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This paper represents a new approach of the radial basis functions method for handling a class of the 
second-order hyperbolic telegraph equation. In this approach, we decompose the domain of the 
problem to a few sub domains as vertically or horizontally. The proposed approach is capable of 
reducing the size of calculations and easily overcomes the difficulty of solving complicated algebraic 
systems in large scale problems. To confirm the accuracy of the proposed approach, several examples 
are presented. The results of numerical experiments are presented with and without decomposition 
method and, will be compared with analytical solutions to confirm the convergence of the proposed 
method, good accuracy and the low computational time. 
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INTRODUCTION 
 
We consider the second-order linear hyperbolic telegraph 
equation in one-space dimension, given by 
 

 
 
Both the electric voltage and the current in a double 
conductor, satisfy the telegraph equation, where x is 
distance and t is time. Equations of the form (1) arise in 
the study of propagation of electrical signals in a cable of 
transmission line and wave phenomena. Interaction 
between convection and diffusion or reciprocal action of 
reaction and diffusion describes a number of nonlinear 
phenomena in physical, chemical and biological process 
(Mohebbi and Dehghan, 2008). In fact the telegraph 
equation is more suitable than ordinary diffusion equation 
in modeling reaction–diffusion for such branches of 
sciences (Dehghan and Ghesmati, 2010). For example, 
biologists encounter these equations in the study of 
pulsate blood flow in arteries and in one-dimensional 
random motion of bugs along a hedge (Mohanty, 2009). 
Also, the  propagation  of  acoustic  waves  in  Darcy-type  
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porous media (Pascal, 1986); and parallel flows of 
viscous Maxwell fluids (Bohme, 1987) are just some of 
the phenomena governed (Evans and Bulut, 2003) by 
Equation (1). Some discussions about derivation of the 
telegraph equation are described in Mohebbi and 
Dehghan (2008).  

In the last 20 years, the radial basis functions (RBFs) 
method is known as a powerful tool for scattered data 
interpolation problem. The use of RBFs as a meshless 
procedure for numerical solution of partial differential 
equations (PDEs) is based on the collocation scheme. 
Because of the collocation technique, this method does 
not need to evaluate any integral. The main advantage of 
numerical procedures which use RBFs over traditional 
techniques is meshless property of these methods. The 
RBFs were used actively for solving PDEs (Dehghan and 
Shokri, 2008). Also, Dehghan and Tatari (2006) used 
RBFs for finding the solution of an inverse problem with 
source control parameter.  

In the last decade, the development of the RBFs as a 
truly meshless method for approximating the solutions of 
PDEs has drawn the attention of many researchers in 
science and engineering. One of the domain-type 
meshless methods has been obtained by directly 
collocating the RBFs, particularly the multiquadric (MQ), 
for the numerical approximation of the solution (Adibi and  
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Table 1. Some well-known functions that generate RBFs. 
 

Name of function Definition 

Gaussian (GA)  

Hardy Multiquadric (MQ) 
 

Inverse Multiquadric (IMQ) 
 

Inverse Quadric (IQ)  
 

 
 
 

Es’haghi, 2007). 
Dehghan and Shokri (2008) studied the numerical 

scheme to solve one and two-dimensional hyperbolic 
equations using collocation points and approximating 
directly the solution using the thin-plate-spline RBFs. The 
scheme works in a similar fashion as finite difference 
methods. In addition, Dehghan and Ghesmati (2010) 
used a numerical method based on the boundary integral 
equation (BIE) and an application of the dual reciprocity 
method (DRM) to solve the second-order one space-
dimensional hyperbolic telegraph equation. In Dehghan 
and Ghesmati (2010) three different types of RBFs 
(cubic, thin plate spline and linear RBFs), were used to 
approximate functions in the dual reciprocity method 
(DRM). The traditional RBFs are globally defined 
functions which result in a full resultant coefficient matrix. 
This hinders the application of the RBFs to solve large 
scale problems due to severe ill-conditioning of the 
coefficient matrix (Dehghan and Tatari, 2006).  

 In this article, to overcome this ill-conditioning problem 
in large scale problem and to get good accuracy in short 
computational time, a new approach of the RBFs method 
is constructed based on decomposition domain idea. In 
this method, we decompose the domain of the problem 
into a few sub domains as vertically or horizontally. 
 
