, Shixian L, Linyan T (2009). Improve Analogy-Based

Software Effort Estimation Using Principal Components Analysis and

Correlation Weighting. Asia-Pacific Software Engineering. APSEC
'09.

Jingzhou L, Guenther R (2008). Analysis of attribute weighting

heuristics for analogy-based software effort estimation method
AQUA+. Empirical Softw. Eng., 13(1): 63-96.

Jones C (2007). Estimating software costs: Bringing realism to

estimating. New York, NY: McGraw-Hill.
Jorgensen M, Indahl U, Sjoberg D (2003). Software effort estimation by

analogy and regression toward the mean. J Syst Softw 68: 253-262.

Kadoda G, Cartwright M, Chen L Shepperd M (2000). Experiences
Using Case-Based Reasoning to Predict Software Project Effort
Empirical Assessment and Evaluation in Software Engineering.

Keung JW (2008). Theoretical Maximum Prediction Accuracy for
Analogy-Based Software Cost Estimation. Software Engineering
Conference, 2008. APSEC '08. 15th Asia-Pacific.

Keung JW, Kitchenham B (2007). Optimising Project Feature Weights
for Analogy-Based Software Cost Estimation using the Mantel
Correlation. Software Engineering Conference, 2007. APSEC 2007.

14th Asia-Pacific.
letcher R, Powell MJD (1963). A Rapidly Convergent Descent Method

for Minimization." Comput. J., 6: 163-168.

Li YF, Xie M, Goh TN (2009). A study of project selection and feature
weighting for analogy based software cost estimation. J. Syst. Softw.,
82(2): 241-252.

Li YF, Xie M, Goh TN (2009). A study of the non-linear adjustment for
analogy based software cost estimation. Empir Software Eng 14:
603-643.

Mair C, Kadoda G, Lefley M, Phalp K, Schofield C, Shepperd M,
Webster S (2000). An investigation of machine learning based
prediction systems. J. Syst. Softw., 53(1): 23-29.

Maxwell K (2002). Applied statistics for software managers. Englewood

Cliffs,NJ, Prentice-Hall.
Mendes E, Watson I, Triggs C, Mosley N, Counsell S (2003). A

comparative study of cost estimation models for web hypermedia

applications. Empir. Softw. Eng., 8: 163-196.
Chiu SJH (2007). The Adjusted Analogy-Based Software Effort

Estimation Based on Similarity Distances. J. Syst. Softw., 80: 628-

640.

Oliveira ALI, Braga PL, Lima RMF, Cornélio ML (2010). GA-based

method for feature selection and parameters optimization for machine
learning regression applied to software effort estimation. Inf. Softw.
Technol., 52(11): 1155-1166.

Pahariya JS, Ravi V, Carr M (2009). Software cost estimation using
computational intelligence techniques. Nature & Biologically Inspired
Computing, 2009. NaBIC 2009. World Congress on.

Putnam LH (1987). A general empirical solution to the macrosoftware
sizing and estimating problem. IEEE Trans. Software Eng., 4(4): 345-
361.

Shepperd M, Schofield C (1997). Estimating Software Project Effort
Using Analogies. IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING 23(11): 736-743.

Stensrud E (2001). Alternative approaches to effort prediction of ERP
projects. .Inf. Softw. Technol., 43(7): 413-423.

Tosun A, Turhan B, Bener AB (2009). Feature weighting heuristics for

analogy-based effort estimation models. Expert Syst. Appl., 36(7):
10325-10333.

Walkerden F, Jeffery R (1999). An Empirical Study of Analogy-based

Software Effort Estimation. Empirical Softw. Eng., 4(2): 135-158.

