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PICK FUNCTIONS RELATED TO ENTIRE FUNCTIONS
HAVING NEGATIVE ZEROS*

HENRIK L. PEDERSENT

Abstract. For any sequence {ay } satisfying 0 < a1 < as < ... and |ag — k| < Const we find the Stieltjes
representation of the function
log P
2y 08P
zLog 2
where P denotes the canonical product of genus 1 having {—ay } as its zero set.
We also find conditions on the zeros (e.g. a € [k, k + 1] for k > 1) in order that the function
o= log P(2) + zlog P(1)
zLog z

be a Pick function. We find the corresponding representation in terms of a positive density on the negative axis. We
thereby generalize earlier results about the I'-function. We also show that another related function is a Pick function.
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1. Introduction. The n-dimensional volume V,, of the unit ball in R” can be expressed
as

7.‘.n/2
- T(1+n/2)’
where IT" is Euler’s gamma function. In [3] the asymptotic behaviour of the n logn’th root

of V,, was studied (the limit as n tends to infinity is seen to be 1/+/e, by applying Stirlings
formula). This initiated an investigation of monotonicity properties of the function

Va

_ logT(z+1)
- zlogzx

f(z)

see [2], [1, Kapitel 2], [7] and [4]. In [5] we proved that a holomorphic extension of f to the
cut plane

, x>0,

A=C\] = 00,0},

is a Pick function. We also found the corresponding integral representation in terms of a
positive density on the negative axis.
The proof consisted in applying a Phragmén-Lindel6f argument to the harmonic function

o logT(z + 1)
zLogz

in the upper half-plane HH = {z € C|Sz > 0}. In order to do so it was necessary to
investigate the growth at infinity and the boundary behaviour on the real line of this harmonic
function. These investigations depended heavily on the functional equation

I(z+1) = 2I'(2)
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of the I'-function.

In this paper we generalize the results about the I'-function to a class of entire functions
having negative zeros.

The reciprocal of the I'-function is an entire function having negative zeros. Indeed, the
Weierstrass factorization of the I'-function states that

ey = o0 L1020 et=/b),

where 7y is Euler’s constant. If Py denotes the infinite product on the right hand side then we
have

logT'(z + 1) = —log Py(2) — vz = —log Po(2) + zlog Py(1).

Therefore it seems natural to consider functions of the form

—log P(z) + zlog P(1)
zLogz

?

where P denotes an infinite product having negative zeros.
We recall that if {by} is any sequence of complex numbers (# 0) such that Y, |by| ™2
converges then

2 [ (2 = 2/b0) explz/be)

k=1

defines an entire function. It is commonly denoted the canonical product of genus 1 associated
with the sequence {by}, or having zeros at bg. (The genus is defined as the smallest integer
& > 0 such that }, |bg| ! converges.)

Throughout this paper {ay } denotes a sequence satisfying

(L.1) <a <ax<...
and
(1.2) n(r) < Constr,

for all » > 0. Here n is the counting function associated with the sequence {ay}:

n(r) = #{k|ax < r}.

We shall consider the canonical product P of genus 1 having zeros at —ay, k¥ > 1. This
function is defined because of (1.2). Since all its zeros are negative we may define

log P(z) = ZLog(l + z/ax) — z/ay,

for = € A. (Here Log denotes the principal logarithm, defined in terms of the principal
argument Arg). This is the unique branch of the logarithm of P(z) that is real on the positive
axis. Its imaginary part is given as

arg P(2) = Y _ Arg(1+ (z +iy) /ax) — y/ax,
k=1
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forz=x+1iy € A.

We recall that a Pick function is a holomorphic function ¢ in the upper half-plane H with
Sp(z) > 0 for z € H. Pick functions are extended by reflection to holomorphic functions in
C \ R and they have the following integral representation

*° 1 t
1.3 = b — — —— | du(t
(13 o =azsvt [ (- i) dut)
where a > 0, b € R and p is a non-negative Borel measure on R satisfying
° du(t
[0 .,
—0o0

See e.g. [6]. It is known that

o= lim (i) /Gy), b=Re(), p= lim SLETWIE
Y—00 y—04 ™
where the last limit is in the vague topology, and finally that ¢ has a holomorphic extension
to A if and only if supp(u) C] — 00, 0].
We describe our main results.
THEOREM 1.1. If {ay} satisfies (1.1) and |k — ay| < Const for k > 1, we have

—log P log P(1 D
og (z):1+ 0g ()+ (t)dt,
z Log 2z 1-=2 o t—2

where D is defined as

_ —log|P(x)| + klog |z|
(1.4) D) = L) (Coglal)® + 72)

forx € [—ag41,—ag] and k > 1 and

_ —log|P(a)
[« ({log ]2 +72)

D(z)

forz € [—ay,0].