 

Radial basis function approximation 
 

Here, the RBFs method is defined as a technique for 
interpolation of the scattered data. Some well-known 
RBFs are listed in Table 1. Let r be the Euclidean 
distance between a fixed point  and any 

 
that is . A radial function  

 depends only on the distance 

between   and fixed point . This property 

concludes that, the RBF  is radially symmetric about 

. It is clear that the functions in Table 1 are globally 

supported, infinitely differentiable and depend on a free 
parameter c. 

Let  be a given set of distinct points in 

. The main idea behind the use of RBFs is 

interpolation by translating a single function, that is, the 
RBFs interpolation is considered as 
 

                                                      (2) 

 
 
 
 

where  and  are unknown 

scalars. For instance, consider the given values 

 To compute the unknown scalars 
 , we impose  for  which 

can be written as the following linear system equations. 
 

                                                                        (3) 
 

where 
. 

Since all applicable � have global support, this method 
produces a dense matrix A. The matrix A can be shown 
to be positive definite (and therefore nonsingular) for 
distinct interpolation points for GA, IMQ and IQ by 
Schoenberg’s Theorem (Dehghan and Tatari, 2006). 
Also, using the Micchelli Theorem, we can show that A is 
invertible for distinct sets of the scattered points in the 
case of MQ (Micchelli, 1986). 

Although the matrix A is nonsingular in the 
aforementioned cases, usually it is very ill-conditioned, 
that is, the condition number of A 
 

                         (4) 
 

is a very large number (Dehghan and Tatari, 2006). 
Therefore, a small perturbation in initial data may 
produce a large amount of perturbation in the solution. 
Thus, we have to use more precision arithmetic than the 
standard floating point arithmetic in our computation. For 
a fixed number of interpolation points, the condition 
number of A depends on the shape parameter c, support 
of the RBFs and minimum separation distance of 
interpolation points. Also, the condition number grows 
with N for fixed values of shape parameter c. In practice, 
the shape parameter c must be adjusted with the number 
of interpolating points in order to produce an interpolation 
matrix which is well conditioned enough to be inverted in 
finite precision arithmetic (Sarra, 2005). 

Despite research done by many scientists to develop 
algorithms for selecting the values of c which produce the 
most accurate interpolation (Rippa, 1999), the optimal 
choice of shape parameter is still an open question. 

Generally, for a fixed number of collocation points N, 
larger values of c produce better approximations, but the 
matrix A will be more ill-conditioned. Spectral accuracy is 
obtained in interpolating smooth data using global, 
infinitely differentiable RBFs (Shu et al., 2004). We 
suppose that, the second-order hyperbolic telegraph 
equation  is a well-pose equation and 

has a unique solution. 
If  then the solution of  

 belongs to  and  is a 

Hilbert space. If  is an orthonormal basis for  

, then one can prove that each  
has the representation  
 

                                                   (5) 



 
 
 
 
That is, (5) means by definition that  
 

      (6) 
 

Concerning the RBFs, however, this is not generally the 
case, for example Gaussian RBFs does not form an 
orthonormal basis for . We now investigate about 

expansion property for RBFs. The family of RBF 

considered here consists of functions  

represented by 
 

                                            (7) 
 

 
 
 

Theorem 
 

Let  be an integrable bounded function such 

that, K is continuous almost everywhere and 

 
Then, the family  is dense in 

. 

 
 

Proof: See Park and Sandberg, 1991 
 

Note that there is no requirement of radial symmetry of 
the kernel function K in the aforestated theorem. Thus, 
the theorem is stronger than necessary for RBFs, and 
might be useful for other purposes. By K radially 

symmetric, we mean that  implies 

. In this case, the function  is 

obtained by defining . where z is any 

element of   such that . 

