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Abstract

Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts’
genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an
endogenous foamy virus-like element, which we designate ‘coelacanth endogenous foamy-like virus’ (CoeEFV), within the
genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses,
strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only
land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We
show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and
underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient
marine origin of retroviruses and have important implications in understanding foamy virus biology.
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Introduction

Foamy viruses are complex retroviruses thought exclusively to

infect mammalian species, including cats, cows, horses, and non-

human primates [1]. Although human-specific foamy viruses have

not been found, humans can be naturally infected by foamy viruses of

non-human primate origin [2–4]. Comparing the phylogenies of

simian foamy viruses (SFVs) and Old World primates suggests they

co-speciated with each other for more than 30 million years [5].

Retroviruses can invade their hosts’ genomes in the form of

endogenous retroviral elements (ERVs), providing ‘molecular fossils’

for studying the deep history of retroviruses and the long-term arms

races between retroviruses and their hosts [6,7]. Although ERVs are

common components of vertebrate genomes (for example, ERVs

constitute around 8% of the human genome) [8], germline invasion

by foamy virus seems to be very rare [9,10]. To date, endogenous

foamy virus-like elements have been discovered only within the

genomes of sloths (SloEFV) [9] and the aye-aye (PSFVaye) [10]. The

discovery of SloEFV extended the co-evolutionary history between

foamy viruses and their mammal hosts at least to the origin of

placental mammals [9]. However, the ultimate origin of foamy virus

and other retroviruses remains elusive.

The continual increase in eukaryotic genome-scale sequence

data is facilitating the discovery of additional ERVs, providing

important insights into the origin and long-term evolution of this

important lineage of viruses. In this study, we report the discovery

and analysis of an endogenous foamy virus-like element in the

genome of the coelacanth (Latimeria chalumnae), which we designate

‘coelacanth endogenous foamy-like virus’ (CoeEFV). The discov-

ery CoeEFV offers unique insights into the origin and evolution of

foamy viruses and the retroviruses as a whole.

Results/Discussion

Discovery of foamy virus-like elements within the
genome of coelacanth

We screened all available animal whole genome shotgun (WGS)

sequences using the tBLASTn algorithm using the protein

sequences of representative foamy viruses (Table S1) and identified

several foamy virus-like insertions (Table S2 and Fig. S1) within

the genome of L. chalumnae, one of only two surviving species of an

ancient Devonian lineage of lobe-finned fishes that branched off

near the root of all tetrapods [11–15]. There are numerous in-

frame stop codons and frame-shift mutations present in these

CoeEFV elements, suggesting that the CoeEFV elements might be

functionally defective. Although more than 230 vertebrate genome

scale sequences are currently available, endogenous foamy virus

elements have been only found in the aye-aye, sloths, and

coelacanth, indicating that germline invasion of foamy virus is a

rare process [9,10]. We extracted all contigs containing significant

matches and reconstructed a consensus CoeEFV genomic

sequence (Fig. S2). The resulting consensus genome shows

recognizable and typical foamy virus characteristics (Fig. 1). Its

genome has long terminal repeat (LTR) sequences at both 59 and

39 ends and encodes the three main open reading frames (ORFs),

gag, pol, and env, in positions similar to those of exogenous foamy

viruses (Fig. 1). Two additional putative ORFs were found at

positions similar to known foamy virus accessory genes but exhibit

no significant similarity (Fig. 1). Notably, we found that the Env

protein is conserved among foamy viruses and the coelacanth

virus-like element (Fig. 2). A Conserved Domain search [16]

identified a conserved foamy virus envelope protein domain

(pfam03408) spanning most (887 of 1016 residues) of the CoeEFV
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Env protein, with an E-value of 1.3610269 (Fig. 2). The CoeEFV

Env protein shares no detectable similarity with other (non-foamy

virus) retroviral Env proteins or with retroviral elements within

available genomic sequences of other fishes, such as the zebrafish

(Danio rerio). Hence, it provides decisive evidence that CoeEFV

originated from a foamy-like virus.

To exclude the possibility that these CoeEFV elements result

from laboratory contamination, we obtained a tissue sample of L.

chalumnae and succeeded in amplifying CoeEFV insertions within

the genome of L. chalumnae via PCR with degenerate primers

designed for conserved regions of foamy virus pol and env genes.