Theorem 1.1 fournishes the Stieltjes representation of log P(z)/(z Log z) on a half-line.
The representing real-valued measure has density w.r.t. Lebesgue measure on the negative
line and has a point mass at 1.

We could equally well have given the representation of

—log P(z) + zlog P(1)
zLogz

in terms of a density on the negative half-line (there is no support of the measure on the
positive half-line, since the function has a removable singularity at 1). In this general setup
there is no particular reason for this density to be positive. However, when P = P, is the
canonical product in the Weierstrass factorization of the I'-function above, the corresponding
density is positive. This leads to the question of finding conditions on the distribution of the
zeros in order that the corresponding density be positive, or, what amounts to the same, that
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the function above is a Pick function. Our second result (Theorem 1.2) gives such a condition
and is a generalization of the main result of [5].
THEOREM 1.2. If {ay} satisfies (1.1) and if k < a, < k + 1 for k > 1 then

—log P(%) + zlog P(1)

9(2) = zLog z

is a Pick function. It has the representation

g(z) =1+ /0 d(t) dt,

where the positive density d is defined as

_ —log|P(x)| 4+ log P(1)x 4 klog|x|
(4 1 = e g el +72)

forx € [—ag41,—ax] and k > 1 and

—log|P(z)| + log P(1)z
|z|((log |])* + m2)

d(z) =

forxz € [—ay,0].

We notice that Theorem 1.2 can be generalized, by shifting the zeros to the left; see
Theorem 5.7.

In terms of the counting function associated with the zeros, the positivity of the density
d can be expressed more compactly as

log |P(z)| —log P(1)z < n(—xz)log ||,

for z < 0. This gives an upper bound on |P(x)| on the negative axis. We shall describe the
asymptotic behaviour of the maximum of log | P(z)| as z tends to —oo.

To prove our main results we shall use a Phragmén-Lindel6f argument, and need to find
new arguments (avoiding the functional equation of the I'-function) in order to investigate the
growth at infinity and the boundary behaviour on the real line.

2. Growth estimates. Throughout this section P denotes the canonical product of genus
1 having negative zeros —ay, where {ay} satisfies (1.1) and (1.2). We shall estimate the
growth of the holomorphic function

log P(z2)

zLogz

in the upper half-plane. To do this we need some preliminary results about the growth of the
canonical product P in the half-plane.
LEMMA 2.1. Suppose that {ay} satisfies (1.1) and (1.2). Then

log|P(z)| < Const |z|log|z|

for all large values of |z|.
The proof is relatively straight forward. We have included it here for the readers conve-
nience and also in order to illustrate the use of P(z)P(—z).
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Proof. We get, by partial integration,

log P(2) = /0( og(1+ 2/t) — z/t) dn(2)

o0
., ﬂ( 1 )d,;
0 t t+z

so that

> n(t) (1 T+t )

log | P —x — =
& P(2)] /0 t \t @+ +42
* n(t 1
+y2/ & 5 5 dt

o t (x+t)2+y

If z > 0 then

T+t 1
(z+t)2+9y?2 "+t~

1
< —
t’
so that the first term in the relation above comes out negative. Hence, by the assumption (1.2),

Y
oglP) <ol [ "

(z + 1) + y2
< Const |z|.

