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This paper is concerned with finding approximate solution for the singular integral equations. Relating
the singular integrals to Cauchy principal-value integrals, we expand the kernel and the density
function of singular integral equation by the sum of the chebyshev polynomials of the first, second,
third and fourth kinds. Some numerical examples are presented to illustrate the accuracy and
effectiveness of the present work. Numerical results show that the errors of approximate solutions of
examples in different cases with small value of M are very small. These show that the methods
developed are very accurate and in fact for a linear function give the exact solution.
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INTRODUCTION

During the last three decades, the singular integral
equation methods with applications to several basic fields
of engineering mechanics, like elasticity, plasticity,
aerodynamics and fracture mechanics have been studied
and improved by several scientists (Chakrabarti, 1989;
Ladopoulous, 2000, 1987; Zabreyko, 1975; Prossdorf,
1977; Zisis and Ladopoulos, 1989). Hence, it is of interest
to solve numerically this type of integral equations
(Chakrabarti and Berghe, 2004; Abdou and Naser, 2003).
Chebyshev polynomials are of great importance in many
areas of mathematics particularly approximation theory
(Abdulkawi et al., 2009; Eshkuvatov et al., 2009).

In this paper, we analyze the numerical solution of
singular integral equations by using Chebyshev
polynomials of first, second, third and fourth kind to
obtain systems of linear algebraic equations; these
systems are solved numerically. The methodology of the
present work is expected to be useful for solving singular
integral equations of the first kind, involving partly
singular and partly regular kernels. The singularity is
assumed to be of the Cauchy type. The method is
illustrated by considering some examples.

Singular integral equation of first kind, with a Cauchy
type singular kernel, over a finite interval can be
represented by:

PO g1 [ 0pmdt =,

-1

-1<x<1

1)

where k(t,x), L(t, ) and F(x) are given real-valued
continuous functions belonging to the class Holder of

continues functions and k(t,t) = 0. In Equation (1) the
singular kernel is interpreted as Cauchy principle value.
Integral equation of form 1 and other different forms have
many applications (Chakrabarti, 1989; Ladopoulous,
2000; Ladopoulous, 1987; Gakhov, 1966; Martin and
Rizzo, 1989; Zisis and Ladopoulos, 1989). The theory of
this equation is well known and it is presented in Sheshko
(2003) and Muskhelishvili (1977). An approximate
method for solving Equation (1) using a polynomial
approximation of degree " has been proposed by
Chakrabarti and Berghe (2004).
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It is well known that the analytical solutions of the
simple singular integral equation

1

I%dtzf(x), -1l<x<1

1 @
a KGX)=1 4 L(t,x)=0’ for the following four
cases,

(I) The solution is unbounded at both end-points X=1l,
(1) The solution is bounded at both end-points X=1l,
() The solution is bounded at end *— L put
unbounded at end X =+1,

(IV) The solution is unbounded at end X=-1, but

bounded at end X =+1,

are given by Lifanov (1996). In this paper, the used
approximate method for solving Equation 1 stems from
recent work (Eshkuvatov et al., 2009) wherein an
approximate method has been developed to solve the
simple Equation (2). The approximate method developed
below appears to be quite appropriate for solving the
most general type Equations (1). Some examples are
presented to illustrate the method.

THE APPROXIMATE SOLUTION

In this section, we present the method of the approximate
solution of Equation (1) in four cases. Let the unknown

function ? in Equation (1) be approximated by the
polynomial function

(1=12,34)

2, () =W (x) 3 cOPD (x)
E ®3)

() ;_

¢ 1=012..n are unknown coefficients and
@ _

() =T, (X), in case (ll):

\Pi(g) (X) :Vi (X) and in
T, U, V

, wWhere ,

Where
in case (I):
\Pi(Z) (X):U‘(X), in case (llI):
case (VI): W () =W (%)
Wi, 1=01..n, are the Chebyshev polynomials of the
first, second, third and fourth kinds respectively can be

defined by the recurrence relations (Prem and Michael,
2005; Abdulkawi et al., 2009).