To establish the position of CoeEFV on the retrovirus

phylogeny, conserved regions of the Pol protein sequences of

CoeEFV and various representative endogenous and exogenous

retroviruses were used to reconstruct a phylogenetic tree with a

Bayesian approach. The phylogenetic tree shows that CoeEFV

groups with the foamy viruses with strong support (posterior

probability = 1.00; Figs. 3 and S3), confirming that CoeEFV is

indeed an endogenous form of a close relative of extant foamy

viruses. The discovery of CoeEFV establishes that a distinct

lineage of exogenous foamy-like viruses existed (and may still exist)

in species outside the Mammalia.

CoeEFV likely invaded the coelacanth genome more than
19 million years ago

Endogenous retroviruses are likely to undergo a gradual

accumulation of neutral mutations with host genome replication

after endogenization [17]. To date the invasion of CoeEFV into

coelacanth genome, we identified two sets of sequences, each of

which arose by segmental duplication because each set of

sequences shares nearly identical flanking regions (Fig. S4). The

two sets contain five and two sequences, respectively. Because the

divergence time of the two extant coelacanth species (L. chalumnae

and L. menadoensis) is uncertain [11], it is impossible to obtain a

reliable neutral evolutionary rate of coelacanth species. Neverthe-

less, even using the mammalian neutral evolutionary rate [18] as a

proxy for the coelacanth rate, the invasion dates were conserva-

tively estimated at 19.3 (95% highest posterior density [HPD]:

15.3–23.6) million years ago for the dataset of five sequences. For

the dataset containing two sequences, the divergence between the

pair is estimated to be 4.1% and the invasion time is estimated to

be approximately 9.3 million years ago. Because the CoeEFV

invasion almost certainly occurred earlier than the duplication

events within the host genome and because the evolutionary rate

of coelacanth species is thought to be lower than other vertebrate

species [19,20], the time of CoeEFV integration might much more

than 19 million years. Additional phylogenetic evidence (see

below) suggests that its exogenous progenitors likely infected

coelacanths for hundreds of millions of years prior to the event that

fossilized CoeEFV within its host’s genome.

Foamy-like viruses have likely codiverged with their
vertebrate hosts for at least 407 million years

To further evaluate the relationship of foamy viruses, we

reconstructed phylogenetic trees based on the conserved region of

Pol proteins of foamy viruses and Class III retroviruses, the

conserved region of foamy virus Pol and Env protein concatenated

alignment, and the conserved region of foamy virus Env protein

alignment, respectively. The three phylogenies have the same

topology in terms of foamy viruses (Figs. 4, S5, and S6). CoeEFV

was positioned basal to the known foamy viruses (Fig. 4),

suggesting a remarkably ancient ocean origin of foamy-like

viruses: the most parsimonious explanation of this phylogenetic

pattern is that foamy viruses infecting land mammals originated

ultimately from a prehistoric virus circulating in lobe-finned fishes.

The branching order of the three foamy virus phylogenies (Fig. 4,

S5, and S6) is completely congruent with the known relationships

of their hosts, and each node on the three virus trees is supported

by a posterior probability of 1.0 (except the node leading to

equine, bovine, and feline foamy viruses on the Env phylogeny,

which is supported by a posterior probability of 0.94; Fig. S6). The

common ancestor of coelacanths and tetrapods must have existed

prior to the earliest known coelacanth fossil, which is 407–409

million years old [21]. The completely congruent virus topology,

therefore, strongly indicates that an ancestral foamy-like virus

infected this ancient animal. Crucially, the foamy viral branch

lengths of the three phylogenies are highly significantly correlated

with host divergence times (R2 = 0.7115, p = 1.1061025, Fig. 5;

R2 = 0.7024, p = 1.4161025, Fig. S5; and R2 = 0.7429,

p = 4.2661026, Fig. S6), a pattern that can reasonably be expected

only if the viruses and hosts codiverged. It is worth emphasizing

that we used a consensus sequence to represent CoeEFV in these

analyses, so its branch length should correspond roughly to that of

the exogenous virus that integrated .19 million years ago, rather

than within-host mutations since that time.