We conclude that | P| is of finite exponential growth in the right half-plane. To estimate the
growth in the left half-plane we use the identity

It is easily seen that f is an entire function of finite exponential type. We thus get
log |P(—z)| < Const |z| — log|P(z)| < Const |z| — log | P(z)],

since also |P(z)| > |P(x)|. Therefore, a lower bound on | P| in the right half-plane will give
us an upper bound on | P| in the left half-plane; we thus consider

. “n(t) (1 1

for z > 0. We find, with £ > 0 smaller than a4,

*° 1 1 * /1 1
x/ @ - — dtSConst:c/ - — dt
0 t t x4+t c t x4+t
= Const zlog(1 + z/¢)
< Const |z| log |,

for | 2| large. The lemma is proved. O
We also need an estimate of arg P.
LEMMA 2.2. Suppose that {ay } satisfies (1.1) and (1.2). Then

|arg P(2)| < Const |z|log|z| + Const
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forall z € A
Proof. We may assume that z = z + iy € H. We have
0
(2.2) arg P(z + iy) — arg P(iy) = / 5 218 P(t + iy)dt.
o Oz

We shall now find estimates of arg P(iy) and of 2 arg P(z + iy). From these estimates the

relation above can be used to find estimates of arg P(x + 4y) in H. A simple computation
shows that

0 L * Yy
% argP(m +1y) = _‘/0 md’ﬂ(s)

We also find that
|arg P(iy)| < Const ylog(y + 1).

This relation is straight forward to verify, e.g. by using partial integration.
Suppose first that z > 0. Then, by (2.2),

. ' T poo y
|arg P(z + iy)| < |arg P(iy)| +/o /0 mdn(s)dt

oo T y

< Const |z]|1 ————dtd

< Const |z| 0g|z|—{—/0 ‘/0 (s+1)2 +y2 n(s)
o0

< Const |z|log |z| + x/
0

R dn(s).

Here, by integration by parts,

0o [es} 2
.77/ %dn(s):h’/ n(s) 2:1/ 5 28 5ds < Const z.
o STty 0o S sTHytst+y

Suppose next that z < 0. In this situation,

' ' —z  poo y
|arg P(z + iy)| < |arg P(iy)| +/0 /0 mdn(s)dta

and we turn to estimate the double integral on the right hand side. We write it as

/—w/ G —t s)dt = /—w /—w+1 = t e > dn(s)dt
+ /EH el

and we estimate these integrals separately. We find

/_’” /_’”“ (s —t s)dt = /—w+1 /—w t§/2 e dtdn(s)
/ o / = y Gy tants)

= —z+ 1) SConstx
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The second integral is more delicate to estimate: first of all, if ¢ € [0, —z], we get by partial
integration,

o Yy o Yy
/Hl G =t D T

* n(s) 2(s-—t)sy
o e

ds,

so that

-z poo Y T n(s) 2(s—t)sy
/0 /_mmdn(s)dts/o /—z+1 . ((S_t)2+y2)2dsdt.

This integral we write again as

—x oo _ $+)2
/ / n(s) s 2(s—t) Yy dsd,
0o Joap s s—t(s—t)P+y*(s—1)+y?

and, using that s — s/(s —t) is decreasing for s > t and the assumed bound on n(s), we see
that this integral is bounded by

Const / / vt Z 5 dsdt
0 Joapr—z+Hl-t(s—1t)>+y

I 1 * 2
SConst/ z / Y dsdt
o ori-t) G-y

z 1
= Const / Ldt
o —z+1-—t

= Const (—z + 1) log(—z + 1).

The lemma follows by combining all these estimates. O

PROPOSITION 2.3. If {ay} satisfies (1.1) and (1.2) there exist a constant C and a se-
quence {ry} tending to infinity such that

log P(2)

zLog z

for all z € A of absolute value ry, and all n.

Proof. A classical result, going back to Littlewood, see [8], states that for some sequence
Ty — 00,

| inf log|P(z)| > —Const sup log|P(z)].

z|=rn z|=Tn

Therefore, by Lemma 2.1,
|log | P(2)|| < Const |z|log |z]

for all z satisfying |z| = r,, and all n. The proposition now follows from Lemma 2.2. |



ETNA

Kent State University
etna@mcs.kent.edu

PICK FUNCTIONS RELATED TO ENTIRE FUNCTIONS 101

3. An auxiliary Pick function. In this section we suppose that the sequence {ay} sat-
isfies (1.1) and also

3.1 |ar, — k| < Const.
This is equivalent to
(3.2) [n(r) — r| < Const.

The main result of this section is the following theorem.
THEOREM 3.1. For any given sequence {ay} satisfying (1.1) and (3.1) there exists a
real constant A < log P(1) such that

_ —logP(2) + Az

94(2) zLogz

is a Pick function.

