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Abstract

In this paper, the problem of approximating a common element in the common fixed
point set of an infinite family of nonexpansive mappings, in the solution set of a
variational inequality involving an inverse-strongly monotone mapping and in the
solution set of an equilibrium problem is investigated based on a general iterative
algorithm. Strong convergence of the iterative algorithm is obtained in the
framework of Hilbert spaces. The results obtained in this paper improve the
corresponding results announced by many authors.
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1 Introduction and preliminaries
Let H be a real Hilbert space, whose inner product and norm are denoted by (-,-) and || - ||
respectively. Let C be a nonempty, closed and convex subset of H and 7:C — C be a
mapping. In this paper, we use F(T) to denote the set of fixed points of T Recall that T is
said to be a k-contraction iff there exists a constant « € (0,1) such that

ITx— Tyl <cllx—yl, VxyeC.
T is said to be a nonexpansive mapping iff

1Tx - Tyl < llx=yll, Vx,yeC.

Let B: C — H be a mapping. Recall that B is said to be an a-inverse-strongly monotone
iff there exits a positive constant « such that

(Bx —By,x—y) > «a||Bx - By|?>, Vx,yeC.
The classical variational inequality is to find # € C such that

(Bu,v—u) >0, VveC. 1.1)
In this paper, we use VI(C, B) to denote the solution set of the variational inequality.
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Let P¢ be the metric projection from H onto C. It is also known that P¢ satisfies
(¥ =y, Pcx = Pcy) = |Pcx = Peyl®, Vx5 € H.

Moreover, Pcx is characterized by the properties Pcx € C and (x — Pcx, Pcx —y) > 0 for all
y € C. One can see that the variational inequality is equivalent to a fixed point problem.
The element u € C is a solution of the variational inequality if and only if u is a fixed
point of the mapping Pc(I — AB), where A > 0 is a constant and [ is the identity mapping.
This alternative equivalent formulation has played a significant role in the studies of the
variational inequality and related optimization problems.

Recall that an operator A is strongly positive on H iff there exists a constant y > 0 with
the property

(Ax,x) > 7|x|1?, VxeH.

Recall that a set-valued mapping S : H — 2/ is said to be monotone if for all x,y € H,
f €Sxand g € Sy imply (x —y,f —g) > 0. A monotone mapping S : H — 2/ is maximal if
the graph of Graph(S) of S is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping S is maximal iff for (x,f) € H x H, (x —
v,f —g) = 0 for every (y,g) € Graph(S) implies f/ € Sx. Let B be a monotone map of C into
H and let Ncv be the normal coneto Catve C,ie., Nev={we H: {(v—u,w) > 0,Vu € C}
and define

Bv+Ncv, veC(C,
@, veC.

V=

Then S is maximal monotone and 0 € Sviff v € VI(C, B); see [1] and the references therein.
Let F be a bifunction of C x C into R, where R is the set of real numbers. The equilibrium
problem for F: C x C — Ris to find x € C such that

F(x,y) >0, VyeC. (1.2)

The set of solutions of the problem (1.2) is denoted by EP(F). Numerous problems in
physics, optimization and economics reduce to finding a solution of (1.2). Recently, many
iterative algorithms have been studied to solve the equilibrium problem (1.2); see, for in-
stance, [2—-19].

For solving the equilibrium problem (1.2), let us assume that F satisfies the following
conditions:

(Al) F(x,x)=0forallx e C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0 for all x,y € C;

(A3) foreachx,y,z€C,

limsup F(tz + (1 - t)x,y) < F(x,);
£40

(A4) foreachx € C, y— F(x,y) is convex and lower semicontinuous.
In 2007, Takahashi and Takahashi [17] proved the following result.
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Theorem TT Let C be a nonempty closed convex subset of H. Let F be a bifunction from
C x C to R satisfying (A1)-(A4) and let T be a nonexpansive mapping of C into H such that
F(S)NEP(F) #0. Let f be a contraction of H into itself and let {x,} and {u,} be sequences
generated by x, € H and

F(yn,u) + i(u — Y ¥n— %) >0, VuecC,
Xn+l = anf(xn) +(1- an)Tym n>0,

where {a,} C [0,1] and {r,} C (0,00) satisfy limy ooty = 0, D ooy 0y = 00, D ooy |1 —
o, < 0o, ZZZI |7ue1 — 1| < 00, and liminf,_, o 1, > 0. Then {x,} and {y,} strongly converge
to some point z, where z = PcF(T) N EP(T)f (2).