i and

To(x) =1,

Tl(X) =X
Tn (X) = 2XTn—1(X) _Tn—z (X) nx2 } (4)
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U,(x) =1, U, (x) = 2x }
U, (x)=2xU, () -U, ,(x) n=2 -
V,(x) =1, V,(x) =2x-1 }
V,(X)=2xV,,(X)-V,,(X) n=2 ©)
W, (x) =1, W, (X) =2x +1 }
W, (X) =2xW, ,(X)-W, ,(X) n=2 @

iy
and W5, 1=01..n, are the corresponding weight
functions. Substituting the approximate solution Equation
(3) for the unknown function into Equation (1) yields:

$ed jwmjL(t,x)wm(t)qu“)(t)dt — (), ~l<x<l

i-0 el t-x il (8)

In above Equation (8), we next use the following

K(t, X)

chebyshev approximation to the kernels and

L(t,x), given by (for fixed X cf.(Chakrabarti and
Berghe, 2004)

Kt x) = >k, (0t° Lt,x) =S L, (0t

9)
K, (X L, (X

with known expressions for p( ) and q( ) . Then

Equation 8 gives

D claP(x) = f(x), —1<x<1 (j=1234)

i=0 (10)

Where

2 (x) = 3K, (U () + 3L, (97

(11)
With
0 1tPW(i)(t)\I/i(J)(t) )

u () = jidt -l<x<1 (j=1234)

el t—x 12)
And

. l . -

7/(§in) — J’th(J) (t)‘Pi“) (t) dt

] (13)
Let x”, §=1234  pe  the zeros of

Un (X) ’Tn+2 (X)’ Wn+l (X) and Vn+1 (X) , respec“vely
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(1) P
Substituting the collocation points X« » 1 =12:34 i
Equation 10, we obtain the following systems of linear
equations:

SePa® (xP) = F(x7), (k=12,..n+1) (j =1234)
= (14)
where
D (x) = 3k, (xP)uld (x00) +ZL D)0 (k=12,...n+1)(j=1234)
= 15)

Solving the system of Equation 14 for the unknown
[€) -
coefficients ¢ 1=1234
(1
of 71 into Equation 3 we obtain the approximate
solutions of Equation 1 in the form of

, and substituting the values

P, () =W D)X P (x)  (j=1234)

(16)

NUMERICAL EXAMPLES

In this section, we consider some problems to illustrate
the above method. All results were computed using
FORTRAN code.

Example 1. Consider the following singular integral
equation

1

IM+I(X +t3)<p(t)dt:2x4 —2x? —E,

—1<x<1
hot—x 8 a7
Where
K(x,t)=x+t%, L(x,t)=x>+t3 f(t)=2x"—2x> _3
So, one gets

Ko(X) =%,k (X)=0,k,(x)=1 Kk, (x)=0,
Lo () = X%,

(p>2)
L()=0 L(x=0,L(x)=1 L,(x)=0 (4>3

Hence we find that relation (10) produces

Zn:ci(”ai“’ (x) =2x* —2x* —g

i=0

~1<x<1, (j=1234)

Thus Equation 11 gives

o (x) = xug? (x)+u? () + X7 +740, (1=1234), (i=012..)

Firstly, let us consider in detail the case (l) , J =1, for
N=3, This result in

LT (t) Lt (t)

Se=] dt, ul () = d, —l<t<l,
G117 G117 (18)
(1) j‘ T ® (1) J' 3T (t)

1v1— t2 1V1— t2 (19)
By applying the following relations
I O)

dt=xU,, (%), dt=0

I\/1 t2 (t — x) ' I\/1 £2 (t—x) (20)
moro P10
S V1-t? 712 i=j=0 (21)

u® Lo 7() 7,()
It is easy to estimate the values '’ U2is 701 gng 73,
From Equations 10 and 18-21 we get

7z(x2 + x) i=0
H(X2+X+%); i=1
a (x) = .
7r(2x3 + 2X2); i=2
72'(4X4 +4x3 —x? —x+1); i=3
8 (22)
By choosing the collocation points
X, = cos( (22k _1;”} (k=1,2,3,4) _3
(n+2) , for N=9 we obtain the
following system of linear equations:
3
> e a®(x)=f(x), k=1234
i=0

By solving this system for the unknown coefficients

®
¢, 1=0123 that produces

c? =0.3183098

c® =-0.159154
c{? =-0.3183098

c{’ =0.1591549 (23)

From Equation (23) we obtain the approximate solution of
Equation (17) in the form

2 (x3—x2—x+1)

==+ .

