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The paper aims to study the flow of a binary mixture of electrically conducting, incompressible and 
viscous fluids between two parallel plates in the presence of a transverse uniform magnetic field. The 
solution of such a flow model has many applications in magnetohydrodynamic (MHD) power 
generators, MHD pumps, MHD accelerators, and MHD flowmeters. Exact solutions have been obtained 
for the following four problems: (1) steady hydromagnetic Couette flow, (2) unsteady hydromagnetic 
Couette flow, (3) steady hydromagnetic Poiseuille flow, (4) unsteady hydromagnetic Poiseuille flow. The 
mean velocity of the mixture is drawn for different values of magnetic parameters and results are 
interpreted with the aid of graphs. The previous solutions involving single Newtonian fluid appear as 
the special cases of the present analysis. 
  
Key words: Binary mixture, Newtonian fluid, magnetohydrodynamics (MHD), steady/unsteady flow, 
Couette/Poiseuille flow. 

 

 
INTRODUCTION 
 
The mixture theory finds important applications in various 
branches of engineering and technology. Familiar 
examples are suspensions, emulsions, multigrade oils, 
polycrystalline aggregates, granular media, bubbly 
liquids, liquid crystals, fluid filled porous elastic solids, 
composite elastic solids and alloys (Srivastava et al., 
1982). The inadequacy of the basic theory for a single 
continuous media in predicting the behavior of such 
substances leads to developments in the continuum 
theory of mixtures. Historical discussion on the 
development of the subject is sufficiently available in the 
literature. Theoretical research on the modern formulation 
of the thermomechanics of interacting continua was 
initiated by Truesdell (1957). He presented the balance of 
mass, momentum, energy and the second law of 
thermodynamics in the context of the continuum theory. 
Review articles on the mixture theory by Bowen (1976), 
Atkin and Craine (1976) and Bedford and Drumheller 
(1983) are of  particular interest. We also refer the reader 

to the books by Truesdell (1984), Samohyl (1987) and 
Rajagopal and Tao (1995) regarding the historical 
development of the theory and detailed analysis of 
various results on this subject. 

Adkins (1963) formulated constitutive equations for the 
stresses in each constituent. He also examined some 
steady flows of compressible mixtures of non-Newtonian 
fluids. The continuum theory of compressible mixtures of 
Newtonian fluids was first considered by Green and 
Naghdi (1965). Müller (1968) also studied a 
thermomechanical theory for mixtures of fluids in which 
there are no chemical reactions. Eringen and Ingram 
(1965) and Ingram and Eringen (1967) studied mixtures 
of chemically reacting fluids. The constitutive equations 
for an incompressible mixture of Newtonian fluids were 
derived by Mills (1966) using the theory of Green and 
Naghdi (1965). Craine (1971) examined the flow induced 
by the steady oscillations of an infinite plate in a mixture 
of    two    incompressible    Newtonian    fluids.    In     his 
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subsequent study (Craine, 1973), he considered the 
same problem for a binary mixture of incompressible 
Newtonian hemihedral fluids. Wilhelm and Van Der Werff 
(1977) investigated the flow of two miscible, viscous, 
incompressible fluids subject to oscillatory pressure 
gradient in a cylindrical tube. Beevers and Craine (1982) 
extended the list of known solutions for a mixture of two 
viscous fluids and discussed in a more detail methods for 
evaluating the response functions. Some exact solutions 
for flows of a binary mixture of viscous incompressible 
fluids in different geometries were obtained by Göğüş 
(1988, 1991, 1992a, b, 1994 and 1995). Many other 
authors including Al-Sharif et al. (1993), Chamniprasart et 
al. (1993), Wang et al. (1993), Barış (2005), and 
Massoudi (2008) worked on applications of the theory of 
two miscible fluids to practical problems within the 
context of the mixture theory. Recently, Barış and Demir 
(2012) have obtained the exact solutions in series form 
for the flow of a mixture of two incompressible Newtonian 
fluids in a semicircular duct. 