Recently, Plubtieng and Punpaeng [19] further improved the above results by involving
a strongly positive self-adjoint operator. To be more precise, they proved the following
results.

Theorem PP Let H be areal Hilbert space, let F be a bifunction from H x H — R satisfying
(A1)-(A4) and let T be a nonexpansive mapping on H such that F(T) NEP(F) # (. Let f be
a contraction of H into itself with o € (0,1) and let A be a strongly positive bounded linear
operator on H with the coefficient y >0 and 0 <y < g Let {x,} be a sequence generated by
x1 € H and

F(ymu)"' i(u_yn:yn_xrﬁ >0, VueC,
Xn+l = anyf(xn) +( - anA)Tym n>1,

where {a,} C [0,1] and {r,} C (0,00) satisfy lim, oo 0t; = 0, Y oo 0y = 00, D ooy [0ts1 —
o] < 00, Z;ﬁl [F41 — Ty| < 00, and liminf,_, o r,, > 0. Then {x,} and {y,} strongly converge
to some point z, where z = Prerynepiry(I — A + yf)(2).

In 2008, Su, Shang and Qin [2] considered the variational inequality (1.1), and the equi-
librium problem (1.2) based on a composite iterative algorithm and proved the following

theorem.

Theorem SSQ Let C be a nonempty closed convex subset of H. Let F be a bifunction from
C x C to R satisfying (A1)-(A4). Let A be a-inverse-strongly monotone and let T be a non-
expansive mapping of C into H such that F(S)NEP(F)NVI(C,A) # 9. Let f be a contraction
of H into itself and let {x,} and {u,} be sequences generated by x, € H and

F(yn,u) + i(u — Y ¥n— %) >0, VuecC,
Xn+l = argf(xn) + (1 - O5;’1)TPC(1 - )‘nA)ym n=>0,

where {\,} C [a,b], where0 < a < b < 2a, {a,} C [0,1] and {r,} C (0, 00) satisfylim,_, o, =
0, D poi 0y = 00, 2 o2 |us1 — | < 00, Doy |Fms1 — Tul < 00, Doy |Apst — Al < 00,
and liminf, . r, > 0. Then {x,} and {y,} strongly converge to some point z, where z =
PcF(T)NEP(T)f (2).
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The above results only involve a single mapping, we will consider an infinite family of

mappings in this paper. To be more precise, we study the mapping W, defined by

un,n+1 = 1,
un,n =Vn Tnun,n+l + (1 - Vn)[:

Upna=Vua Tnaalyn + (1- Vn—l)I:

Upi = viTiln g + 1=y, (1.3)

Up k-1 = Vi1 Tien Ui + (1 = vi-1)d,

Upy =y Tolys + 1— ),

Wy=Up =ynTilly + -y,

where {y1},{y2},... are real numbers such that 0 <y, <1, T}, T5,... are an infinite family
of mappings of C into itself.
Considering W,,, we have the following lemmas which are important in proving our

main results.

Lemma 1.1 [20] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let Ty, T, ... be nonexpansive mappings of C into itself such that (-, F(T,) is
nonempty, and let 1,7, ... be real numbers such that 0 < y, < b <1 for any n > 1. Then,

forevery x € C and k € N, the limit lim,,_, oo U, xx exists.

Using Lemma 1.1, one can define the mapping W of C into itself as follows:

Wx = lim Wyx= lim U,;x, VxeC.
n—0oQ n— o0
Such a W is called the W-mapping generated by T3, T5, ... and y1, ¥», . ... Throughout this

paper, we will assume that 0 < y,, < b <1, where b is some constant.

Lemma 1.2 [20] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let Ty, T, ... be nonexpansive mappings of C into itself such that (-, F(T,) is
nonempty, and let y, s, ... be real numbers such that 0 < y, < b <1 for any n > 1. Then
F(W) = (1 E(To).

In this paper, based on a general iterative algorithm, we study the problem of approx-
imating a common element in the common fixed point set of an infinite family of non-
expansive mappings, in the solution set of a variational inequality involving an inverse-
strongly monotone mapping and in the solution set of an equilibrium problem. Strong
convergence of the iterative algorithm is obtained in the framework of Hilbert spaces.

In order to obtain the strong convergence, we need the following tools.
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Lemma 1.3 In Hilbert spaces, the following inequality holds:
ll +ylI* < lx]> + 2,2 +y), Va,y € H.