Which coincides with the exact solution. The error of
approximate solution (24) of Equation 17 at n=20 is
givenin Table 1.



Table 1. Errors of approximate solutions of Equation 17 in Cases (l)-(IV) at n=20.

X

error (j=1)

error (j=2)

-9.500000E-01
-9.000000E-01
-7.000000E-01
-5.000000E-01
-3.000000E-01
-1.000000E-01
0.000000E+00
1.000000E-01
3.000000E-01
5.000000E-01
7.000000E-01
9.000000E-01
9.500000E-01

0.000000E+00
0.000000E+00
0.000000E+00
5.960464E-08
0.000000E+00
5.960464E-08
5.960464E-08
1.192093E-07
8.940697E-08
8.940697E-08
1.043081E-07
9.313226E-08
5.774200E-08

0.000000E+00
0.000000E+00
0.000000E+00
5.960464E-08
5.960464E-08
5.960464E-08
5.960464E-08
5.960464E-08
8.940697E-08
8.940697E-08
7.450581E-08
5.029142E-08
3.632158E-08

Secondly, let us consider in detail the case (Il) , 1= 2,
for N =3 This result in
uéz.i)(x):'l[,ll—t Ui(t)dt, ugz?(x):j'wdt’ “1<t<],
’ G t-x ‘ 10 t=x (25)
1 1
79 =[1-tum a9 = [i-2 U dt,
a -1 (26)
By applying the following relations
LV1-t2U, (t
YO0 2
el t—x 27)
1 0 i=#]
[Vi-tumu @ dt=4,
he - =1
' 2 (28)
@ 4@ @) (2)
It is easy to estimate the values Yoistais 7010 qng 7ai',

From the relations 11 and Equations (25) to (28) we get

—E 2x3+x2—x) i=0
2
EZX +2x3—x —x—3j i=1
() 8
o (X) = 1
( X +4Axt =33 =3x% += x) i=2
4
1 ,
(8x +8x° — -8x3 +x +x—j =3

(29)
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error (j=3) error (j=4)

5.960464E-08 5.960464E-08
1.192093E-07 1.192093E-07
1.192093E-07 1.192093E-07
1.788139E-07 1.788139E-07
1.788139E-07 1.788139E-07
1.192093E-07 1.192093E-07
1.192093E-07 1.192093E-07
5.960464E-08 5.960464E-08
8.940697E-08 8.940697E-08
5.960464E-08 5.960464E-08
1.490116E-08 1.490116E-08
4.656613E-08 1.303852E-08
6.705523E-08 4.656613E-09

By choosing the collocation points
x® = cos( 2k 71)”} (k =1,2,3,4) -3

2(n+2) , for "= we obtain the

following system of linear equations:

a® (xP) = f(x®), k=1234

3
c®

By solving this system for the unknown coefficients

(2) & _
¢i™, 1=012.3 that produces

c!? =0.6366197,
c{?) =2.279989x10°®,

c{® =-0.3183099
cl? =—7.819254x10° (30)

From Equation (30) we obtain the approximate solution of
Equation (17) in the form

2+/1— x?
@, (x) = ——(@1-x)
7 (31)
Which coincides with the exact solution. The error of
approximate Solution (31) of Equation (17) at n=20 is
given in Table 1.
Thirdly, let us consider in detail the case (Ill) , )= 3, for
N=3 This result in
2

ug%z(x)_J L+t ()dt ul)(x) = j, L+t tv()dt ~1<t<],

' 1-tt-x ' SV1-t t-x (32)

7 = j 1+t Lvod 0= j 1+t v,

(33)
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By applying the following relations
0 i+ ]