REMARK 3.2. If A > log P(1) then the function in the theorem above is certainly not
a Pick function (its imaginary part tends to —oo as z tends to 1). Thus A = log P(1) yields
the strongest result. In many cases the constant A should be taken smaller than log P(1) in
order that g4 be a Pick function. As an example, consider

oo
P(z) = (1+ 2) exp(—2) - [J (1 + 2/k) exp(—z/k),
k=5
which has zeros at —1,—5,—6, ... In this case, computer experiments indicate that there

are points ¢ € [—5, —1] such that log |P(z)| — xlog P(1) > log |z|. This implies (see the
proof of Theorem 3.1 below) that the imaginary part of
—log P(z) + zlog P(1)
zLogz

in the upper half plane has some negative boundary values and hence that the function cannot
be a Pick function. However, in §5 we show that if k < ap, < k+ 1 then we may take A equal
to log P(1).

To prove the theorem we need some lemmas.

LEMMA 3.3. For the canonical product P of genus 1 associated with a sequence {ay}
satisfying (1.1) and (3.1) we have (with e < a1)

| —log P(t) — tlog(1l+t/e)| < Constt.

fort > 0.
Proof. From (2.1) we have (withe < a;)

_1ogp(t)=t/5m@(1— L )ds,

S s s+t

for t > 0. Therefore, and by (3.2),

| —log P(t) — tlog(1 + t/e)| = ‘—logP(t) —t/E (g - s+t) ds
1

() G )
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*®1/1 1
< Const t / - - - ds
e S\8 s+t
* t
< Const t / ——ds
. S%(s+1)
< Const t.
The lemma is proved. a

LEMMA 3.4. For any given sequence {ay} satisfying (1.1) and (3.1) there exists a real
constant A such thatlog |P(z)| — Az < 0 for all x € [—aq,0] and

log|P(z)| — Az < klog |z

forallx € [—ag41,—ag] and all k > 1.

Proof. For z € [—ay,0] we have 0 < P(z) < 1, so the first assertion of the lemma is
evidently true. Given any bounded interval of the form [—K, 0], it is possible to choose A
such that the asserted inequalities hold on any interval [—ag41, —ax] C [—K, 0]. Hence we
may assume that z < —1. If k > 1 and = € [—ag+1,—ag], we putt = —z and find

—log |P(z)| — Az = log|f(t)| — log P(t) + At.

Here, f(z) = [[p=,(1 — 2?/a}) is (as used before) an entire function of exponential type.
Hence, by Lemma 3.3,

—log|P(z)| — Az < Const t + tlog(l + t/e) + At
< Const t + tlogt + At.

We get, for t € [a, art1],
tlogt — klogt < |axy1 — k|logt < Const logt,

so that —log | P(z)| — Az < Const t+ At+k logt. From this relation we see that it is possible
to choose A such that — log | P(z)| — Az < klog |z| for all k and all ¢ € [—ag+1, —ag]. This
completes the proof. d

Proof of of Theorem 3.1. We consider the harmonic function

“log P(2) + Az>

_ &
V() _\S< 2 Logz

in the upper half-plane. Our goal is to show that V' > 0 in HL We claim that

liminf V(2) >0

z—t,z€H

forallt € R Indeed,if t > O and ¢t # 1 then V(z) — V(t) = 0 as z — ¢. for z near 1 we

have

A—log P(1)
z—1

9(z) = +¢(2),

where ¢ is holomorphic at z = 1. Thus,
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soliminf, ,; V(2) > 0(andis 0if A = log P(1)). Since — log P(z)+ Az (which is actually
holomorphic in a neighbourhood of the origin) has a zero there,

Const

< ——+ —0
'S TTog2]

V()

as z — 0 within HL If ¢ € (—ag41, —ay) for some k > 1,

—log|P(t)| — ikm + At
t(log |t| + im) )

-7
H({log [ + )

Viz) — S (
(—log |P(t)| + At + klog|t|)

(and a similar estimate holds for k = 0 and ¢t € (—a1,0)). From the lemma above we see that
these expressions are non-negative. If ¢ = —ay, for some & then one sees that V(z) — oo.
Our claim is verified.