Lemma 1.4 [21] Assume that {«,} is a sequence of nonnegative real numbers such that
i1 < (1= Vi)t + 8,

where {y,} is a sequence in (0,1) and {3,} is a sequence such that
@) ZZZI Yn = OC;
(ii) imsup,_, o 8,/yn <0 0r Y .21 |84 < 00.

Then lim,,_, o, oz, = 0.

Lemma 1.5 [22] Assume B is a strong positive linear bounded operator on a Hilbert space
H with the coefficient 7 >0 and 0 < p < ||B|| ™. Then ||I - pB|| <1- py.

Lemma 1.6 [22] Let H be a Hilbert space. Let B be a strongly positive linear bounded
self-adjoint operator with the constant y > 0 and f be a contraction with the constant k.
Assume that 0 <y < y/k. Let T be a nonexpansive mapping with a fixed point x, € H of
the contraction x +— tyf(x) + (I — tB)Tx. Then {x;} converges strongly as t — 0 to a fixed

point x of T, which solves the variational inequality
((A-yNEz-x)<0, VzeE(T).
Equivalently, we have Ppiry(I — A + yf)x = x.

Lemma 1.7 [23, 24] Let C be a nonempty closed convex subset of H and let B be a bifunc-
tion of C x C into R satisfying (A1)-(A4). Let r > 0 and x € H. Then there exists z € C such
that

1
F(z,9)+ -(y-2z2z-x) >0, VyeC.
r

Define a mapping T, : H — C as follows:

1
T, (x) = {ze C:F(z,y) + ;(y—z,z—x) >0,Vye C}.

Then the following hold.:
(1) T, is single-valued,
(2) T, is firmly nonexpansive, i.e., for any x,y € H,

I T = T,yll* < (Tox = Tpy, % — y);

(3) F(T,) = EP(F);
(4) EP(F) is closed and convex.

Lemma 1.8 [25] Let {x,} and {y,} be bounded sequences in a Banach space X and let 8, be
a sequence in [0,1] with 0 < liminf,_, o B, <limsup,_, ., Bx < 1. Suppose x,,1 = (1 — Bu)yn +
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Buxy for all integers n > 0 and

1imSUP(||yn+l = Inll = %041 —an) =0.
n—o0

Then llmy,—>oo ”yn - xn” =0.

Lemma 1.9 [26, 27] Let K be a nonempty closed convex subset of a Hilbert space H, {T; :
C — C} be a family of infinitely nonexpansive mappings with (\io; F(T;), {yx} be a real
sequence such that 0 < y, < b <1 for each n > 1. If C is any bounded subset of K, then
limy,—, oo SUp,cc | Wx — Wyx|| = 0.

2 Main results

Theorem 2.1 Let C be a nonempty closed convex subset of a Hilbert space H. Let F be
a bifunction from C x C to R which satisfies (A1)-(A4). Let {T,};°, be an infinite family
of nonexpansive mappings of C into C. Let B: C — H be an «-inverse-strongly monotone
mapping. Let A be a strongly positive linear bounded self-adjoint operator on H with the
coefficient y > 0. Assume that 0 < y < y/k and F := (5, F(T;) N EP(F) N VI(C,B) # . Let
f:C— H be a k-contraction. Let {x,} be a sequence generated in the following iterative

process:.

X1 € H,
F(y,,2) + i(z—yn,yn —x,)>0, VzeC,
Kl = Oy + (1 - an),Ban(yn) +(1-a,) - ,BnA)WnPC(I - SnB)yn: n=>1,

where W, is generated in (1.3), {a,}, {Bn} are real number sequences in (0,1), {r,} and {s,}
are positive real number sequences. Assume that the following restrictions are satisfied:
(@) 0<liminfy,_ o oty <limsup,_, o, oty < 1;
(b) lim, .o B, =0, ZZ.;I Bn = 00;
(©) limy oo [Fns1 = 7ul = 0, limy s 6 [$541 = Su| = 05
(d) liminf,_ o7, >0, {s,} C [s,5] for some s, s’ with 0 <s<s' <2a.
Then {x,} converges strongly to q € F, where q = Pe(yf + (I — A))(q), which solves the fol-
lowing variational inequality:

(vf(@-Aqp-q)<0, VpeF.

Proof We divide the proof into five steps.
Step 1. Show that the sequence {x,} is bounded.
Notice that I — s, B is nonexpansive. Indeed, we see from the restriction (d) that
| = s,B)x - (I - 5,B)y]”
2
= || =) = su(Bx - By) |
= ll2 = yII* ~ 28, (x ~ y, Bx — By) + 5, | Bx — By|®
< ll% = ylI* = s4(2c = 5,)||Bx - By|)?

