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Slope stability analysis of any natural or artificial slope aims at determining the factor of safety of the 
slip surface that possesses the lowest factor of safety. The search for the minimum factor of safety 
based on limit equilibrium methods is a complex optimization problem where there are several local 
minima. In this paper, a newly developed heuristic global optimization algorithm, called gravitational 
search algorithm (GSA), is introduced and applied in slope stability analysis. The safety factors of the 
general slip surfaces are calculated using a concise algorithm of Morgenstern and Price method, which 
satisfies both force and moment equilibrium. The reliability and efficiency of the proposed algorithm are 
examined by considering a number of published cases. The results indicate that, the proposed method 
could provide solutions of high quality, accuracy and efficiency, and could predict the critical failure 
mechanisms of earth slope and outperforms the other methods in the literatures. 
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INTRODUCTION  
 
The slope stability analysis is a problem of significant 
concern in many engineering fields, particularly, mining 
engineering, hydraulic engineering and geotechnical 
engineering. Slope stability analysis involves attention of 
a wide variety of variables such as external forces, pore 
water pressures, soil strength parameters, topographic 
and geologic conditions, etc. A quantitative assessment 
of the stability of a slope is clearly important when a 
judgment is needed about whether the slope is stable or 
not. For slope stability analysis a lot of solution methods 
have been developed over the years. Such methods 
include limit equilibrium methods, limit analysis method, 
rigid element method, finite element method, distinct 
element methods and probabilistic analysis approaches 
(Cheng and Lau, 2008). 

The generally adopted approach of slope stability 
analysis is the limit equilibrium method of slices. Most 
problems in slope stability are highly statically indeter-
minate, and to render it determinate some simplifying 
assumptions are made  in  order  to  determine  a  unique  
 
 
 
*Corresponding author. E-mail: mohammad.khajehzadeh@ 
gmail.com. 

factor of safety. Based on different assumptions, various 
methods of slices have been proposed such as Bishop 
(1955), Morgenstern and Price (1965), Spencer (1967), 
Janbu (1973), etc. A number of these methods are 
applicable to a circular slip surface and satisfy only 
overall moment equilibrium such as Bishop’s method, 
while others are applicable to any shape of slip surface 
and satisfy both moment and force equilibrium such as 
Morgenstern and Price and Spencer method. In the 
method of slices, the potential sliding mass is subdivided 
into a number of slices. Then a critical slip surface of 
predetermined shape is searched, for which the factor of 
safety is minimized. 

Several optimization methods have been employed to 
automate the search for the critical failure surface and 
associated factor of safety. Attempts to use this approach 
include Baker (1980), Greco (1996), Malkawi et al. 
(2001), Pham and Fredlund (2003), Cheng (2003), 
Zolfaghari et al. (2005), Cheng et al. (2008), 
Kahatadeniya et al. (2009), Khajehzadeh et al. (2010), 
and others. Be different with other heuristic optimization 
algorithm based on swarm behaviors, such as genetic 
algorithm and particle swarm optimization, gravitational 
search algorithm (GSA) is a newly developed heuristic 
optimization  method  based  on  the  law  of  gravity  and 



 
 
 
 
mass interactions (Rashedi et al., 2009). GSA is 
characterized as a simple concept that is both easy to 
implement and computationally efficient. The method has 
confirmed higher performance in solving various 
nonlinear functions, when compared with some well-know 
search methods (Rashedi et al., 2009).  

In this paper, GSA combined with a new approach of 
Morgenstern and Price method is proposed to search for 
the critical slip surface of earth slope. Traditionally, 
nonlinear equations that arise from the Morgenstern and 
Price (MP) method are solved using a numerical method 
like the Newton-Raphson method. Zhu et al. (2005) 
introduced a concise algorithm for computing the factor of 
safety using the MP method. In this approach, the two 
equilibrium equations used in the MP method are re-
derived to obtain two expressions for the factor of safety 
(FS) and the scaling factor (�). Generally speaking, the 
major advantages of the proposed methodology for the 
slope stability analysis may be expressed as follows: (1) 
the method can easily be dealt with the complex soil 
profiles, variable soil properties and loading conditions; 
(2) the minimum factor of safety and critical failure 
surface are found automatically without the need for a 
trial and error search; (3) the slip surface can be of any 
shape; (4) the method is derived from both moment and 
force equilibrium, and the factor of safety derived from 
both moment and force equilibrium is more reliable than 
the one derived either from the moment or force 
equilibrium; (5) the numerical methods are not required to 
solve the equations of the MP method; (6) the 
gravitational search algorithm can perform well even for 
non-convex functions with many local minima, and is very 
suitable for the present study. Based on these 
advantages, a computer program called stability analysis 
of slopes using gravitational search algorithm (SAS-GSA) 
was developed by MATLAB. The program searches for 
the most critical slip surface and calculates its associated 
minimum factor of safety. 
 