There are two alternative explanations for these phylogenetic

patterns. One is that the exogenous progenitor of CoeEFV is not

truly the sister taxon to the mammalian foamy viruses, but a more

distant relative. The robust posterior probability (1.00) placing

them in the same clade and the absence of evidence for viruses or

virus-like elements from other species disrupting this clade argue

against this view, as does the significant similarity between the Env

proteins of CoeEFV and the foamy viruses (Fig. 2). Moreover, its

branch length would be difficult to explain under such a scenario.

If the coelacanth foamy-like virus lineage and the mammalian

foamy virus lineage did not share a most recent common ancestor

in their ancestral host, why is CoeEFV neither more nor less

divergent from the mammalian foamy viruses than one might

expect if they did?

The other alternative to the hypothesis that these viruses have

co-diverged over more than 407 million years is that they

somehow moved, in more recent times, from terrestrial hosts to

sarcopterygian hosts that inhabited the deep sea, and that the

similarity of the coelacanth virus to the mammalian viruses is due

to cross-species (in fact cross-class) transmission, rather than shared

history. However, as illustrated by the significant correlation

between host divergence times and viral distances (Figs. 5, S5, and

S6), the long branches leading to CoeEFV and the clade of

mammal foamy viruses suggest the virus had already circulated in

Author Summary

The deep history of retroviruses is still obscure. Retrovi-
ruses can leave integrated copies within their hosts’
genomes, providing a fossil record for studying their
long-term evolution. Endogenous forms of foamy viruses,
complex retroviruses known to infect only mammalian
species, appear to be extremely rare, so far found only in
sloths and the aye-aye. Here, we report the discovery of
endogenous foamy virus-like insertions within the genome
of a so-called ‘living fossil’, the coelacanth (Latimeria
chalumnae). We provide evidence suggesting that foamy
viruses and their hosts share a coevolutionary history of
more than 407 million years, and that foamy viruses
accompanied their vertebrate hosts on the evolutionary
transition from water to land. These findings indicate that
the retroviruses originated in the primeval ocean millions
of years ago.

Endogenous Foamy Virus of Coelacanth
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Figure 2. Conserved domain alignment of the CoeEFV Env protein and foamy virus envelope protein domain (pfam03408). Numbers
refer to the position in the original CoeEFV env protein or conserved domain pfam03408. Identical amino acid residues are highlighted in red, and
black and blue indicate gaps or different amino acid residues, respectively. The E-value was generated by Conserved Domain search.
doi:10.1371/journal.ppat.1002790.g002

Figure 1. Comparison of the genome structures between CoeEFV and typical exogenous foamy virus. LTR, long-terminal repeat; PBS,
primer-binding site.
doi:10.1371/journal.ppat.1002790.g001

Endogenous Foamy Virus of Coelacanth
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vertebrates for an extremely long time before the origin of

mammal foamy virus. Given that there is strong evidence that

placental mammals were already being infected with foamy viruses

by about 100 million years ago [9], the distinctness of the

coelacanth virus suggests that it would have to have crossed from

some other unidentified host, one whose foamy-like virus was

already hundreds of millions of years divergent from the

mammalian viruses. This seems highly unlikely. Although cross-

species transmission of SFVs has been observed [2–5,22], foamy

viruses seem to mainly follow a pattern of co-diversification with

their hosts [5,9]. If one accepts that the endogenous foamy viruses

within the genomes sloths indicate more than 100 million years of

host-virus co-divergence, it seems plausible that CoeEFV extends

that timeline by an additional 300 million years.

Moreover, the habitat isolation of the coelacanth and terrestrial

vertebrates would have provided limited opportunities for direct

transfer of foamy viruses to coelacanths. Taken together, these

lines of evidence strongly suggest that foamy viruses and their

vertebrate hosts have codiverged for more than 407 million years,

and that foamy viruses underwent a remarkable evolutionary

transition from water to land simultaneously with the conquest of

land by their vertebrate hosts.