The present paper aims to study the Hartmann problem 
for a binary mixture of Newtonian fluids and generate 
theoretical results. In Hartmann flow, the hydromagnetic 
analogue of Couette and Poiseuille flows, there is an 
imposed, uniform magnetic field normal to the surfaces. 
The flow may be induced by a pressure gradient or by 
relative motion of the two solid walls. Flows of this type 
are encountered in a variety of applications such as 
magnetohydrodynamics (MHD) power generators, MHD 
pumps, MHD accelerators, and MHD flowmeters, and 
they can also be expanded into various industrial uses. 
The study of the flow of immiscible fluids under the 
influence of a magnetic field was considered by various 
authors. Shail (1973) studied Hartmann flow of a 
conducting fluid and a non-conducting fluid layer in a 
channel. Mitra (1982) analyzed the unsteady flow of two 
electrically conducting fluids between two parallel plates. 
Lohrasbi and Sahai (1988) considered MHD two-phase 
flow and heat transfer in a horizontal channel and 
obtained analytical solutions for the case where one of 
two fluids was assumed to be electrically non-conducting. 
Malashetty and Leela (1992) analytically investigated the 
problem of two-phase MHD flow and heat transfer in a 
horizontal channel for which both phases are electrically 
conducting. Malashetty et al. (2001) examined the two-
fluid MHD flow and heat transfer in an inclined channel. 
Umavathi et al. (2006) presented analytical solutions of 
an oscillatory Hartmann two-fluid flow and heat transfer in 
an horizontal channel. Recently, Umavathi et al. (2008), 
Nikodijevic et al. (2011), and Sivaraj et al. (2012) have 
studied the two-fluid MHD flow and heat transfer with 
various geometries. Most of the problems relating to the 
petroleum industry, geophysics, plasma physics, 
magneto-fluid dynamics, and so forth involve the two-fluid 
MHD flow situations. 

The present investigations on the two-fluid MHD flow 
pertain   to   the   mechanics   of  two   immiscible   fluids.  

 
 
 
 
Different from all studies mentioned above, the present 
paper deals with the flow of a binary mixture of viscous 
fluids between two parallel plates in the presence of a 
transversely magnetic field. The basic scientific method 
utilized in the present research is the mixture theory. We 
obtained the analytical solutions for the MHD Couette 
and Poiseuille flows of a mixture of two incompressible 
Newtonian fluids in a parallel plate channel. 
 
 
BASIC THEORY 
 

A brief review of the notation and basic equations of a mixture 
containing two incompressible Newtonian fluids is presented in this 
section. The reader should consult the articles by Atkin and Craine 
(1976) for more details. 

The mixture of two viscous fluids is considered to be a purely 
mechanical system. That is, thermal effects and chemical reactions 

are ignored. The fluids in the mixture will be represented 
(1)s  and 

(2)s . If 
( )

v denotes the velocity of 
( )s 

 , the material time 

derivative 
( )D Dt

 is defined by 

 

( )
( )

k

k

D
v

Dt t x


  
 
 

                                                                    (1) 

 

where kx  ’s are the spatial coordinates and the superscript   

refers the  -th fluid. Here and henceforth   takes the values 1 

and 2. The mean velocity v  of the mixture is calculated from 

 
(1) (2)

1 2   v v v
 
                                                                    (2) 

 

where 1  and 2  are the current densities of 
(1)s  and 

(2)s  at time 

t  after mixing. The reference densities 10  and 20  before the 

mixing are related to the current densities through 1 1 10    and 

2 1 20(1 )    , where 1  is the volume fraction of 
(1)s . The 

mixture density   is given by the sum 1 2    . In this work, 

we shall restrict our attention to a binary mixture of incompressible 
Newtonian fluids. For such a mixture, we can express the current 
densities in the form 
  

10 20 20 10

1 2

20 10 20 10

( ) ( )
,

     
 

   

 
 

 
                            (3) 

 
Assuming no interconversion of mass between the two fluids, 
conservation of mass for the two fluids are 
  

(1) (2)1 2

1 , 2 ,( ) 0, ( ) 0k k k kv v
t t

 
 

 
   

 
                            (4) 

 

where a comma denotes partial differentiation with respect to kx . 