I vy, o —{ )
T 1= (34)

f 1+t V(t)dt_ W00

u® y® 7,(3) 7,( )
It is easy to estimate the values '’ Uai 70l ang 73,
From the relations (6) and Equations (32) to (35) we get

ﬁ(2X2+2X+Z) i=0
8
3 2 7 -
72'(2X +3X +x+§) 1=1
a(t) = .
7{4x4+6x3+x2—x+§] i=2
5 4 2 1 H
n(Sx +12x" —5x +x+—j i=3
8 (36)
By choosing the collocation points
2k
X = cos[ j (k=1,2,34) 3
(2n+3) , for n=3 we obtain the

following system of linear equations:

3
e aP(xP)=f(x?), k=1234
i=0

By solving this system for the unknown coefficients

G i
1=0123 that produces

1 =0.3183098
c\¥ =0.1591549

©) = _0.4774647
¢ =1.330901x10°® 37)

From Equation (37) we obtain the approximate solution of
Equation (17) in the form of

2 |1+X( 2
(pn(X)=; 1—(x2 2x+1)

—X (38)

Which coincides with the exact solution. The error of

approximate Solution (38) of Equation (17) at n=20 is

given in Table 1.

Fourthly, In case (1V), I= 4, for n=3. This result in

ttW(t)dt -1<t<],
1+t t—x (39)

(4)— / W(t)dt y$) = j t3\N(t)dt
—1 (40)

By applying the relations

t 11—t o i j
J;/mwi(t)wj(t)dt—{ﬁ im

-t W, (t)
I 1+t t—Xx

=1k Wity

1+tt X 2'(X) I

(41)

——=dt =-7V,(X)
(42)

@ L@ 7(4) 7,( )
It is easy to estimate the values '’ Wais 700 gng 730
From the relations (7) and Equations (39) to (42) we get

L i=0
8
(ZX + X —x—); i=1
ai(4) (x) = 1
(4x +2x° - x+j; i=2
8
5 4 3 2 1 H
—;r(Sx +4x" —=8x° - 3x +x—j; i=3
(43)
By choosing the collocation points
x@ = cos( (22k _1:);[), (k=1,2,3,4) _3
(2n+3) , for n=.s we obtain the

following system of linear equations:

3
e a®xW) = f(xY), k=1234

i=0

By solving this system for the unknown coefficients
(4) i _
¢, 1=0123 that produces
=0.1591549

c!¥ =0.3183098
c{¥ =2.358931x10°® (a4)

¢\ =—0.1591549

From Equation (44) we obtain the approximate solution of
Equation (17) in the form of

-2 |1-x
P, (X) = — [7—=(x* -1)
7 V1I+X

(45)



Which coincides with the exact solution. The error of

approximate Solution (45) of Equation 46 at n=20 is

givenin Table 1.

Example2 . Consider the following singular integral

equation

1 (t) 1
J‘(D—dtJrI(x3 +xt?) p(t)dt = x* +x
S t=X %

(46)
Which  corresponds  with k(t,x) =1 and
3 2
L(t,X) = X"+ X" o5 one gets
ko(x)=1, k,(x)=0, (p>0)
L)=x°, L(X)=0, L(¥=x L(X)=0 (q>2)

Hence we find that relation (10) produces

> e (x) =x° +x ~1<x<1 (j=1234)
i=0
Thus (11) gives

() =ul () +x°rP +xp5Y, (1=1234), (i=012..)