2
< llx=xl

Page 6 of 18
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which implies the mapping I — s, B is nonexpansive. Fix p € F. Since z, = T,,x,, we have

lyn = pll = 1 T, %0 = Ty, pll < l1%n = pII.

Put

Cn= ,Bnyf(%z) + (1_ ,BnA)Wn,Om

where

Pn = PC(I_SnB)yw

It follows that

lon =Pl < llyn =PIl < ll%: = pIl.

Since B, — 0 as n — 0o, we may assume, with no loss of generality, that 8, < ||A|™! for
all #. It follows that

12 =pll = || Bu(vf n) = Ap) + (I = BLA)YWopu — p) |
< Bull vfGn) = Ap|| + 1L = BuAN I Waupw - p
< Buly [f o) = @) + |7/ ®) - Ap||] + 1 = Bu7)llpw - P
< Buly [fom) =L@ + |vf ) - Ap|] + (1 = B % - p
< [1= @ = y©)Bu]llxn—pll + Bu | v () - Ap

’

which yields

[%0s1 = Il = | etn (@ — p) + A = 0t)(&n = p)
< apllxn = pll + A =a)l&n - pl
< @l —pll + A=) [1= (7 = y)Ba]ll% — Pl
+ (L= )| vf(p) - Ap|.

This in turn implies that

lvf(p) - Apll
%, — pi EmaX{llxl—Pll,Jr_‘ .
VYK

This completes the proof that the sequence {x,} is bounded. This completes the proof of
Step 1.

Step 2. Show that lim,,_,  [|%,11 — %, || = 0.

In view of y, = T},,x, and ¥,,.1 = T}, %11, We see that

1
Fyp,2) + —(2 = YusYn—%n) =0, VzeC, (2.1)
T

n
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and

F(y;ﬂlr z) +

(Z = Yus1sYns1 —%ns1) =0, VzeC. (2.2)
Tnyl

Putting z = y,41 in (2.1) and z = y,, in (2.2), we find that

1
F(meml) + r_(ywrl — Y Yn—%n) =0

and

F(ynﬂryn) + (yn — Yn+l> Yn+l —Xps1) > 0.

Tnyl

It follows from (A2) that

<yn+1 —Yn> In =% - A _xn+1> > 0.
n Tn+l
That is,
Ty
yn+1 _ymyn _yn+1 +yn+1 —Xp — (yn+1 _xn+1) 2 0
Tnyl

Without loss of generality, let us assume that there exists a real number m such that r,, >
m > 0 for all #. It follows that

7,
2 n
Y1 = Yull” < 1¥nse1 = ull <||xn+1 — x|l + |1 - lyns1 _xn+1||)'
n+l
It follows that
n
”yn+1 _yn” = ”xn+1 _xn” + 1= ”ym—l _xn+1||
n+l
M,
= ”xn+1_xr1|| + ?|rn+l_rn|: (23)

where M is some real constant such that M; > sup,,_; {lly. — x| }.
On the other hand, we have

lons1 = oull = ”PC(I = 5p41B)Yni1 — Pc = suB)y, ”
= ”(I = 8241B)Yni1 — (I = 5,B)yn ”
= “(1 - Sn+lB)yn+l - (1 - Sn+lB)yn + (Sn - Sn+l)Byn H

=< ”yn+1 _yn” + |Sn - Sn+1|M2’ (24')

where M, > sup,..,{lByx||}. Substituting (2.3) into (2.4) yields

”pn+1 - pn” = ||xn+1 _xn” +M3(|rn+1 - rn| + |Sn - sn+1|): (25)


http://www.journalofinequalitiesandapplications.com/content/2013/1/19

Lv Journal of Inequalities and Applications 2013,2013:19 Page 9 of 18
http://www.journalofinequalitiesandapplications.com/content/2013/1/19

where M3 = max{M;, M,}. Notice that

120 = Znetl = [ (I = Bunt AN Wit ot = W) = (Bust = Bu) AWy
+ ¥ [But (F Onr) = £ @) +F00) (B = B)] |
< (1= Bua?) (1 onsr = pull + 1 Wins10n = Wapull)
+Busr = Bul AW, 04| + ¥ (Busak [9ner = Yull + 1Bt = Bul|[f ) |)- (2.6)

Since T; and U,,; are nonexpansive, we see from (1.3) that

I1Woi100 = Wapnll = 11 T1lps1,200 — i T1U L2 04|l
= 7/1||Un+1,2:0n - un,an”
= llvaTalyn3on = vaTolyzpall