If 
(1)

σ and 
(2)

σ  denote the partial stress tensors of the two-fluid, 

then the equations for the balance of linear momentum are given by 
 

(1) (1) (2) (2)

(1) (1) (2) (2)

1 , 1 2 , 2,k k

ik i k k ik i k k

D v D v
f F f F

Dt Dt
          

                                                                                         (5) 



 

 
 
 
 
where 

kf  represents the mechanical interaction forces between the 

fluids and ( )

kF  represents the body force per unit mass of the  th 

fluid. With these equations as the basis, in order to solve any 
problem related to binary mixture of fluids one needs to provide the 
constitutive relations for the interaction forces and stress tensors. 
The derivation of the constitutive equations appropriate to a binary 
mixture of incompressible Newtonian fluids has been outlined in 
Atkin and Craine (1976). If the mixture is considered to be purely 
mechanical system, the partial stress tensors in such a mixture are 
related to the motion in the following manner: 
 

(1) (1) (2) (1) (2) (1) (2)

1 1 3 1 3 5( ) 2 2 ( )ik jj jj ik ik ik ik ikp d d d d w w             

                                                                                         (6) 
 

(2) (1) (2) (1) (2) (1) (2)

2 4 2 4 2 5( ) 2 2 ( )ik jj jj ik ik ik ik ikp d d d d w w             

                                                                                         (7) 
 

with the material coefficients satisfying the inequalities  
 

2
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where 
1p , 

2p , 
( )

ikd 
, and

( )

ikw 
 are given by 

 

1 2

1 20 1 2 10 2( ) , ( )
dA dA

p p
d d

       
 

   
        

   

 (9)  

 
( ) ( ) ( ) ( ) ( ) ( )

, , , ,2 , 2ik i k k i ik i k k id v v w v v        
                          (10) 

 

In these equations,   is a Lagrange multiplier associated with 

Equations (3) and (4), 1p  and 2p  the mechanical pressures, ikd  

the deformation rate tensor, ikw  the spin tensor and 1A  and 2A  

the Helmholtz free energy of the fluids. The mixture Helmholtz free 

energy A  is defined by  
 

1 1 2 2A A A                                                             (11) 

 
Note that, under isothermal conditions, the material coefficients in 
Equations (6) and (7) depend only on the mixture density. 

Finally, we shall mention the interaction force kf  appearing in 

Equation (5). Deriving constitutive relations for the interaction forces 
is one of the most important issues of research in multifluid flows. 
Massoudi (2003) discussed a variety of possible forms of this term. 
For instance, for fluid-solid and fluid-fluid mixtures, the interaction 
force generally depends on densities, temperatures, velocity 
differences, velocity gradients and possibly other quantities. Such 
interactions play a very important role in the nature of solutions. To 
make the theory be of practical utility, we need to simplify the 
constitutive expression for the interaction force. A good starting 
point is the inclusion of the effects due to drag and density gradient, 
that is, (Atkin and Craine, 1976). 
 

(1) (2)

,( )k k k kf v v                                                             (12) 

 
where   is the interaction coefficient which is a function of the 

mixture  density.  Evaluation  of    is  indeed  a  difficult task.  One  
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simple approach for estimating the value of   is to make use of 

Hadamard-Rybczynski solution as a first approximation (Dai and 
Khonsari, 1994). Many authors like Craine (1971, 1973), Al-Sharif 
et al. (1993), Chamniprasart et al. (1993), Wang et al. (1993), Dai 
and Khonsari (1994), Göğüş (1988, 1991, 1992a, b, 1994, 1995) 
and Barış and Demir (2012) have benefited from Equation (12) to 
make calculation for various problems related to binary fluid 
mixtures. 

In the next sections, we derive the dimensionless forms of the 
governing equations. To gain further insight into the influence of the 
parameters in these equations, we will analytically solve the 
simplified equations for some simple hydromagnetic flows of a 
binary fluid mixture between two long horizontal plates. 
 