The function —V is a harmonic function in the upper half-plane, which has, as we have
just verified, non-positive boundary values on the real line. It is (by Proposition 2.3) bounded
from above by some fixed constant on some semicircles, whose radii tend to infinity. The
ordinary maximum principle yields that —V is bounded from above in all of the upper half-
plane, and hence, by applying an extended maximum principle, that —V" is non-positive in
the upper half-plane (see e.g. [9, p. 23]). The theorem is proved. O

4. Integral representation. We shall find an integral representation of functions of the

form
—logP
ooy Zl08P(E)
zLogz

where P is the usual canonical product associated with the sequence {—ay} satisfying (1.1)
and (3.1). We shall do this by using the Pick functions described in Theorem 3.1. We choose
A <log P(1) such that

_ —logP(z) + Az

94(2) = zLogz

is a Pick function. We shall find the integral representation of g4 as expressed in (1.3). We
have
LEMMA 4.1. We have, with V4 (z) = Sga(z),

1

;VA(t +i/n)dt —,, da(t)dt + (log P(1) — A)ey
in the vague topology. Here € is the point mass at 1 and d is defined as da(t) = 0 for
t >0,

_ —log|P(t)| + At + klog t]

A0 = = g+ 5

fort € [—ag41,—ag) and k > 1 and

—log|P(t)| + At

P = " og i+ )

fort € [—a1,0].



ETNA

Kent State University
etna@mcs.kent.edu

104 HENRIK L. PEDERSEN

Proof. A computation shows that

4.1) |zLog 2|*Va(z) = (zlog |P(2)| + y arg P(2)) Arg 2
+(ylog|P(2)| — z arg P(z)) log |z
—Alz|? Arg 2.

Here we notice that arg P(z) is bounded on compact subsets of the upper half-plane (Lemma 2.2)
and that log | P(z)| involves only logarithmic singularities. If h € C.(R) has its support in
[ K,1/2] it thus follows that

1/2 1/2
/ h(t) log | P(¢ + i/n)|dt —>n / h(t) log |[P(8)|dt,
-K K

and that

1/2 1/2
/ h(t) arg Pt + i /n)dt —s, / h(t) arg P(t)dt.
K K

By (4.1) we see that

1 / v h(#)Va(t +i/n)dt —sn / v h(t)da(t)dt,

T J_K -K

where d4 is given as in the statement of the lemma. (We notice that the origin does not
represent any difficulty since, as noted before, V4(z) < Const /| Log z| for z near zero.)
If & has its support in [1 — 8,1 + §], then

1 1490

;/ &)V (t + i /n)dt —sn —(A —log P(1))h(1).
1-6

This follows from the (already used) fact that

(A —log P(1))
z—1

9(2) = +6(2),

where ¢ is holomorphic near z = 1. The lemma is proved. O
We have thus found the integral representation

ga(z) = /Ooo (i - ﬁ) da(t) dt

+(10gP(1) —A) ( ! — 1) +auz+ B4,

1—2 2
where

ax = lim g4(iy)/(iy) =0,
and

2
Ba=Rga(i) = - log | P(4)].
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On the other hand, we know that A/ Log z is a Pick function (since A < 0) and that

-1 /0 1 t 1 1 1
- - _dt + i
Log z —o \t—2  t2+1) (loglt])? + =2 1—2 2

This gives us

—log P(z) A
zLogz = 94(2) Logz
2) —/0 P Vpwa
’ o \t—2 241
1 1 2
#1ogP() (12— 3 ) + Z1og P

where D is given in (1.4).
Concerning the growth of D we note:

LEMMA 4.2.
[P0
_eo P11

Proof. We shall again bring in the function f(z) = [[;—, (1 — 2%/a2). We have earlier
used that f is of exponential type and now we shall also use that

/°° log* |f(t)]

dt < o0.
oo P21

4.3)
This relation follows since f is of polynomial growth on the real line (see e.g. [ 10]; one may
also use estimates similar to those in §5). It is known (see e.g. [9, p. 50]) that the exponential
growth together with (4.3) implies

> |log | f(@)I
(4.4) /m g dt< oo
We find, for t € [—ag41, —ag],
[t|D(t)  —log|P(t)| + klog|t|
2+1 (2 +1)((log [t])? +72)
—log|£(8)] log P(—t) + klog(—t)