<nyallUys1,30n — Up30nll

<nye - Vulliusrn1 on — Up a1 Onll

n
<M ] v (2.7)
i=1

where M, is a constant such that My > sup,,..; {| Uy +1,n410n — Uy ni1 041} Substituting (2.3),
(2.5) and (2.7) into (2.6) yields

n
180 = Cnatll < N1%ns1 — %l + Ms (l—[ Vit Tne1 = Tul + 180 = Spia| + | B _,3n+1|>,

i=1
where M;5 is a constant such that
_M;
Ms = maxi My + 7 —=, Ma, sup{ [ AWl + 7 [F O [} -
n>1

It follows from the restrictions (b) and (c) that

lim Sup(”(w = Cnall = %1 —xn”) <o0.

n—00

By virtue of Lemma 1.8, we obtain that
lim ||, — x| = 0. (2.8)
n—00
On the other hand, we have
%601 = %ull = A = @) % = Eall-
This implies from (2.8) that
lim |[|%,,41 — %] = 0. (2.9)

This completes the proof of Step 2.


http://www.journalofinequalitiesandapplications.com/content/2013/1/19

Lv Journal of Inequalities and Applications 2013,2013:19
http://www.journalofinequalitiesandapplications.com/content/2013/1/19

Step 3. Show that lim,,—, o [y, — Wy,|| = 0.
Notice that ¢, = 8,y f(z,) + (I — B,A) W, 0,. It follows that

”é‘n - Wnpn” = :3n H yf(yn) _AWnpn ”
This implies from the restriction (b) that
lim (&, — Wypnll = 0.
n— o0
For any p € F, we find that

Iyn = pI* = 1 T2 = T, pl1?
< Ty, % = Tr,» %0 — D)
= (Yu—P:%n —P)
= 12(Ilyn = 2I? + 1% = pI* = %0 = yull).-

That is,
Iy = 21 < 1960 = PI* = ll26n =yl

This in turn implies that

1 = pII>

= ot =) + (1 = ) (@n D) |

< ayllxn = plI* + A - @)l - pl?

= ayllitn = pI? + (L= ctn) | Ba (v n) = Ap) + (U = BoA)(Winpu — p)|*

< ally = I + (1= ) (Bl v/ O) - Ap|| + A= Bu?)ll o — 1)

< alltn = pI> + (1=t B | v ) = Ap|* + (L= )L = Bu?) ow — pII?
+2(1 = &) Ba| vf ) = Ap| 1 21 - P

< @l —pI? + A=) B[ 7f On) = Ap||* + (1= @) (1 = B 3 — pII?
+2(L =B || vf () - Ap||llon = Pl

< allay = I + (L= ct)Ba|vf ) = Ap || + (0= ) I — I

— (L= o)L = Bt I%n = yull* + 20 = ) Bu | vf ) = Ap|| Il 0w — Pl
from which it follows that

(1= ) (A = Bu?) 1% = Yl
< [ = PI? = %1 = PI% + Bu|| v ) - Ap |
+ 2B, 7f ) = Ap |l o — P

(2.10)

Page 10 of 18
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< (I = Il = 1%ns1 =PI 1% = %l + Bul| 7/ ) — Ap|*

+ 2:3n ” yf(yn) —AP” ”pn —P||~

It follows from the restriction (b) and (2.9) that
lim ||y, —x,|| =0. (2.11)
Notice that

pw = plI* = | Pell = 5,B)yn — Pe(l - 5,B)p|
< |G = p) - 54(By. - Bp)|”
= |lyn = II* = 284 (yu — P, Byn — Bp) + 5. By, — Bp||*
<l — pII* = 25,0 | By, — Bp||* + s%|| By, — Bp|*

< llxn = PII* = su(2 = 5,) 1 By, — Bpl|*. (2.12)
On the other hand, we have

%1 - pII?

= el = p) + (1= )& - )|
< aully = plI* + (1= )14 - pII?
= aylln = pI* + (1= ) | Bu(vf ) = Ap) + U = BuA)( Wi — )|
< el =PI + U= (Ba | V£ O) = Ap|| + 1 = BuAll Wapw — 1)’
< aylly = I + (1= ) (Bal| £ O) - Ap|| + A = Bu?)ll o — 1)
< aylly = I + (1= )| vf ) - Ap||* + A = )l ow — pII®

+2(1 = ) Bul|vf ) = Ap || pn - P (2.13)

Substituting (2.12) into (2.13), we find that

%1 = 2% < 1960 = pI% + Ba | 0) = Ap|)* + 2B | v 0) = Ap| 104 - P

- (1 —aty)su(2a - Sn)”Byn - BP||2
This in turn implies that

(1 - @,)su(2a = s,) || By, — Bpl|®
< It =PI + Ba | ¥f On) = AP = i1 - P11
+2Buvf ) = Ap| Il pw - Pl
< (I%n = Il + %1 =PI 160 — xet | + Bu || v ) — Ap|

+2Bu | vf o) — Ap |l ow - pII.