 
GRAVITATIONAL SEARCH ALGORITHM 
 
Gravitational search algorithm (GSA) is a newly 
developed stochastic search algorithm based on the law 
of gravity and mass interactions (Rashedi et al., 2009). In 
this approach, the search agents are a collection of 
masses which interact with each other based on the 
Newtonian gravity and the laws of motion, in which the 
method is completely different from other well-known 
population-based optimization method inspired by the 
swarm behaviors. In GSA, agents are considered as 
objects and their performance are measured by their 
masses. All of the objects attract each other by the 
gravity force, while this force causes a global movement 
of all objects towards the objects with heavier masses 
(Rashedi et al., 2009). The heavy masses correspond to 
good solutions of the problem. In other words, each mass 
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presents a solution, and the algorithm is navigated by 
properly adjusting the gravitational and inertia masses. 
By lapse of time, the masses will be attracted by the 
heaviest mass which it presents an optimum solution in 
the search space. 

To describe the GSA, consider a system with N agents 
(masses), the position of the agent i is defined by: 

 
Xi = (xi

1,. . ., xi
d,. . ., xi

n) for i = 1, 2, . . ., N       (1) 
  
where xi

d presents the position of the agent i in the 
dimension d and n is the search space dimension. 

After evaluating the current population fitness, the 
mass of each agent is calculated as follows: 
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where fiti(t) represent the fitness value of the agent i at 
time t. Best(t) and worst(t) are the best and worst fitness 
of all agents, respectively and are defined as follows:  
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To evaluate the acceleration of an agent, total forces 
from a set of heavier masses applied on it should be 
considered based on a combination of the law of gravity 
according to: 
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where randj is a random number in the interval [0, 1], G(t) 
is the gravitational constant at time t, Mi and Mj are 
masses of agents i and j, � is a small value and Ri,j(t) is 
the Euclidean distance between two agents, i and j. kbest 
is the set of first K agents with the best fitness value and 
biggest mass, which is a function of time, initialized to K0 
at the beginning and decreased with time. Here K0 is set 
to N (total number of agents) and is decreased linearly to 
1.

 

By the law of motion, the acceleration of the agent i at 
time t, and in direction d, ai

d(t) is given as follows: 



5014          Int. J. Phys. Sci. 
 
 
 

,
2

( )( )
( ) ( ) ( ( ) ( ))

( ) ( ), ( )

d
jd d di

i j j i
j kbest j ii i j

M tF t
a t randGt x t x t

M t X t X t ε∈ ≠

= = −
+�

   

(6)

            
  
Finally, the searching strategy on this concept can be 
described by following equations:  
  

( 1) ( ) ( )d d d
i i i iv t rand v t a t+ = × +        (7)                                                             

  

( 1) ( ) ( 1)d d d
i i ix t x t v t+ = + +

                                 (8)                                                                  
 
where xi

d, vi
d and ai

d represents the position, velocity and 
acceleration of ith agent in dth dimension, respectively. 
randi is a uniform random variable in the interval [0, 1]. 
This random number is applied to give a randomized 
characteristic to the search.  

It must be pointed out that the gravitational constant 
G(t) is important in determining the performance of GSA 
and is defined as a function of time t:  
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where G0 is the initial value, � is a constant, t is the 
current iterations and tmax is the maximum number of 
iteration. The parameters of maximum iteration tmax, 
population size N, initial gravitational constant G0 and 
constant � control the performance of GSA (N, G0, � and 
tmax). 

According to the earlier description, the whole workflow 
of the gravitational search algorithm is as follows: 
 
Step 1: Define the problem space and set the 
boundaries, that is equality and inequality constraints.  
Step 2: Initialize an array of masses with random 
positions. 
Step 3: Check if the current position is inside the problem 
space or not. If not, adjust the positions so as to be inside 
the problem space.  
Step 4: Evaluate the fitness value of agents.  
Step 5: Update G(t), best(t), worst(t) and Mi(t) for i = 1,2,. 
. .,N. 
Step 6: Calculation of the total force in different directions 
and acceleration for each agent based on Equations 5 
and 6. 
Step 7: Update the velocities according to Equation 7.  
Step 8: Move each agent to the new position according to 
Equation 8 and return to Step 3.  
Step 9: Repeat Step 4 to Step 8 until a stopping criteria is 
satisfied. 
 