 
Steady hydromagnetic Couette flow 
 
We want to examine the steady flow of binary mixture of electrically 
conducting incompressible and viscous fluids between two parallel 

insulated plates separated by a distance H  in the presence of a 
transverse magnetic field. As Figure 1 shows, we select a 
rectangular Cartesian system with the x -axis in the direction of 

motion and the y -axis perpendicular to the plates. Two plates of 

the channel are of infinite extent in the x - and z - directions and 

the flow is fully developed, so the velocity depends only on y . The 

flow is caused by the motion of the plate at 0y   with a constant 

velocity 
0U  in the x - direction. An external uniform magnetic field 

0B  is applied in the y - direction. The magnetic Reynolds number 

is assumed to be very small. In this case, the induced magnetic 
field produced by motion of fluid can be ignored in comparison to 
the applied one. In addition, the imposed and induced electric fields 
are assumed to be negligible, thus the electromagnetic body force 

per unit volume simplifies ( )em   F v B B , where B  is the 

magnetic field vector and   is the electrical conductivity. Due to 

the assumptions stated above, Maxwell’s equations become 
redundant. 

It should be mentioned here that a great deal of interest has been 
focused on the flow problems in the presence of a uniform applied 
magnetic field. But it can’t be appropriate to make such an 
assumption in some engineering applications. So far a few 
researchers have worked on the flow of an electrically conducting 
fluid under a non-uniform space or time dependent magnetic field, 
due to the difficulty in obtaining the complete solution for the 
problem of this type. Recently, such an attempt was made by 
Asghar and Ahmad (2012). They found the analytical solution for 
unsteady Couette flow in the presence of an arbitrary non-uniform 
space dependent applied magnetic field. In this paper, for simplicity 
of analysis, we confined ourselves only to the uniform magnetic 
field case. It is felt that the uniform magnetic field findings will be a 
good starting point for shedding light on more complicated two-fluid 
MHD flows. We shall seek a solution of the form 
 

( ), ( )S Su u y y                                              (13) 

 

where the function Su  denotes the velocity component of the  th 

fluid in the x -direction for the case of steady flow. Under the above 

assumptions, substituting Equations (6) and (7) into the equations 
of motion (5) we obtain 
 

2

1 1 2 2 1 1 2 2 1 2 1 0 1( ) 0S S S S S S SM u M u M u M u u u B u           

                                                                                       (14) 
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Figure 1. Sketch of flow geometry and coordinate system. 

 
 
 

1p                                                                (15) 

 
2

3 1 4 2 3 1 4 2 1 2 2 0 2( ) 0S S S S S S SM u M u M u M u u u B u           
      

                                                                                                     (16) 
 

2p                                                                           (17) 

 
where  
 

5 5 5 5

1 1 2 3 3 4 4 2, , ,
2 2 2 2

M M M M
   

                                

                                                                                                     (18) 
  
In the above equations, primes denote differentiation with respect to 

y  and   is the electrical conductivity of the  th fluid. The last 

terms on the left hand sides of Equations (14) and (16) result from 
electromagnetic body forces. Note that we neglect non-magnetic 
body forces. With the use of Equations (3), (9) and (11), elimination 

of   between Equations (15) and (17) yields  

 
2

10 20 2

( )
( )( ) 0

d A

d


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
                                            (19) 

 
We deduce from the above equation that  is a constant. As a 

result, the coefficients 1M , 2M , 3M  and 4M  are constants. We 

shall now write the equations of motion in terms of a set of 

dimensionless variables. If f  is used to denote the dimensionless 

form of a quantity f , it follows that 

 
1/2

2

0

0

, , , ,
Si

i S

uM H y
M u y Ha B H

U H

 

 




  

 
      

 

                                                                                       (20) 
 
where   is the viscosity of the mixture. Thus the equations of 

motion in non-dimensional form become, 
 

2

1 1 2 2 1 2 1 1( ) 0S S S S SM u M u u u Ha u     
           (21) 

2

3 1 4 2 1 2 2 2( ) 0S S S S SM u M u u u Ha u     
           (22) 

 

The magnetic parameter Ha  in the above equations is often 

referred to as the Hartmann number. The boundary conditions for 
the velocity components are 
  

(0) 1, (1) 0S Su u                                                            (23) 

 
The solutions of Equations (21) and (22) can be given as 
 

1 1 2 2

1 1 2 3 4

s y s y s y s y

Su C e C e C e C e
 

   
                          (24) 

 

1 1 2 2

2 5 6 7 8

s y s y s y s y

Su C e C e C e C e
 

   
                          (25) 

 
where  
 

2 2

1 2

4 4
,

2 2

b b ac b b ac
s s

a a

   
 