Therefore, in the case of radial symmetry, Equation (7) 
can be written as 
 

 
    (8) 

 

If we choose the function K such that 
 

          
               (9) 

 

The Gaussian RBFs have been introduced and all 
conditions in theorem have been satisfied, thus, the 

family  is dense in . 
We are now ready to discuss Kansa’s collocation 

method. Assume that the domain   and the 
second-order hyperbolic telegraph equation of the form 

 

                                         (10) 
 

are   given  with  (for  simplicity  of   description)   Dirichlet  

Esmaeilbeigi et al.        1519 
 
 
 
boundary conditions 
 

                                          (11) 
 

We expand u by RBFs, that is, 
 

                                     (12) 
 

where the points  are a set of centers for the 

RBFs which are usually selected to coincide with the 

collocation points . We assume the 

simplest possible setting here, that is, no polynomial 
terms is added to the expansion (12). The collocation 
matrix which arises when matching the differential 
Equation (10) and the boundary conditions (11) at the 
collocation points  has below form Adibi and Es’haghi 

(2007); 
 

                                                               (13) 

 
where the two blocks are generated as follows: 
 

                 (14) 

 
And 
 

     
    (15) 

 
The set is split into a set I of interior points, and B of 

boundary points. The problem is well-posed if the linear 
system Ac = y, with y as a vector consisting of entries 

, followed by ,has a unique 

solution. The collocation matrix A has not been proven to 
be non-singular but in Hon and Schaback (2001), it was 
shown that finding a numerically singular matrix was very 
rare. 
 
 

Implementation of the domain decomposition method 
 

Let us consider the following hyperbolic telegraph 
equation: 
 

 
 
With the initial conditions 
 

                                    (17) 

            
and Neumann boundary condition 
 

                               (18) 
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Figure 1. Vertically decomposition. 

 
 
 

 
 
Figure 2. Horizontally decomposition. 

 
 
 

In this method, we decompose  into a few sub domains 

as vertically, Figure 1, or horizontally, Figure 2. 
We explain this method in two parts: vertically 

decomposition and horizontally decomposition. In the 

horizontal approach of domain decomposition, the  is 

assumed to be decomposed vertically into  

with the same shape and area. Now, we use the RBFs 
for discretization of both time and space variables. Let 

 

be a set of scatted nodes. Where for getting better results 

 are shifted to Chebyshev-Gauss-Lobatto 

nodes on  respectively as follows: 

 

                        (19) 

 

                   (20) 

 

We use the same discretization in all sub domains. We 

have   a   net   with    nodes  in  each  sub  

 
 
 
 
domain. Then the solution of the problem (16) to (18) on 

 is considered as follows: 
 

                         (21) 

 

Where  for 

the Gaussian RBF   with  and 

 are unknown constants that must be 

found. The nodes  are centers 

for   . 

If we consider collocation points the same as centers 
and (16) to (18) are approximated using (21) with these 
collocation points, we have 
 

  

 

equations with  unknowns. 

To cope with this difficulty, we use of  

collocation points on each sub domain. Again these 
collocation points are shifted to Chebyshev-Gauss-

Lobatto nodes on  and  respectively as 

follows: 
 

                      (22) 

 

                   (23) 

 

Now the collocation technique is used for finding 

unknowns . Let  

 

  

 

Where  

 

 

 

 
 

Also we assume  . 

Now (16) to (18) are approximated using (21), thus we 
have  
   

   equations  

  

          … 

 

                                        

 

            

           
 



 
 
 
 

with  unknowns such that: 

 

 

 

 

  
 

These result to a linear system of equations in each sub 
domains. For the first sub domain we have 

 as initial conditions but for k-th sub 

domain we need to use solution and derivative of solution 
in (k-1)-th sub domain as initial conditions. These linear 
systems are solved one by one and the approximate 
solution of the problem (16) to (18) is obtained on each 
sub domain. Due to the radial property of RBFs and 
because of the identical distribution of centers and 
collocation points in each sub domain, the coefficient 
matrix remains unchanged in each sub domain. 
Concerning coefficient matrix, the LU factorization is 
applied only once and it will be utilized in our algorithm. 
This leads to saving a lot of time in computations. 

In vertical approach of domain decomposition, as 
before processing, the collocation technique will be used 

for finding unknown .  
 

Let   
 

where  

 

 

 

 
 

Also, we assume  . 