In (Rashedi et al., 2009), GSA has been compared with 
some  well  known  heuristic  search  methods.  The  high  

 
 
 
 
performance of GSA has been confirmed in solving 
various nonlinear functions. As an excellent optimization 
algorithm, GSA has the potential to solve a broad range 
of optimization problems. In this paper, the method is 
applied for slope stability analysis.  
 
 
SLOPE STABILITY ANALYSIS MODEL 
 
The generally adopted approach to evaluating the factor 
of safety and deterministic analysis of slopes is the limit 
equilibrium method of slices. In this study, a concise 
algorithm of Morgenstern and Price (1965) method is 
used for calculation of the safety factor (Zhu et al., 2005). 
The MP method is one of the popular methods among 
limit equilibrium methods. In this method, both moment 
and force equilibrium will be satisfied simultaneously for 
any shape of failure surfaces. The essence of the method 
is to divide the sliding mass into a finite number of vertical 
slices. The MP method assumes the inclination of the 
resultant inter-slice force varying symmetrically across 
the slide mass. Thus, the relationship between the 
normal and shear inter-slice force may be expressed as: 
 

ExfT .).( λ=                                       (10)                                                                       
 
where T is the shear inter-slice force, E is the normal 
inter-slice force, � is a scaling factor to be evaluated in 
solving for the safety factor and f(x) is the assumed inter-
slice force function with respect to x. Several functions 
may be used as f(x) such as constant function, 
trapezoidal function, sine function and half-sine function 
(Fredlund and Krahn, 1977). In order to evaluate the 
factor of safety (FS), one should consider the forces 
acting on a typical vertical slice of a natural slope with 
general-shaped slip surface as shown in Figure 1. 

Referring to Figure 1, Wi = weight of the slice; N'i = 
effective normal force at the base of the slice; Si = 
mobilized shear strength at the base of the slice 

(
ta ni i i

i

c l N
S

F S
ϕ′ ′ ′+

= ); ci' = effective cohesion at the 

base of the slice; �i' = effective angle of internal friction at 
the base of the slice; li= length at the base of the slice; Ui 
= pore water pressure at the base of the slice; Qi = 
external surcharge of the slice; �i = inclination of the slice 
base; bi = width of the slice; hi = average height of the 
slice; Kh = horizontal seismic coefficient; ha = height of 
center of the slice; �i = inclination of the slice top; �i = 
inclination of surcharge load. 

Considering the force equilibrium of the slice i and 
resolving perpendicular to the slip surface, we have: 

 
1 1 1( cos )cos ( sin )sini i i i i i i i i h i i i i i i iN W f E f E Q k W E E Q Uλ λ δ α δ α− − −′ = + − + + − + − + −

 (11) 
 
and resolving parallel to the slip surface, we have: 
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Figure 1. Forces acting on a typical slice of a natural slope. 
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Substituting Equation 11 into Equation 12 yields 
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in which  
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Equation 13 is rearranged in the form as follows: 

 

1 1 1i i i i i i iE E T FS Rψ − − −Φ = Φ + −
                      (16)                                                

 
in which 
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With the condition E0 = 0 and En = 0 (where E0 and En are 
the inter-slice forces at the boundaries), from Equation 16 
the force equilibrium equation is derived in the form of an 
expression for the factor of safety in the form as follows: 
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Consider the summation of moments about the center 
point of the base of the ith slice. 
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The moment equilibrium equation is derived in the form of 
an explicit expression for the scaling factor � as follows: 
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Figure 2. Procedure for generating acceptable failure surface. 

 
 
 
To solve for the factor of safety, first specify the form of the 
inter-slice function f(x) and assume the initial value for FS 
and �. The appropriate choice for initial values of FS and 
� are 1 and 0, respectively (Zhu et al., 2005). Then, FS is 
obtained by an iterative procedure. After that, the values 
of Ei and � are calculated based on the Equations 16 and 
22. Finally, the factor of safety is recalculated with these 
computed values of scaling factor. The iterative 
procedure is completed when the difference between 
computed values of FS and � is within an acceptable 
tolerance. 
 