           (26) 
 
with 
 

2 2

1 4 2 3 1 2 3 4 1 1 4 2

2 2 2 2

1 2 1 2

, ( ) ,

( )

a M M M M b M M M M M Ha M Ha

c Ha Ha Ha Ha





       

  

                                                                                       (27) 
 
Applying the boundary conditions (23) to Equations (24) and (25), 

we find the constants 1 8,...,C C  as follows: 
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                                                                                       (28) 
where 
 

2 2 2 2

1 1 1 1 1 2

1 22 2

2 1 2 2

,
Ha M s Ha M s

k k
M s M s

 

 

   
 

 
           (29) 



 

 
 
 
 
Unsteady hydromagnetic Couette flow 
 
Now is the time to investigate unsteady Couette flow of a mixture of 
two incompressible Newtonian fluids between two parallel plates. A 
uniform magnetic field is applied in a direction perpendicular to the 
flow of the binary fluid mixture. The mixture and two plates are 
initially at rest.  

The lower plate is suddenly accelerated from rest and moves in 

its own plane with constant velocity 0U , while the upper plate is 

held stationary. It is assumed that the flow is entirely driven by the 
motion of the lower plate. It seems reasonable to assume that the 
velocity components and densities of fluids are of the form  
 

( , ), ( , )u u y t y t                                               (30) 

 

Substitution of Equation (30) into Equation (4) yields 0t   . 

Thus 0t    and ( )y  . As made in the preceding 

section, elimination of  between y - components of the equations 

of motion give Equation (19), which implies that   is a constant. 

Since   has been proved to be a constant, all of the material 

coefficients are constants. As a result, the dimensionless equations 
of motions are as follows: 
 

2 2

1 1 2 2

1 1 2 1 2 1 12 2
( )

u u u
M M u u Ha u

t y y
 
  
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           (31) 
 

2 2
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2 3 4 1 2 2 22 2
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u u u
M M u u Ha u

t y y
 

  
    
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           (32) 

 
where 
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i
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M u y t Ha B H

U H H

  
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   

 
        

 

                                                                                       (33) 
 

The boundary and initial conditions are 
 

(0, ) 1; 0, (1, ) 0; 0,u t t u t t    
           (34) 

 

( ,0) 0; 0 1u y y     .                                                         (35) 

 

We first have to transform the problem so that the boundary 
conditions (34)1 are homogeneous. This can be achieved by 

decomposing ( , )u y t  into the steady Couette velocity field 

( )Su y  and the transient component ( , )f y t : 

 

( , ) ( ) ( , )Su y t u y f y t                                             (36) 

 

The transient components satisfy the following differential equations 
 

2 2

21 1 2

1 1 2 1 2 1 12 2
( )

f f f
M M f f Ha f

t y y
 
  

    
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           (37) 
 

2 2

22 1 2

2 3 4 1 2 2 22 2
( )

f f f
M M f f Ha f

t y y
 

  
    
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                          (38) 
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that are consistent with the boundary and initial conditions 
 

1 2 1 2(0, ) 0, (0, ) 0, (1, ) 0, (1, ) 0f t f t f t f t   
           (39) 

 

1 1 2 2( ,0) ( ), ( ,0) ( )S Sf y u y f y u y 
                          (40) 

 
Finite Fourier sine transform will be used to solve the simultaneous 
partial differential equations (37) and (38) with the conditions (39) 

and (40). Finite Fourier sine transform of a function ( )f y  defined 

for 0 y a   is 

 

0

{ ( )} ( ) ( )sin( ) , 1,2,3,...

a

sF f y f n f y ny dy n  
                          (41) 

 
with inverse transform 
 

1

1

2
{ ( )} ( ) ( )sin( )s

n

F f n f y f n ny
a






  
                          (42) 

 
With the aid of Equation (39), application of the Fourier sine 
transform to Equations (37) and (38) gives 
 

1

1 1 2 2

df
l f l f

dt
                                                                           (43) 

 

2

3 1 4 2

df
l f l f

dt
                                                                           (44) 

 
where  
 

2 2 2 2 2 22 22 2
1 1 4 232

1 2 3 4

1 1 2 2

, , ,
M n Ha M n HaM nM n

l l l l
     

   