Our analyses provide compelling evidence for the existence of

retroviruses going back at least to the Early Devonian. This is the

oldest estimate, to our knowledge, for any group of viruses,

significantly older than the previous estimates for hepadnaviruses

(19 million years) [23] and large dsDNA viruses of insects (310

million years) [24]. Although highly cytopathic in tissue culture,

foamy viruses do not seem to cause any recognizable disease in

their natural hosts [1,25,26]. Such long-term virus-host coevolu-

tion may help explain the low pathogenicity of foamy viruses. The

fact that the Env is well conserved between CoeEFV and foamy

viruses is consistent with the fact that these viruses are

asymptomatic and mainly co-evolve with their hosts in a relatively

conflict-free relationship. It is easy to imagine that previously

overlooked examples of such a non-pathogenic virus may yet be

found in hosts that fill in some of the gaps in the phylogeny,

namely amphibians, reptiles, and birds. It will be of interest to

screen these hosts, but also various fish species, for evidence of

exogenous and/or endogenous foamy-like viruses.

An ancient marine origin of retroviruses
Dating analyses provide the clearest evidence for when and

where retroviruses originated. There is strong evidence that foamy

viruses shared a common, exogenous retroviral ancestor more

than 400 million years ago (since Env was present in both

terrestrial and marine lineages). The discovery of endogenous

lentiviruses demonstrates that lentiviruses, a distinct retroviral

lineage that includes HIV, are also millions of years old [27–30].

Foamy viruses and lentiviruses share a distantly related ancestor

(Figs. 3, S3) and the foamy virus clade alone almost certainly

accounts for more than 407 million years of retroviral evolution. It

follows that the origin of at least some retroviruses is older than

407 million years ago. As with the coelacanth lineage in the foamy

virus clade, we found that retroviruses of fishes occupy the most

basal positions within both the Class I and Class III retroviral

Figure 3. Retrovirus phylogeny. The phylogeny is the 50% majority-rule consensus tree reconstructed based on the conserved region of Pol
protein of CoeEFV and various endogenous and exogenous retroviruses using MrBayes 3.1.2. Posterior probabilities are shown near the selected
nodes. The foamy virus and lentivirus clades are highlighted in red and blue, respectively. The full tree and taxon labels are depicted in Fig. S2. WDSV,
walleye dermal sarcoma virus; SnRV, snakehead retrovirus.
doi:10.1371/journal.ppat.1002790.g003
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clades (walleye dermal sarcoma virus (WSDV) and snakehead

retrovirus (SnRV), respectively, blue asterisks), (Figs. 3, S3). This

pattern provides additional evidence of a marine origin and long-

term coevolution of these major retroviral lineages. However, to

be specific, the phylogenetic reconstruction in Fig. 3 reflects the

history of only of the Pol protein, not a comprehensive history of

retroviral genomic evolution. Nevertheless, our analyses support a

very ancient marine origin of retroviruses.

Materials and Methods

Screening and consensus genome construction
All available animal whole genome shotgun (WGS) sequences

from GenBank were screened for endogenous foamy viruses using

the tBLASTn algorithm and the protein sequences of represen-

tative exogenous and endogenous foamy viruses (Table S1).

Sequences highly similar to foamy virus proteins discovered within

the coelacanth WGS were aligned to generate a CoeEFV

consensus genome. Conserved domains were identified using

CD-Search service [16].

PCR amplification and cloning of CoeEFV
Ethanol preserved Latimeria chalumnae tissue sample was obtained

from Ambrose Monell Cryo Collection (AMCC) at the American

Museum of Natural History, New York. Genomic DNA was

extracted using the DNeasy tissue kit (QIAGEN, MD) following

the manufacturer’s instructions. Amplification of ,680 bp gag

gene and ,650 bp env gene fragments was performed with the

degenerate primer pairs, FVpol-F (59-AACAGTGYCTYGACC-

MAACC-39) and FVpol-R (59-TAGTGAGCGCTGCTTT-

GAGA-39), FVenv-F (59-CTGGGGATGACAAYCAGAGT-39)

and FVenv-R (59-CCACTCRGGAGAGAGGCAAC-39). PCR

was performed in 25 ml of final volume reactions with 0.1 ml

Platinum Taq HiFi enzyme (Invitrogen, CA), 1 ml primer mix

(10 mM each), 0.5 ml of 10 mM dNTP mixture, 1 ml of 50 mM

MgSO4, 2.5 ml of 106 PCR buffer, and 1 ml of template DNA.