 
GENERATION OF GENERAL SLIP SURFACE 
 
To find the position of critical slip surface, a trial failure 
surface generation algorithm is required. In this study, the 
procedure for the generation of potential failure surfaces 
proposed by Cheng (2003) is used. Consider the 
Cartesian coordinate system xy as shown in Figure 2. 
The mathematical function y=T(x) describes the 
geometry of the slope and bedrock line may be presented 
by another mathematical function y=R(x).  

The essential of slice method requires the failure soil 
mass to be divided into n vertical slices and the slip 
surface is represented by n + 1 vertices [V1, V2,...,Vn+1] 
with coordinates (x1, y1), (x2, y2), . . . , (xn+1, yn+1) as 
follows: 
 
V = [x1, y1, x2, y2, …, xn, yn, xn+1, yn+1]                    (23) 
                                
To satisfy the requirements of kinematic acceptability, 
these slices, defined by any two adjacent nodal points, 
are further assumed to be concave upward. The concave 
upward requirement can be formulated as: 
 
�1 � �2 � … � �i � … � �n                                                     (24)                                                             

where �i is the inclination of the base of the slice i. In 
order to reduce the number of variables, the horizontal 
distance between xi and xn+1 can simply be subdivided 
into n equal segments using the equation: 
 

1 1
1 ( 1) 2,3,...,n

i

x x
x x i for i n

n
+ −= + × − =       (25)                            

  
Moreover, y1 and yn are related to the slope geometry 
and as a result, a specific slip surface can be identified 
mathematically by an n-element vector: 
 
V=[x1, xn+1, y2, y3, …, yn]                                     (26)                                                         
 
The upper and lower bounds to the y-coordinates (yi,max 
and yi,min) can be obtained by utilizing the geometry of the 
slope and the bedrock line, and may be calculated as 
follows: 
 

, m i n
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                             (27)                                                                            

 
The solution domains for variables x1 and xn+1 can easily 
be defined by engineering experience or sufficiently wide 
domains can be specified. 

After the values of x1 to xn+1 are generated by even 
division between x1 and xn+1, y2min and y2max can be 
determined by geometry, y1(x) and bed rock line, R(x), of 
the slope. Then, y2 is randomly generated in the range of 
[y2min , y2max]. The line between points Vn+1 and V2 is 
intersected with line x=x3 at point G with y-ordinate yG, 
and the line passing through points V1 and V2 is extended 
to intersect with line x=x3 at point H and y-ordinate yH is 
received. After that, y3min and y3max can be determined 
using the following equation: 
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Figure 3. Flowchart showing the application of GSA for slope stability analysis. 
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y4min, y4max, . . . , yn min, yn max can be obtained in away 
similar to the procedures described earlier. 
 
 
NUMERICAL STUDIES 
 
In this part, the validity and effectiveness of the proposed 
GSA algorithm are investigated by solving three 
numerical examples from the literature. These examples 
include problems with homogeneous and inhomo-
geneous soils. One of the problems also considers the 
effects of an earthquake and ground water. The 
implementation procedure of the proposed GSA for slope 
stability analysis is presented as a flowchart in Figure 3. 
In each example, the sliding masses are divided into 40 
slices and all vertical slices are assumed  to  have the 

same width. The computed factors of safety using GSA 
are compared with those obtained from other methods. In 
the following examples, proper fine tuning of GSA’s 
parameters is evaluated by several experimental studies 
examining the effect of each parameter on the final 
solution and convergence of the algorithm. As a result, 
parameters of GSA are set as follows: population size is 
50; maximum iteration number is 1000; G0 = 100 and � = 
20. The optimization procedure was terminated when the 
maximum number of iterations is reached.  
 
 
Example 1 
 
Slope in homogeneous soil 
 
The first example is a slope in homogeneous soil and it is 
taken from the study by Zolfaghari et al. (2005). For this 
case the effective friction angle of soil (��) is 20°, the 
effective cohesion intercept (c�) is 15 kPa and unit  weight  
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Figure 4. Geometry of slope for Example 1. 

 
 
 

Table 1. Minimum safety factor for Example 1.  
 

Optimization method  Minimum factor of safety 
Genetic algorithm (Zolfaghari et al., 2005) 1.75 
Simulated annealing (Cheng et al., 2007) 1.7267 
Genetic algorithm (Cheng et al., 2007) 1.7297 
Particle swarm optimization (Cheng et al., 2007) 1.7284 
Simple harmony search (Cheng et al., 2007) 1.7264 
Modified harmony search (Cheng et al., 2007) 1.7279 
Tabu search (Cheng et al., 2007) 1.7415 
Ant colony optimization (Cheng et al., 2007) 1.7647 
Gravitational search algorithm (present study) 1.7184 

 
 
 
is set to 17.64 kN/m3. Figure 4 depicts the geometry of 
the slope.  