Firstly, let us consider in detail the case () , J =1, for
N=3_ This result in

LT, (t)

(1) I

From the relations (18) to (21) and (47) we obtain

7z(x3 +x/2) i=0

@ () =17 -
9nx /4 i=2
rax?-1) =3 8
By choosing the collocation points
(2k-Dx
X, = cos[ J (k=12,34) _
2(n+2) , for 3, we obtain the

following system of linear equations:

3
Zci(l) ai(l) (Xk ) = f (Xk ) ’ k = 11213)4
i=0
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By solving this system for the unknown coefficients

@ =
¢, 1=0123 produces

¢ =0.3183098
¢ =0.07073557

c® =1.090772¢10°® }
o _ -8
¢ =1.830649%10 49)

From (49) we obtain the approximate solution of Equation
46 in the form of

(7 +4x2)

1
P (X) = —F—

Which coincides with the exact solution. The error of

approximate Solution (50) of Equation (46) at n=20 is
givenin Table 2.
Secondly, let us consider in detail the case (ll) , I= 2,
for N =3 This result in
Y = I\/l—tz t2U, (t) dt,
1 (51)

By applying the relations (25)-(28) and (51) we get

Z(xe‘ - Bj i=0

2 4

2 1 —

@ () — — z(2x —125 i=1

- 72'(4X3 - —Xj i=2

8

— 7(8x* —8x2 +1) i=3 52)
By choosing the collocation points
x? = cos( (jk _1;” J (k=1,2,3,4)

(n+2) for ' T 3, we obtain the

following system of linear equations:

k=1234

3
26 af? () = (42),
i=0

By solving this system for the unknown coefficients

() ;_
1=0123 that produces

c{? =-1.170559 c/? =-1.331665x 10-9}
(2 _ @ _ _ -8
c? =-0.2258973  c{? =-1.644008<10 (53)
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Table 2. Errors of approximate solutions of Equation 46 in Case (I), Case (ll) and Case (IV) respectively at n=20.

X

error (j=1)

error (j=2)

error (j=4)

-9.500000E-01
-9.000000E-01
-7.000000E-01
-5.000000E-01
-3.000000E-01
-1.000000E-01
0.000000E+00
1.000000E-01
3.000000E-01
5.000000E-01
7.000000E-01
9.000000E-01
9.500000E-01

0.000000E+00
5.960464E- 08
8.940697E- 08
8.940697E- 08
8.940697E- 08
1.192093E- 07
1.043081E- 07
1.192093E- 07
8. 940697E-08
8.940697E- 08
8.940697E- 08
5.9604641E-08
0.000000E+00

0.000000E+00
5.960464E- 08
1.192093E- 07
1.192093E- 07
1.788139E- 07
1.788139E- 07
1.788139E- 07
1.788139E- 07
1.788139E- 07
1.192093E- 07
1.192093E- 07
5.960464E- 08
0.000000E+00

0.000000E+00
0.000000E+00
5.960464E- 08
1.192093E- 07
1.192093E- 07
1.788139E- 07
1.788139E- 07
1.192093E- 07
5.960464E- 08
1.192093E-07
0.00000E+ 00
5.960464E-08
0.000000E+00

From Equation (53) we obtain the approximate solution of
Equation (46) in the form of
—V1-x?
0, ()= "2 [92+88x?]
31r (54)

which coincides with the exact solution. The error of

approximate solution (54) of Equation 46 at n=20 is

given in Table 2.

Thirdly, In case (1V), I= 4, for n=3. This result in

y$4 :j /ﬂ t2W (t) dt
2Nt ’

By applying the relations (39) to (42) and (55) we get

(55)

7z(x3 + X —1) i=0
2
. - 77(9 X —l) i=1
ai( (x) = 4
4
_ 3 py2 _ i
7z(8x 4x° —4x +1) i=3 (56)
By choosing the collocation points
x\@ = cos[(zzk _1;”} (k =1,2,3,4) _3
(2n+3) , for N'=9 \ve obtain the

following system of linear equations:

3
Se®a®x®) = f(x*), k=1234

i=0

By solving this system for the unknown coefficients

@) j=
¢, 1=0123 that produces

¢f? =cf? =-5852794, cf? =cl” =-0.1129487 o,

From Equation (57) we obtain the approximate solution of
Equation (46) in the form of

0. (0= —= 12X 11 3y 92+88x?)
31z V1+ X (58)

which coincides with the exact solution. The error of
approximate Solution (58) of Equation (46) at n=20 is
given in Table 2.

Similarly, doing the same operations as we did for
Case (l), Case (Il) and Case (IV), one can solve for Case

(.