Now (16) to (18) are approximated using (21), thus we 
have   
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equations with  unknowns such that: 

 

 

 

 

 
 
That s and r vary from 1 to N1-2 and for every  

 one unit will be added to s and 

for every   one unit will be added 

to r and finally we have: 
 

 
 
In each sub domain we have a linear system of 
equations. Due to the radial property of RBFs and 
because of the identical distribution of centers and 
collocation points in each sub domain, the coefficient 
matrix remains unchanged in each sub domain. 
Concerning coefficient matrix, the LU factorization is 
applied only once and it will be utilized in our algorithm. 
The results have been achieved; however, a few 
unknown elements exist in the solution on each sub-
domain. To find these elements, we impose the solutions 
in the sub-domains to get the same amount and the 
same derivative in the collocation points of their common 

boundaries (except for the collocation points in ). 

This way, there will be a small linear system that can be 
solved more easily. Eventually, the solutions will be 
obtained without any unknown in each sub domains. 
 
 
NUMERICAL RESULTS 
 
Here we present some numerical results to test the 
efficiency of the new scheme for solving the hyperbolic 
telegraph equation. 
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Figure 3. The shape of domain 

decomposition for example 1. 
 
 
 

Table 2. Errors and computational time, without domain decomposition method, in example 1.  
 

Computational domain 
  

RMS Total time (s) 

D    265 

 
 
 

Table 3. Errors and computational time, with domain decomposition method, in example 1. 
 

Computational domain 
  

RMS Total time (s) 

    
 

30     

    
 
 
 

Example 1 
 

In this example, we consider the hyperbolic telegraph 

Equation (1) with  and  in the interval 

 and . In this case we have 

. The exact solution by 

Dehghan and Ghesmati (2010) is 

. The initial conditions are 

given by:  
 

 
 

The Neumann boundary conditions obtained from the 
exact solution. 

We decompose the domain  
 

 into three sub 

domains   

 ,  

 , 

    

 

The Figure 3 presents a view of domain decomposition. 

We use GA-RBFs with   ,  (the number 

of floating point arithmetic) and   in the domain 

D without domain decomposition and use GA-RBFs with 

,  and  in three sub domains 

 with vertical domain decomposition.  

The and  errors and Root-Mean-Square (RMS) of 

error and time of computations are presented and 
compared with and without domain decomposition in 
Tables 3 and 2 respectively. It should be mentioned that 
the total time required for getting the results in all sub 
domains is presented in Table 3. 
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Figure 4. The shape of domain decomposition for 
example 2. 

 
 
 

Table 4. Errors and computational time, without domain decomposition method, in example 2. 

 

Computational domain 
  

RMS Total time (s) 

D 
   

272 

 
 
 

Example 2 
 
Consider the hyperbolic telegraph Equation (1) with 

 and  in the interval  and 

 In this case we have 

 

 
 
The exact solution by Dehghan and Ghesmati (2010) is 

. The initial conditions are given by 

  

 
 
The Neumann boundary conditions obtained from the 
exact solution. 
We decompose the domain 
 

  into two sub 

domains  

 ,  

 
 

The Figure 4 presents a view of domain decomposition. 

We use GA-RBFs with   ,  and   

in the domain D without domain decomposition  and   use  

GA-RBFs with   ,  and  in two 

sub domains  with vertical domain decomposition. 

The  and  errors and Root-Mean-Square (RMS) of 

error and time of computations are presented and 
compared without and with domain decomposition in 
Tables 4 and 5 respectively. It should be mentioned that 
the total time required for getting the results in all sub 
domains is presented in Table 5. 
 
 

Example 3 
 

In this example, we consider the hyperbolic telegraph 

Equation (1) with  and  in the interval 

 and  In this case we have 

 

 
 

The exact solution by Dehghan and Ghesmati (2010) is 

. The initial conditions are given 

by:  
 

 
 

The Neumann boundary conditions obtained from the 
exact solution. 

We decompose the domain  
 

 into two sub 

domains  
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Table 5. Errors and computational time, with domain decomposition method, in example 2. 
 

Computational domain 
  

RMS Total time (s) 

    
 

32 

    
 
 
 

 
 
Figure 5. The shape of domain decomposition for example 3. 

 
 
 

Table 6. Errors and computational time, without domain decomposition method, in example 3. 
 

Computational domain 
  

RMS Total time (s) 

D 
   

266 

 
 
 

Table 7. Errors and computational time, with domain decomposition method, in example 3. 
 