Zolfaghari et al. (2005) solved the problem and 
employed simple genetic algorithm combined with the 
Morgenstern and Price method by considering the 
inclinations of the inter slice forces as constant (f (x) =1) 
to search for the minimum factor of safety. Cheng et al. 
(2007) solved the problem using the Spencer method, 
which is equivalent to the Morgenstern and Price method 
with f (x) =1, together with the different heuristic global 
optimization methods include simulated annealing (SA), 
genetic algorithm (GA), particle swarm optimization 
(PSO), simple harmony search (SHS), modified harmony 
search (MHS), tabu search (TS) and ant colony 
optimization (ACO) for finding the minimum factor of 
safety.  

This case is solved using the proposed methodology 
and the comparison of the results with those obtained by 
different methods is summarized in Table 1. The first 
column  of  the  table   shows   the   optimization   method 

applied for the solution and second column shows the 
minimum factor of safety related to the critical failure 
surface. From analyzing the results of Table 1, it can be 
observed that the factor of safety obtained by GSA is 
1.7184, which is lower than those calculated using other 
methods. As mentioned before, in the slope stability 
problems the objective function of the safety factor is a 
complex optimization problem with the presence of 
several local minima points within the solution domain. 
Therefore, application of GSA as an effective global 
optimization method could provide a better solution for 
the problem and found the lower factor of safety and a 
more critical failure surface as compared to the other 
methods. The critical slip surface found by the GSA is 
shown in Figure 4. Moreover Table 1 shows that, SHM, 
SA, MHM and PSO algorithms could provide a 
reasonable solution near optimum for the homogenous 
slope. However, TS and ACO give the larger factors of 
safety and are not efficient methods for the solution. 
Table 1 also shows that, the results  of  genetic  algorithm  
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Figure 5. Geometry of slope for Example 2. 

 
 
 

Table 2. Soil parameters for Examples 2 and 3.  
 

Layer of soil Unit weight (kN/m3) Effective cohesion intercept (kPa) Effective friction angle (º) 
Layer 1 19.0 15.0 20.0 
Layer 2 19.0 17.0 21.0 
Layer 3 19.0 5.0 10.0 
Layer 4 19.0 35.0 28.0 

 
 
 

Table 3. Minimum safety factor for Example 2. 
  
Optimization method Minimum factor of safety 
Genetic algorithm (Zolfaghari et al., 2005) 1.24 
Simulated annealing (Cheng et al., 2007) 1.2813 
Genetic algorithm (Cheng et al., 2007) 1.1440 
Particle swarm optimization (Cheng et al., 2007) 1.1095 
Simple harmony search (Cheng et al., 2007) 1.2068 
Modified harmony search (Cheng et al., 2007) 1.1385 
Tabu Search (Cheng et al., 2007) 1.4650 
Ant colony optimization (Cheng et al., 2007) 1.5817 
Gravitational search algorithm (present study) 1.0785 

 
 
 
from the study of Zolfaghari et al. (2005) and Cheng et al. 
(2007) are almost different and it may be caused by the 
differences between the slip surface generation methods 
applied in each study. 
 
 
Example 2 
 
Slope in layered soil 
 
The second example is also abstracted from the work by 
Zolfaghari et al. (2005) which is a slope in multilayered 

soil. Geometrical feature of the slope is shown in Figure 5 
and the geotechnical parameters of the various layers are 
presented in Table 2.  

To solve this problem, Zolfaghari et al. (2005) used 
genetic algorithm combined with the Morgenstern and 
Price method with the assumption of f (x) =1. Similarly, 
Cheng et al. (2007) applied the Spencer method to 
formulate the safety factor and different heuristic global 
optimization methods (SA, GA, PSO, SHM, MHM, TS 
and ACO), for the solution.  

This problem is also solved using the proposed 
method. Table 3 compares the minimum factor  of  safety  
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Figure 6. Geometry of slope for Example 3. 

 
 
  

Table 4. Minimum safety factor for Example 3. 
 