(2 +1)((log [t))* +72) (¢ + 1)((log|t])? + 72)
Hence (with ag = 0),
0 0
[ RO, [ Lol L,
oo 241 oo P24+ 1 (log|t]))? + w2

N > /%+1 |log P(t) + klogt|
(t* +1)((log t)* + m2)

dt.
k=0" %k

The integral involving |log|f(t)|| is, by (4.4), finite. It therefore suffices to estimate the
infinite sum in the last line of the relation above. To do this we use Lemma 3.3, from which
we get (for large t)

|log P(t) + klogt| < Constt, t € [ak,ar+1],
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where the constant does not depend on k. The infinite sum of integrals is therefore bounded
from above by a constant times the finite integral

/ < dt
o t(logt)?”
The lemma is proved. ad

This lemma makes it possible for us to split the integral in (4.2) into a sum of two and
we thus get

log P
at + 2670
z Log z o t—2 1-2

+C,

—log P(2) /0 D(t)

for some constant C. We may identify C' by noting that

0
lim/ %dt: lim 1087 _ o

r— 00 r—00 —x
so that (by Lemma 3.3),

C = lim —l8P@ _
z—oo  zlogz

We conclude: If the sequence {ay} satisfies (1.1) and (3.1) we have the representation

-1 0
og P(z) _/ D(t) g+ log P(1)
zLogz olt—2 1-=2

+1, z €A,

of the canonical product P of genus 1 associated with the sequence {—ay, }. The density D is
defined in (1.4).
We have proved Theorem 1.1.

5. Zero distribution and positivity of density. In this section we prove Theorem 1.2:
We show that Theorem 3.1 holds with A = log P(1) provided that the sequence {ay, } satisfies

5.1 ap € [k, k+1], k>1.
We begin our investigation by finding estimates of the function
f=1] (1 - —2>
= ay
k=1

on the real line. For this we need
LEMMA 5.1. Forany k > 2,

sin(wz) 1
mx  1—22/k?

< 1 forzelk-1,k,
=\ 1/2 forz € [k, k+1].

Proof. Fork > 2and z € [k, k + 1],

k2 k2

sin(rx — k) <
z(z + k) — k(k+ k)

sin(mx) 1
mx  1—1x2/k?

1
< -.
-2

mx — 7wk
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Fork >3 andzx € [k — 1, k],
. 2 2
sin(rz — k) k < k <1,
z(z+k) — (k—-1)(2k-1) —

wx — 7wk

sin(mz) 1
mx 1—ax2/k?

since k > 3. If k = 2 we should check that

sin(mz) 1 <1
rx 1—22/4|—

for « € [1,2]. This inequality does hold, but we do not give a detailed argument here. The
lemma follows. O
f@)] < 1for

z € [ag—1, k] and | f(z)| < 1/2 for z € [k, ay).
Proof. Suppose that z € [ag_1, ag], k > 2. Since

2’| z? T
1-5|l=5-1<>5 -1
‘ a| a TP
forl=1,...,k—1,and
2 2 2
‘1—‘”—2 =1-Z < m
a; a; l+1)
forl > k, we get
k—1 .73 [es) .CE
il
=1 a9 = 4
D
B sm(mc) 1
| wx 1—a22/k2|
|

Thus the proposition follows from the lemma above
PROPOSITION 5.3. Suppose that {ay, } satisfies (5.1). We have

~log P(t) + tlog P(1) = /OOO ”(SS) o t)l(s s a(e - 1),

fort > 0 and in particular
—log P(t) + tlog P(1) < logT'(¢t + 1),

fort > 1.
Proof. A computation, based on (2.1), yields the identity in the lemma. The counting
function n(s) is, by the assumption on the ay,’s, bounded from above by the counting function
= k. Thus, whent > 1,

~ nols) L ds - t(t — 1)

* n(s) 1
/0 p (s+t)(s+1)ds't(t_1)5/0 s GrOGE+D
—log Po(t) + tlog Po(1),

no corresponding to the case of ay,
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where Py denotes the canonical product with zeros —1,—2,.... But then we know that
—log Py(t) + tlog Po(1) =log'(t + 1). The proposition follows. a
LEMMA 5.4. Let k > 1. For z € [—aj41, —ax] we have

log |P(z)| — zlog P(1) < klog |z|.