   
   

      
                                                                                                     (45) 
 

Taking the Fourier sine transform of Equation (40) results in: 
 

 

 

1 1

2 2

1 1 22 2 2

1

3 42 2 2

2

( ,0) (1 ( 1) ) (1 ( 1) )

(1 ( 1) ) (1 ( 1) )

s sn n

s sn n

n
f n e C e C

s n

n
e C e C

s n













     


     


                                                                                       (46) 
 

 

 

1 1

2 2

2 5 62 2 2

1

7 82 2 2

2

( ,0) (1 ( 1) ) (1 ( 1) )

(1 ( 1) ) (1 ( 1) )

s sn n

s sn n

n
f n e C e C

s n

n
e C e C

s n













     


     


                                                                                       (47) 
 

Solving Equations (43) and (44) simultaneously and using the 
conditions (46) and (47), we obtain 
 

1 21 2 1 2 2 1 1 1 2 2

1

2 1 2 1

( ) ( ,0) ( ,0) ( ) ( ,0) ( ,0)
( , )

r t r tl r f n l f n l r f n l f n
f n t e e

r r r r

   
 

 

                                                                                       (48) 
 

1 21 1 1 2 1 2 2 1 2 1 1 1 2 2

2

2 1 2 2 1 2

( ) ( ,0) ( ,0) ( ) ( ,0) ( ,0)
( , )

r t r tl r l r f n l f n l r l r f n l f n
f n t e e

l r r l r r

     
 

 
     

                                                                                                     (49) 
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where  

 
2

1 4 2 31 4

1,2

( ) 4

2 2

l l l ll l
r

 
                                           (50) 

 
With the help of Equation (42), inverting Equations (48) and (49) 
and then substituting of the results into Equation(36), we find the 

following solution for ( , )u y t  

 

1

( , ) ( ) 2 ( , )sin( )S

n

u y t u y f n t n y   




  
                          (51) 

 

 
Steady hydromagnetic Poiseuille flow  

 
In this section we consider the steady flow of the binary mixture 
under consideration between two parallel plates in the presence of 
a transverse magnetic field. The flow is driven by an externally 
imposed constant pressure gradient in the x -direction, namely 

0xp x p    . We seek solutions in which the velocity of the 

 th fluid and the mixture density are assumed to have the form: 

 
( ), ( )S Sw w y y                                                              (52) 

 
As previously stated, it is proved that the total density and material 
coefficients become constants. Consequently, the equations of 
motion in the x -direction reduce to 

 

2

1 1 2 2 1 2 1 1 1( )S S S S SM w M w w w Ha w       
           (53) 

 

2

3 1 4 2 1 2 2 2 1( ) 1S S S S SM w M w w w Ha w       
           (54) 

 
where 
 

1/2
2

02
, , , ,

Si

i S

x

wM H y
M w y Ha B H

Hp H

 

 

 


  

 
      

      
                                                                                                     (55) 
 
The adherence boundary conditions of the problem are  
 

(0) 0, (1) 0S Sw w                                            (56) 

 
The velocity fields can be obtained by solving Equations (53) and 
(54) under the relevant boundary conditions as follows: 
 

1 1 2 2

1 1 2 3 4 5

s y s y s y s y

Sw D e D e D e D e D
 

    
           (57) 

 

1 1 2 2

2 1 1 1 2 2 3 2 4 6

s y s y s y s y

Sw k D e k D e k D e k D e D
 

    

                                                                                       (58) 
 
where 

 
 
 
 

1 1

1 1 1 1

2 2

2 2 22

6 5 2 6 5 2

1 2

2 1 2 1

6 5 1 6 5 1

3 4

1 2 1 2

( )(1 ) ( )( 1)
, ,

( )( ) ( )( )

( )(1 ) ( )( 1)
,

( )( ) ( )( )

s s

s s s s

s s

s s ss

D D k e D D k e
D D

k k e e k k e e

D D k e D D k e
D D

k k e e k k e e



 



 

   
 

   

   
 

   
        

                                                                                                     (59) 
 
with 
 

2 2

1 2 1 1

5 62 2 2 2 2 2 2 2

1 2 1 2 1 2 1 2

(1 )
,

( ) ( )