Optimization method Loading case 
Case 1 Case 2 Case 3 Case 4 

Genetic algorithm (Zolfaghari et al., 2005) 1.48 1.36 1.37 0.98 
Simulated annealing (Cheng et al., 2007) 1.3961 1.2837 1.1334 1.0081 
Genetic algorithm (Cheng et al., 2007) 1.3733 1.2324 1.0675 0.9631 
Particle swarm optimization (Cheng et al., 2007) 1.3372 1.2100 1.0474 0.9451 
Simple harmony search (Cheng et al., 2007) 1.3729 1.2326 1.0733 0.9570 
Modified harmony search (Cheng et al., 2007) 1.3501 1.2247 1.0578 0.9411 
Tabu Search (Cheng et al., 2007) 1.4802 1.3426 1.1858 1.0848 
Ant colony optimization (Cheng et al., 2007) 1.5749 1.4488 1.3028 1.1372 
Ant colony optimization (Kahatadeniya et al., 2009) 1.501 1.377 1.091 0.846 
Gravitational search algorithm (present study) 1.3268 1.2038 1.0451 0.8435 

 
 
 
obtained from the current study with the previously 
reported outcomes. From the results of this table, it can 
be seen that, the factor of safety achieved by GSA is 
1.0785 which is smaller and therefore, better than the 
other optimization methods. Moreover, Figure 5 depicts 
the critical failure surface found by the proposed method. 
Similar to the first example, the ACO and TS methods did 
not reach a good result for the stratified slope.  
 
 
Example 3 
 
Slope subjected to water pressure and earthquake 
 
The third example is also taken from the study of 
Zolfaghari et al. (2005) where an inhomogeneous slope 
comprises of four layers of different soils as well as a 
water table as shown in Figure 6. Except for the 
boundary  between  the  first  and  second  layers   where 

slight inclination of the boundary exists, the other layer 
boundaries are horizontal. In addition to the ground 
water, the pseudo-static coefficient for horizontal 
earthquake loading of 0.1 is considered. Again, the 
geotechnical parameters are tabulated in Table 2. The 
problem is solved with four different loading cases 
(Zolfaghari et al., 2005), no earthquake and no water 
pressure (case 1), no earthquake and water pressure 
(case 2), earthquake and no water pressure (case 3) and 
earthquake and water pressure (case 4). 

This example is also solved by Zolfaghari et al. (2005) 
and Cheng et al. (2007) with the same methodology 
which was discussed in Example 1. Moreover, 
Kahatadeniya et al. (2009) applied the Morgenstern and 
Price method with the assumption of f (x) =1 together with 
ant colony optimization (ACO) algorithm for the 
minimization of the safety factor. The results obtained by 
the previous researchers and the present study are 
summarized  in  Table  4.  It  is  obvious   that  the   result  



 
 
 
 
obtained in the current study is comparable with the 
results found in the literatures. Besides, the factor of 
safety obtained by GSA is found to be smaller than the 
others for all cases. Figure 6 presents the critical slip 
surfaces found by the proposed method for each loading 
case. Table 4 also shows that, the results of the GA from 
the study of Zolfaghari et al. (2005) and Cheng et al. 
(2007) or the results of the ACO from the study of 
Kahatadeniya et al. (2009) and Cheng et al. (2007) are 
almost different. It is maybe due to the differences 
between the slip surface generation method applied in 
each study or differences between the algorithms’ 
parameters selection. 
 
 
Conclusions 
 
This study presents an effective method based on 
gravitational search algorithm (GSA) to determine the 
minimum factor of safety and its associated failure 
surface in slope stability analysis. The proposed method 
is classifiable as direct search algorithms and does not 
require any continuity or derivatives of the objective 
function (safety factor). The present algorithm employs 
the simple form of Morgenstern and Price method for 
evaluation of the safety factor and locating the general-
shaped critical failure surface. The general-shaped 
potential slip surfaces are generated using the straight 
line technique. To use the GSA for slope stability 
analysis, a computer program is developed in MATLAB. 
The efficiency and accuracy of the presented method 
were investigated through the three numerical examples 
of slope stability analysis, including simple and 
complicated slopes, which were solved by different 
optimization algorithms in the previous literature. The 
comparison of the results of case studies in terms of the 
minimum factor of safety demonstrated that the proposed 
method found much lower factor of safety and more 
critical slip surface and significantly outperforms the other 
methods in the literatures. In addition, the results show 
that GSA can be successfully employed to analyze the 
slope stability problems especially to the complicated 
slopes containing complex slope geometry, layered soil 
profile and complex loadings. 
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