Proof. Ift = —x € [ak, ap41].

log |P(z)| — zlog P(1) = log|f(t)| — log P(t) + tlog P(1)
< log | f(t)| +log D(t + 1),

by the lemma above. It is therefore enough to show that
log |f(t)| +1og['(t + 1) < klogt, ap <t < g,

for k > 1. Suppose first that ¢t € [ax, k + 1] C [k, k + 1]. Thenlog |f(t)| < 0 by Proposition
5.2, so we should verify that log I'(t + 1) < klogt fort € [k, k + 1] and all £ > 1. This last
inequality follows e.g. by induction from the functional equation for the I'-function:

logT(t +2) =logT'(t+ 1) +log(t + 1) < klogt +log(t + 1) < (k + 1) log(t + 1).

Suppose nextthatt € [k+1,ax41] C [k+1, k+2]. Here, log|f(t)| < — log 2 by Proposition
5.2, so that

log | f(t)| +logT'(t + 1) < log T(t + 1) — log 2.

We now claim that logT'(t + 1) —log2 < klogtfort € [k + 1,k +2]andk > 1. Ifk =1,
the inequality is true (log I'(t) < log2 for ¢t € [2, 3]). To go from k to k + 1, we note that

logT(t+2) —log2 < logT'(t+ 1) + log(t + 1) — log 2
< klogt+log(t+1) < (k+1)log(t+1).

The lemma is proved. a

We can now give the proof of Theorem 1.2 (the promised generalization of [5, Theorem
1.2]):

Lemma 5.4 shows that Theorem 3.1 holds with A = log P(1). Then Lemma 4.1 and
Lemma 4.2 yield the desired representation

—log P(z) + zlog P(1) /0 d(t)
zLogz e t—2

dt +1,

where the density (defined in (1.5)) is non-negative.
By differentiating under the integral sign, we find the following corollary.
COROLLARY 5.5. We have, forn > 1,

* _d(-9)
(M) () = (=1)"*+1p! V)
F0e) = it [T E s,
where
_ —log P(z) + zlog P(1)
N zLog z

f(z)

’
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and P is the canonical product associated with a sequence {—ay} satisfying (1.1) and (5.1).
In particular, f' is completely monotone on |0, 0o|.

REMARK 5.6. One may describe the asymptotic behaviour of the maximum of log | P(z)|
on the negative line for a canonical product P having negative zeros. As an example we shall
study

sup{log | P(z)| - zlog P(1)| 2 € [~ak, ~as_1] }
as k tends to infinity. Here {ay,} satisfies (5.1). We have (witht = —z € [ag_1,ax])
log|P(z)| — zlog P(1) = log| f(t)| — log P(t) + tlog P(1).

From the proof of Lemma 5.4 we know that this is bounded from above by logT'(t + 1). To
find a lower bound on the supremum above, we need a lower bound on |f|. Such a lower
bound can be found by using the inequalities (for t € [ag—1,a)):

t t
1+—(> 1+ —
+al - +l+1’

forl>1,
)
aj I+1
for1 <1 <k-—2 and
22|
aj

forl > k + 1. One obtains

sinw(t — k) k(1 —t/ar)(1 — t/ak—1)
w(t —k) 1-—1¢2

|7 (®)] =

We now put b, = (ay, + ax—1)/2 and note that
by € [ak_l,ak] n [k - 1/2,k+ 1/2].
Therefore

sup{|f ()| |t € [ar—1,ar] } > |f(br)|

> Const  inf
[s|<1/2

(ar — ag—1)?

k3

sin(ms)
s

Furthermore, —log P(t) + tlog P(1) > logI'(t + 2) — tlog2 for t > 1 (by an argument as
in Proposition 5.3) and we thus obtain, for a suitable constant C,

logT'(k + 1) — klog2 — 3logk + 2log(ax, — ag—1) + C

< sup{log |P(z)] — zlog P(1) | € [—ax, ~as_1]}
<logT'(k + 2).
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Let us end this section by finding ways of weakening the assumption (5.1). As indicated
in Remark 3.2, removal of some zeros of P may destroy the Pick property of

—log P(z) + zlog P(1)

zLogz

It is possible to obtain the following result, dealing with the case of the zeros being shifted to
the left.