The PCR reactions were cycled under the following conditions:

Figure 4. Phylogenetic congruence of foamy viruses (right) and their hosts (left). Associations between foamy viruses and their hosts are
indicated by connecting lines. The scale of the host phylogeny (left) indicates millions of years. The foamy virus phylogeny (right) is the 50% majority-
rule consensus tree inferred from conserved region of foamy virus and Class III retrovirus Pol protein alignment with MrBayes 3.1.2. The Bayesian
phylogeny is well supported with all nodes showing posterior probability of 1.00. Branch lengths are in expected amino acid changes per site.
Coelacanth image courtesy of Robbie Cada.
doi:10.1371/journal.ppat.1002790.g004

Figure 5. A plot of the correlation between foamy virus
divergence and their vertebrate hosts’ divergence times. The
plot depicts host branch length (in millions of years) versus virus branch
length (in expected amino acid substitutions per site) for every branch
(both internal and external). The virus branch lengths are derived from
the virus tree in Fig. 4.
doi:10.1371/journal.ppat.1002790.g005

Endogenous Foamy Virus of Coelacanth
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initial denaturation at 94uC for 2 minutes, 45 cycles of (94uC for

15 seconds, 60uC for 60 seconds, and 72uC for 30 seconds), and

final elongation at 72uC for 5 minutes. The PCR products were

purified using QIAquick spin columns (QIAGEN, MD). Purified

PCR products were cloned into the pGEM-T Easy vector

(Promega, WI). Cloned products were sequenced by the University

of Arizona Genetics Core with an Applied Biosystems 3730XL

DNA Analyzer. The sequences have been deposited in GenBank

(Accession Nos. JX006240-JX006251).

Phylogenetic analysis
All protein sequences were aligned using Clustal Omega [31].

Gblocks 0.91b was used to eliminate ambiguous regions and

extract conserved regions from the alignments [32]. To determine

the phylogenetic relationship between CoeEFV and other

retrovirus, we reconstructed a phylogeny based on the conserved

region of Pol proteins of CoeEFV and various representative

exogenous and endogenous retroviruses (Table S1; Dataset S1).

To further evaluate the relationship and divergence of foamy

viruses, the conserved region of the foamy viruses and Class III

endogenous retroviruses Pol protein (Dataset S2), the conserved

region of foamy virus Pol and Env protein concatenated alignment

(Dataset S3), and the conserved region of foamy virus Env protein

alignment (Dataset S4) were used to infer phylogenetic trees. We

were unable to discern positional homology for the first 143

residues of the Pol protein with reasonable certainty. These

regions were excluded from all subsequent analyses. All the

phylogenetic analyses were performed with MrBayes 3.1.2 [33]

using 1,000,000 generations in four chains, sampling posterior

trees every 100 generations. The rtREV amino acid substitution

model [34] was used. The first 25% of the posterior trees were

discarded. MCMC convergence was indicated by an effective

sample size .300 as calculated in the program Tracer v1.5.

Host-virus branch length analysis
For the phylogenetic tree based on the foamy viruses and Class

III endogenous retroviruses Pol protein, Class III endogenous

retroviruses were used to root the foamy viral phylogeny (Fig. 4).

Because there is no obvious outgroup for foamy virus Env protein,

we rooted the phylogenetic trees inferred from foamy virus Pol and

Env concatenated alignment and Env alignment using midpoint

method (Figs. S5 and S6). Because the topologies of the host and

virus trees were identical for the foamy viruses (Figs. 4, S5, and

S6), we were able to plot host branch length (in millions of years)

versus virus branch length (in expected amino acid substitutions

per site) for every branch (both internal and external). The

vertebrate host divergence times are based on references [21],

[35], and [36].

Dating analysis
The nucleotide sequences were aligned using MUSCLE [37].