Computational domain 
  

RMS Total time (s) 

     

18 
    

 
 
 

 
 
The Figure 5 presents a view of domain decomposition. 

We use GA-RBFs with   ,  and   

in the domain D without domain decomposition and use 

GA-RBFs with   ,  and  in two 

sub domains  with vertical domain decomposition. 

The  and  errors and Root-Mean-Square (RMS) of 

error and time of computations are presented and 
compared without and with domain decomposition in 
Tables 6 and 7 respectively. It should be mentioned that 
the total time required for getting the results in all sub  
domains is presented in Table 7. 

Example 4 
 

In this example, we consider the hyperbolic telegraph 

Equation (1) with  and  in the interval 

 and . In this case, we have 

 

 
 

The exact solution by Dehghan and Ghesmati (2010) is 

. The initial conditions are 

given by  
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Figure 6. The shape of domain decomposition for 

example 4. 
 
 
 

Table 8. Errors and computational time, without domain decomposition method, in example 4. 
 

Computational domain 
  

RMS Total time (s) 

D 
   

172 

 
 
 

Table 9. Errors and computational time, with domain decomposition method, in example 4. 
 

Computational domain 
  

RMS Total time (s) 

    

30 
    

    
 
 
 

The Neumann boundary conditions obtained from the 
exact solution. 

We decompose the domain 

 into three sub 

domains    
    

  

 

 
 
The Figure 6 presents a view of domain decomposition. 

We use GA-RBFs with   ,  and    

in the domain D without domain decomposition and use 

GA-RBFs with   ,  and  in three 

sub   domains          with    horizontal    domain  

decomposition. 

The  and  errors and Root-Mean-Square (RMS) 

of error and time of computations are presented and 
compared without and with domain decomposition in 
Tables 8 and 9 respectively . It should be mentioned that 
the total time required for getting the results in all sub 
domains is presented in Table 9.  
 
 
Example 5 
 
In this example, we consider the hyperbolic telegraph 

Equation (1) with  and  in the interval 

and  In this case we have 

 

 
 

The exact solution is . The
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Figure 7. The shape of domain decomposition for example 5. 

 
 
 

Table 10. Errors and computational time, without domain decomposition method, in example 5. 
 

Computational domain 
  

RMS Total time (s) 

D 
   

274 

 
 
 

Table 11. Errors and computational time, with domain decomposition method, in example 5. 
 

Computational domain 
  

RMS Total time (s) 

    
 

22 

    

    
 
 
 
initial conditions are given by:  
 

 
 
The Neumann boundary conditions obtained from the 
exact solution. 

We decompose the domain 

 into three sub 

domains   
     

 

 

 
 
The Figure 7 presents a view of domain decomposition. 

We use GA-RBFs with   ,  and   

in the domain D without domain decomposition  and  use 

GA-RBFs with   ,  and  in three 

sub domains  with vertical domain 

decomposition. The  and  errors and Root-Mean-

Square (RMS) of error and time of computations are 
presented and compared without and with domain 
decomposition in Tables 10 and 11 respectively. It should 
be mentioned that the total time required for getting the 
results in all sub domains is presented in Table 11.       

 
 
Conclusion 

 
The RBFs were used for solving a class of second-order 
hyperbolic telegraph equation. We proposed a numerical 
scheme to solve these hyperbolic equations using 
collocation points and estimated the solution directly 
using the GA RBFs. In this scheme, we decomposed the 
domain of problem into a few sub domains as vertically or 
horizontally. The numerical results demonstrate the high 
accuracy of the scheme proposed in this research in 
comparison with the classical methods lacking domain 
decomposition. Numerical results show that, the 
computational time and the accuracy of approximation 
solution are more advantageous. In addition we can cope  



 
 
 
 
with ill conditioning in some large scale problems with this 
technique because we can work with the smaller system 
of equations. Therefore the domain decomposition 
method can be an appropriate substitution for the 
classical ones, that is, without domain decomposition. It 
should be taken into account that collocation on the 
Chebyshev-Gauss-Lobatto is more accurate than that of 
the uniform grid. The proposed method can be extended 
to solve the nonlinear PDEs.  
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