2
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It follows from the restrictions (a), (b) and (d) that
lim ||By, - Bp| =0. (2.14)
On the other hand, we have

lpw=pI? = | Pcl = $,B)ys - Pe(l - s,B)p|*
< (U = s,B)yn — I~ 5,B)p, pu — p)
= %(H(l—snB)yn ~(U=s5:B)p|” +llpu~pII?
~ [ = $4B)yu — U = 5,B)p ~ (0~ P)| ")

1
< 5 (=21 + 100 =PI = | 0 = Pu) = 51(By, ~ Bp) I”)

1
= ~(Iltw = pI* + 1o = 21? = 190 = £ull* = 5,11 By, — Bp|®
2

+ 284119 — pullByn — Bpll),

which yields

”pn —P||2 =< ”xn —P||2 - ”yn - pn||2 + 25n||yn - pn” ”Byn —BPH (2‘]—5)

Substituting (2.15) into (2.13) yields

2
%1 = PI* < 10 =PI + Ba | v O) = Ap[” = @ = ) lyn — oall®

+28,)n = Pull1Byn = Bpll + 2Bu | v.f 3n) = Ap| Il on - P

It follows that

(= @)y = pull> < 160 = pI* = 1ne1 = pI% + Bu | vf ) - Ap|)*
+ 28,119 — Pullll By = Bpll + 2B, v.f ) = Ap| I o - Pl
< (1% = pll + %01 = 1) 1% = Kt | + Ba || 7 ) — Ap |

+ 28,01 = 0ull 1BY — Bpll + 2B || vf ) = Ap |l s - Pl

In view of the restrictions (a), (b) and (d), we find from (2.9) that
lim ||y, — pull = 0. (2.16)
n— o0

Notice that

Iy = Wuynll < IWuyn = Waoaull + 1 Waon = Sull + 1180 = xull + 160 = yall

= ”yn _pn” + ”Wnpn - Cn” + ”;n _xn” + ”xn _yn||~
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In the light of (2.8), (2.10), (2.11) and (2.16), we find that lim,—, o ||y — W,y || = 0. On the
other hand, we have

Wy = yull < 1Wyn = Wayull + IWnyn = yull.
It follows from Lemma 1.9 that

lim [y, — Wy, |l = 0. (2.17)
This completes the proof of Step 3.

Step 4. Show that limsup,,_, .. (vf(q) — Aq,x, — q) <0, where g = Pr(yf + I — A))(q).
To see this, we choose a subsequence {x,,} of {x,} such that

limsup(yf(q) - Aq,%, - q) = lim (vf(q) - Aq %, - q). (2.18)

n—00

Correspondingly, there exists a subsequence {y,,} of {y,}. Since {y,,} is bounded, there
exists a subsequence {yni/ } of {y,,} which converges weakly to w. Without loss of generality,
we can assume that y,, — w. Since y,, = T}, x,,, we have

1
F(ymz)+ — (2= Y Yn—%4) =0, VzeC.
T'n

It follows from (A2) that

<z — Vs y”;x”> > F(z,9,).

n

It follows that

yn,» _xni
<Z_yni’ V—> > F(Ziyn,‘)'

nj
In view of the restriction (c), we obtain from (2.11) that

lim 22— %"

n—00 I

=0.

Since y,, — w, we have from (A4) that F(z,w) <0 for all ze C. For t with 0 < <1 and
zeC,letz; =tz+ (1-t)w. Since z € C and w € C, we have z; € C and hence F(z;, w) < 0.
So, from (Al) and (A4), we have

0 = F(z;,2;) < tF(z,2) + (1 = )F(zs, w) < tF (21, 2).