Example 3. Consider the following singular integral
equation

1 (t) 1 _3
I¢—dt+_[(x2 +t?) p(t) dt = — x* +2x
s t—X 71 2

: (59)
which corresponds with Kt.x) =1 ;g LEX) =x"+t*
So, one gets
k() =1, k,(x)=0, (p>0)

L) =x, L()=0 L(=1 L,()=0 (q>2)



Table 3. Errors of approximate solutions of Equation 59 in Case (ll) and Case (lll) at
n=20.
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X

error (j=2)

error (j=3)

-9.500000E-01
-9.000000E-01
-7.000000E-01
-5.000000E-01
-3.000000E-01
-1.000000E-01
0.000000E+00
1.000000E-01
3.000000E-01
5.000000E-01
7.000000E-01
9.000000E-01
9.500000E-01

2.980232E-08
2.980232E-08
0.000000E+00
0.000000E+00
0.000000E+00
5.960464E-08
5.960464E-08
5.960464E-08
1.192093E-07
1.192093E-07
1.192093E-07
8.940697E-08
5.960464E-08

2.980232E-08
5.960464E-08
5.960464E-08
1.192093E-07
1.192093E-07
1.192093E-07
1.192093E-07
1.192093E-07
1.192093E-07
8.940697E-08
0.000000E+00
1.788139E-07
3.278255E-07

Hence the relation (10) produces

Sellgllx)="2x +2x, —L<x<l j=1234
0 2 (60)

where Equation (11) gives

a0 =u 00+ +74), (1=1234), (1=012..)

Firstly, let us consider in detail the case (ll), )= 2, for
N=3 From Equation (25) to (28) and (51) we get

%(4x2—8x+1) i=0

—rl2x* -1 i=1
o (x) = 7[( )

%(32x3 —24x-1)  i=2

—zlext—8x?+1)  i=3 61
By solving the system (60), at the collocation points
X2 = cos((Zk _1)”} (k =12,3,4)

2(n+2) , for  the unknown
(@ ;_

coefficients 1+ 1 = 0123 we obtain

c{? =-0.6366197,
c{? =1.746461x10°®,

¢ =0.07957754
¢f? =1827517x10°] g

So the approximate solution of Equation 59 is given by

B S A Vi-x* (4—x)

P, (X) = . | ©3)

Which coincides with the exact solution, the error of the

approximate solution (63) of Equation 59 at N =20 js
given in Table 3.

=3

Secondly, In case (lll), J , for n=3. This result in

yQ = j 1+t oy 0 dt,

(64)
From (32)-(35) and (64) we get
[xz +3j i=0
7[[2X+ j i=1
a®(x) =
n[4x2+2x—j i=2
w(8x® +4x2 —4x+1) =3 (65)

By solving the system (60), at the collocation points

x® =cos[ 22k” J,(k =1,2,3,4)
(2n+3) . for the unknown
@) ;i _
coefficients ¢”, 1=0123 we obtain

¢ =-0.3183099,
¢ =-0.03978872,

c® =0.3580087,

¢ =-8.155105 x10°° (66)
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Hence, the approximate solution of Equation 59 is given
by

-1 [1+X

@, (X) = — (x* —5x + 4)
27

1-x 67)

Which coincides with the exact solution, the error of the

approximate solution (67) of Equation (59) at N =20 js
given in Table 3.

Similarly, doing the same operations as we did for
Case (II) and Case (lll), one can solve for Case (I) and
Case (V). Table 1 illustrates errors of approximate

solutions of Equation 17 in Cases (I)-(IV) at n=20,
Table 2 illustrates errors of approximate solutions of
Equation 46 in Case (l), Case (II) and Case (IV)

respectively at N=20 Taple 3 illustrates errors of
approximate solutions of Equation 59 in Case (Il) and

Case (Ill) at N=20,

Conclusion

Numerical results (Tables 1, 2 and 3) show that the errors
of approximate solutions of Examples 1-3 in different

Cases with small value of N are very small. These show
that the methods developed are very accurate and in fact
for a linear function give the exact solution.
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