THEOREM 5.7. Let a > 1 and suppose that ay, € [a + k — 1,a + k] fork = 1,2,....
Then

—log P(z) + zlog P(1)
zLogz

A d

is a Pick function. Here P denotes the canonical product of genus 1 having zeros at {—ay}.
Proof. The proof follows the same lines as the proof of Theorem 1.2 and is based on the
inequalities

log |P(z)| — zlog P(1) < klog|z|

for x € [—ag+1, —ax] and k > 1. We shall briefly indicate how to verify these inequalities.
First of all, for ¢ € [ag,ak+1] Cla+k —1,a+ k+ 1],

sl =TI -5
=1 1
['(a)’T(t — a)(t — a)? |sin7(t — a) 1
s T(t+ a) wlt—a) 1—(—a?JR|

This estimate can be deduced in the same way as the estimate in Proposition 5.2 and using
the identity

s t? B ['(a)?
11 (1_ (a+l)2> T T(t+a)l(—t+a)

=0
Secondly, from Proposition 5.3, for ¢t > 1,
—log P(t) + tlog P(1) < —log P, (t) + tlog P, (1),
where P, has its zeros at —(a + k — 1), k > 1. The relation
—log P,(t) + tlog P, (1) =logT'(t + a) —logT'(a) — tloga

follows either by computation by noting that 1/T'(z + a) is an entire function with zeros at

—(a+k—1),k > 1 and of order (at most) 1. Thus, by Hadamards factorization theorem, it is

of the form P, (z) exp(A + Bz), where one finds A =logI'(a) and B = loga + log P,(1).
Now, suppose that t € [ay,ar+1] (C [a+ k —1,a + k + 1]). We find

log|P(z)| — zlog P(1) < logI'(t + a) —logT'(a) — tloga + log | f(t)|

<logT(a) —tloga + log'(t —a + 1)
+log(t — a) +n(t),
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where n(t) =0fora+k—1<t <a+kandn(t) = —log2fora+k <t<a+k+1
according to Lemma 5.1. If we put s = ¢ — a we see that the desired inqualities are verified if
logT(a) — (s +a)loga +1logT(s + 1) + log s < klog(s + a),
fork —1<s<kand
logT(a) — (s + a)loga + log'(s + 1) + log s —log2 < klog(s + a),

for k < s < k + 1. To verify these inequalities we use that log'(a) < aloga fora > 1,
sloga > 0, log(s + a) > log s and the inequalities for T" used in the proof of Lemma 5.4.
The theorem is proved. |
If we take a, = R+k—1,k > 1 for some R > 1 then we obtain the following corollary.
COROLLARY 5.8. For any R > 1, the function

logT(z + R) —logT'(R) — zlog R
z
zLogz

is a Pick function.

REMARK 5.9. It should be noted that e.g. the assumption |ay — k| < 1/2, fork > 1
is not sufficient to produce a Pick function. Even for arithmetic sequences a = r + k — 1,
where r > 0 is close to zero the result need not be a Pick function.

A convergent sum of Pick functions is again a Pick function. As a consequence we
mention the following result, the moral being “the more zeros the better”.

COROLLARY 5.10. Let { Py} be a sequence of canonical products of genus 1 and sup-
pose that Py, is associated with {—al(k)}, where al(k) € [a® +1—-1,a® 41, forl > 1 and
some numbers a®) > 1. If 322 Zi’il(al(k))_Q < oo then

o= log P(z) + zlog P(1)
zLogz

is a Pick function, where P(z) = []—, Px(2) is the canonical product of genus 1 associated
with {—al(k) 1.

6. A related Pick function. We note the following generalization of [5, Theorem 5.1].
The proof is exactly the same and we shall not repeat it here.
PROPOSITION 6.1. If0 < by < by < ...and Y p, b;*> < oo then

log P(2) i (l _ Log(1 +z/bk))

z br z

k=1

is a Pick function and it has the integral representation

log P(z) _ 0 1 t
e G L

where
= (1 1
b= Z <E — arctan (E))
k=1
and & is defined as £(t) = 0 fort > —by and

—k
£@t) = 5 fort € |=bgy1,—br[,k=1,2,....
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