That s, F(z;,z) > 0. It follows from (A3) that F(w,z) > 0 for all z € C and hence w € EP(F).
On the other hand, we see that w € F(W) = (5, F(T;). If w # Ww, then we have the fol-
lowing. Since Hilbert spaces are Opial’s spaces, we find from (2.17) that
liminf ||y, —w|| < liminf|y,, — Ww||
1—> 00 11— 00

= hmlnf”yn, - Wyn,- + Wynl - WW”
1—> 00
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< liminf || Wy,, - Ww||
1—> 00

< liminf ||y, — wl|,
1—> 00

which derives a contradiction. Thus, we have w € F(W). Next, let us first show that w €
VI(C,B). Put

BE +ch, ré;- (S C,
d, &ecC.

Since B is monotone, we see that S is maximal monotone. Let (§,&’) € Graph(S). Since
& — BE € N¢é€ and p, € C, we have

(€ - pw& - BE)=0.

On the other hand, we have from p,, = Pc(I - s,,B)y,, that
(€ = pus pu = (I = 5,B)yn) = 0.

That is,

IOn _yn

n

<$ - On»s + By,,> >0.

It follows from the above that

(& = o &') = (& — pu,» BE)

p}’ll‘ —Jn;
> <5 — O BE — Ty

nj

_Bym>
= (& — pn; BE = Boy;) + (& = Pny» BOw; — By;)
1071,' = Jn;
- <E - pn,-r y >
S

nj

pni = Jn;
= (E - pn,-:Bpn,- _Byni) - <E - pnl‘: % >r

nj

which implies from (2.16) that (¢ — w,£’) > 0. We have w € S710 and hence w € VI(C, B).
This completes the proof w € F. On the other hand, we find from (2.18) that

lim sup(yf(q) - Aq, %, — q) = lim {yf(q) - Aq, %, - )

n—00

= (vf(q) - Agq,w—q) <O0. (2.19)

This completes the proof of Step 4.
Step 5. Show lim,,_,  ||x, — g|| = 0.

Page 14 of 18
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It follows from Lemma 1.3 that

12— qll> = [T = BoA)(Winp — ) + Bu(yf ) - Ag) |

< | = Ba)(Wrpn — @) |” + 2By f (1) — Aq 51— q)

< (1= Bu?Vllon —ql* + 2B4(yf On) — Aq, &1 — q)

< (U= Bu?Vllyn — g + 287 (f ) —f (@), 6 — q)
+2Bu(vf(q) - Aq,tn — q)

< (1= Bu?)*1%n = qll* + 2Bav Iy — a5 — 4l
+2B,(vf(q) - Aq, & — q)

< (= Bu?)1%n = qll* + Buy e (Iyn — qlI” + 120 — q11%)
+2Bulvf(q) - Aq, ¢, — q)

< (1= Bu?)1%n = qll* + Buyrc (I%n — qlI” + 112, - q11%)

+2Buvf (@) — Aq, &n — q),

which implies that
2 (1—,3,,)7)2+,3,,J/K 2 2/371
lon—ql < =22l —al + oS 9) - Ag. 4 —q)
_ (1—2,3n17+/3n/<)/)”x _ ”2+ :35772 1%, — ”2
B 1_:3717/" n 1_,3;1)”( n
2By
+ m()’f(@ -Aq,t.—q)
Z/Sn(P—KV) 2
= (1— W)len—qll
2/3"(77—10/)( 1 Bu7? )
-Aq, ¢y — —Ms ), 2.20
o y_Ky<J/f(Q) @6 q>+2(y—xy) 6 (2.20)

where Mg is a constant such that Mg > sup,.,{llx, — q/1%}. On the other hand, we have
[%s1 = PI* < aulln — pI* + (L= )12 — pII* (2.21)

Substituting (2.20) into (2.21) yields
2 n(_ - K )
nn —plI* < [1—(1—%%}”% —ql?
= Buyk
2/3;1()7 - KJ/)
1-B.ya

=2
X < ! (vf@)-Agq,cu—q) + ';‘3"71/%). (2.22)
Yy —kY 2(y —«ky)

+(1-ay,)
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Let A, = (1 — ) 2220=41) apng

1-Buky
Bny?
On = ——(vf(@) - Aq, Cu — q) + ==——— M.
Y —ky 2(y —ky)
This implies that
l9s1 = gll* < (L= 2% = g 11> + Aty (2.23)

In view of the restriction (b), we find from (2.8) and (2.11) that

o0
lim A, =0, an =00 and limsup6, <O0.
n=1

n—00 n—00

We can easily draw the desired conclusion with the aid of Lemma 1.4. This completes the
proof of Step 5. The proof is completed. O

From Theorem 2.1, we have the following results.