To estimate the age of the CoeEFV invasion, we identified two sets

of sequences, which contain five sequences (contig270160,

contig184752, contig185880, contig245863, and contig236769)

(Dataset S5) and two sequences (contig243355 and contig219087)

(Dataset S6). Sharing the same flanking region, each set of

sequences arose from segmental duplication. I) For the dataset of

five sequences: the best-fitting model of nucleotide substitution was

determined using jModelTest [38]. The typical mammal neutral

evolutionary rate (2.261029 substitutions per site per year,

standard deviation = 0.161029) was used as the rate prior [18].

The HKY substitution model was used. BEAST v1.6.1 (http://

beast.bio.ed.ac.uk) was employed for Bayesian MCMC analysis

with a strict clock model [39] and Yule model of speciation.

MCMC chains were run for 100 million steps twice to achieve

adequate mixing for all parameters (effective sample size .200).

Tracer v1.5 was used to summarize and analyze the resulting

posterior sample. II) For the dataset of two sequences: we

calibrated the genetic distance between the pair based on the

Kimura two-parameter model, in which transitions and transver-

sions are treated separately.

Supporting Information

Dataset S1 The conserved region of Pol proteins of CoeEFV

and various representative exogenous and endogenous retrovirus-

es.

(TXT)

Dataset S2 The conserved region of the foamy viruses and Class

III endogenous retroviruses Pol protein.

(TXT)

Dataset S3 The conserved region of foamy virus Pol and Env

protein concatenated alignment.

(TXT)

Dataset S4 The conserved region of foamy virus Env protein

alignment.

(TXT)

Dataset S5 The alignment of five sequences (contig270160,

contig184752, contig185880, contig245863, and contig236769)

used to estimate the age of the CoeEFV invasion.

(TXT)

Dataset S6 The alignment of two sequences (contig243355 and

contig219087) used to estimate the age of the CoeEFV invasion.

(TXT)

Figure S1 Schematic mapping of CoEFV fragments identified in

this study onto the CoeEFV consensus genome.

(PDF)

Figure S2 CoeEFV consensus genomic sequence. The ambig-

uous nucleotides were filled according to contig187425, con-

tig187426, and contig178313 of coelacanth genome. The CoeEFV

PBS is nearly identical to the PBS of extant foamy viruses. The

CoeEFV PBS sequence is 59-TGGCACCCAACGTGGGG-39.

The PBS sequence of human foamy virus is 59-

TGGCGCCCAACGTGGGG-39 (Baldwin and Linial, J. Virol.

1999, 73:6387–6393). There is only one substitution.

(PDF)

Figure S3 Phylogenetic relationships among retroviruses. The

phylogeny was reconstructed with the Bayesian method via

MrBayes 3.1.2. The posterior probabilities are shown on the

nodes. The foamy virus and lentivirus clades were highlighted in

red and blue, respectively. Branch lengths are in expected amino

acid changes per site.

(PDF)

Figure S4 Alignment of the two sets of sequences used for dating

CoEFV invasion. Flanking sequences are shown for each sequence

set with consensus genomic sequence of CoeEFV.

(PDF)

Figure S5 A) Midpoint rooted phylogenetic tree of foamy

viruses. The phylogeny is the 50% majority-rule consensus tree

inferred from conserved region of foamy virus Pol and Env protein

concatenated alignment with MrBayes 3.1.2. Posterior probabil-

ities are shown at the nodes. Branch lengths are in expected amino

acid changes per site. B) A plot of the correlation between foamy

Endogenous Foamy Virus of Coelacanth
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virus divergence and their vertebrate hosts’ divergence times. The

virus branch lengths are derived from the virus tree in A.

(PDF)

Figure S6 A) Midpoint rooted phylogenetic tree of foamy

viruses. The phylogeny is the 50% majority-rule consensus tree

inferred from conserved region of foamy virus Env protein

alignment with MrBayes 3.1.2. Posterior probabilities are shown at

the nodes. Branch lengths are in expected amino acid changes per

site. B) A plot of the correlation between foamy virus divergence

and their vertebrate hosts’ divergence times. The virus branch

lengths are derived from the virus tree in A.

(PDF)

Table S1 The representative retrovirus sequences used for

genome screening and phylogenetic reconstruction.

(PDF)

Table S2 The matching contigs identified in coelacanth

genome.

(PDF)
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