Corollary 2.2 Let C be a nonempty closed convex subset of a Hilbert space H. Let {T,}52,
be an infinite family of nonexpansive mappings of C into C. Let B: C — H be an a-inverse-
strongly monotone mapping. Let A be a strongly positive linear bounded self-adjoint opera-
tor on H with the coefficient y > 0. Assumethat0 <y < y/k and F := ﬂifl F(T;)NVI(C,B) #
@. Let f : C — H be a k-contraction. Let {x,} be a sequence generated in the following iter-
ative process:

x1 € H,

Kpa1 = Oy + (1 - an)ﬂnyf()/n) + (1 -a,)U - B AYW,Pc(I - 5,B)Pcxy, n>1,

where W, is generated in (1.3), {a,.}, {B,} are real number sequences in (0,1), {r,} and {s,}
are positive real number sequences. Assume that the following restrictions are satisfied:
(a) 0<liminf,_, o o, <limsup,_, . o0, < 1;
(b) lim,,_, o B.=0, ZZil B = 00;
(¢) 1m0 ISns1 — $ul = 05
(d) {su} C[s,8'] forsomes,s with0<s<s <2a.
Then {x,} converges strongly to q € F, where q = Pr(yf + (I — A))(q), which solves the fol-
lowing variational inequality:

(vflg9)-Aq,p—q)<0, VpeF.

Proof Putting F(x,y) = 0 and r,, = 1, we can immediately draw the desired conclusion from
Theorem 2.1. O

Corollary 2.3 Let C be a nonempty closed convex subset of a Hilbert space H. Let F be a bi-
Sfunction from C x C to R, which satisfies (A1)-(A4). Let B: C — H be an a-inverse-strongly
monotone mapping. Let A be a strongly positive linear bounded self-adjoint operator on H
with the coefficient y > 0. Assume that 0 < y < y/k and F := EP(F) N VI(C,B) # (. Let
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f:C— H be a k-contraction. Let {x,} be a sequence generated in the following iterative
process:

X1 € H,
F(n2) + 52 =mYu—%) 20, Vz€C,
Xnil = Ay + (L= 0n) Buyu+ 1= o, ) = B A)Pc( = 5,B)y,, n>1,

where u is a fixed element in C, {a,,}, {B.} are real number sequences in (0,1), {r,} and {s,}
are positive real number sequences. Assume that the following restrictions are satisfied:
(@) 0<liminfy,_ s oty <limsup,_, o, oty < 1;
(b) 1im, o0 By = 0, 155, B = 003
() limy o0 |71 = 7l = 0, im0 [Sy1 — S0l = O;
(d) liminf, 1, >0, {s,} C [s,5] for some s, s’ with 0 <s<s' <2a.
Then, {x,} converges strongly to q € F, where q = Pr(yu + (q — Aq)), which solves the follow-
ing variational inequality:

(yu-Aqp—q) <0, VpeF.

Proof Putting T; = I, where [ is the identity mapping and f(x) = u, for all x € C, we can
immediately draw the desired conclusion from Theorem 2.1. O

Corollary 2.4 Let C be a nonempty closed convex subset of a Hilbert space H. Let F be
a bifunction from C x C to R which satisfies (A1)-(A4). Let {T,};°, be an infinite family
of nonexpansive mappings of C into C. Let B: C — H be an a-inverse-strongly mono-
tone mapping. Assume that F := (o) F(T;) N EP(F) N VI(C,B) # . Let f : C — H be a

k-contraction. Let {x,} be a sequence generated in the following iterative process:

X1 € H,
F(yn,z) + i(z—yn,yn -x,) >0, VzeC(C,
K1 = Xy + (1 — an)ﬂnf(yn) +(1-a,)- ﬂn)WnPC(I - SnB)ynr n>1,

where W, is generated in (1.3), {a,.}, { B} are real number sequences in (0,1), {r,} and {s,}
are positive real number sequences. Assume that the following restrictions are satisfied:
(a) 0<liminf,_, o o, <limsup,_, . o0, < 1;
(b) limy, . By =0, Z:il Bn = 00;
(© limys oo [rne1 = 7ul = 0, im0 [Sp41 — Sul = 05
(d) liminf,— 0 7y >0, {s,} C [s,5'] for some s, s’ with 0 <s<s < 2a.
Then {x,} converges strongly to q € F, where q = Prf(q), which solves the following varia-
tional inequality:

f@-qp-q)<0, VpeF.

Proof Putting A = I, where [ is the identity mapping and y =1, we can immediately draw
the desired conclusion from Theorem 2.1. O
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