Ha Ha
D D

Ha Ha Ha Ha Ha Ha Ha Ha

   

 

  
 

   
     

                                                                                                     (60) 
 
 
Unsteady hydromagnetic Poiseuille flow  
 
Finally, we study the problem of unsteady flow of a mixture of two 
incompressible Newtonian fluids between two parallel plates. There 
is an external magnetic field of constant strength in the y - 

direction. The mixture is initially at rest. The mixture begins to flow 
due to the sudden imposition of a constant pressure gradient in the 
x - direction. We look for a solution of the form  

  

( , ), ( , )w w y t y t                                               (61) 

 
As made in the case of unsteady hydromagnetic Couette flow, it is 
proved   is a constant. This is why all the coefficients in the 

constitutive equations are constants. Thus, the dimensionless 
governing equations are as follows: 
 

2 2

21 1 2

1 1 2 1 2 1 1 12 2
( )

w w w
M M w w Ha w

t y y
  
  

     
  

           (62) 
 

2 2

22 1 2

2 3 4 1 2 1 2 12 2
( ) 1

w w w
M M w w Ha w

t y y
  

  
      

  
        

                                                                                                     (63) 
 
where 
 

1/2
2

02 2
, , , , , ,i

i

x

wM H y t
M w y t Ha B H

Hp H H

  

  

   
 

   

 
        

 

                                                                                       (64) 
 
The boundary and initial conditions are  
 

(0, ) 0; 0, (1, ) 0; 0w t t w t t    
           (65) 

 

( ,0) 0; 0 1w y y                                                             (66) 

 
Note that all of the above conditions are homogeneous, yet there 
exists a non-trivial solution, since the governing equations are non-
homogeneous. We attempt to find a solution of the form 
 

( , ) ( ) ( , )Sw y t w y g y t                                             (67) 

 

The  components ( , )g y t  
 must  satisfy  Equations  (37) and (38)  



 

 
 
 
 

and the boundary conditions (39) by writing ( , )g y t  in place of 

( , )f y t , but with modified initial conditions which now are: 

 

( ,0) ( )Sg y w y                                                           (68) 

 

The procedure for determining ( , )g y t  is the same as that used 

in the case of unsteady hydromagnetic Couette flow, so it is not 
repeated here. As expected, the second part of the solution given in 

Equation (51) is also valid for ( , )g y t  provided ( ,0)f n  is 

replaced with ( ,0)g n  which are given by the following analytical 

expressions 
 

1 1

2 2

1 2

1 2 2 2 2 2 2

1 1

3 54

2 2 2 2 2 2

2 2

( ,0) (1 ( 1) ) (1 ( 1) )
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D n D n
g n e e

s n s n

D n DD n
e e

ns n s n

 

 

 

 





     
 

 
      

 

                                                                                       (69) 
 

1 1

2 2

1 1 1 2

2 2 2 2 2 2 2

1 1

2 3 62 4

2 2 2 2 2 2

2 2

( ,0) (1 ( 1) ) (1 ( 1) )

(1 ( 1) )
(1 ( 1) ) (1 ( 1) )
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n
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k D n k D n
g n e e

s n s n

k D n Dk D n
e e

ns n s n

 

 

 

 





     
 

 
      

 

                                                                                       (70) 
 

We now obtain the solution for the velocity field of the  th fluid by 

going back through the various substitutions:  
 

1

( , ) ( ) 2 ( , )sin( )S

n

w y t w y g n t n y   




  
                          (71) 

 
 
NUMERICAL RESULTS AND DISCUSSION 
 
Some simple unidirectional hydromagnetic flows of a 
binary mixture of Newtonian fluids between two parallel 
plates are studied theoretically. The two miscible fluids 
are assumed to be incompressible and electrically 
conducting, having different viscosities and electrical 
conductivities. The resulting differential equations are 
solved analytically. The analytical solutions are made 
possible under very special conditions when all material 
properties are assumed to be constants, and the only 
interaction force is drag resulting from relative velocity in 
a linear fashion. Removal of these assumptions will make 
the governing equations highly nonlinear and necessitate 
a complex numerical solution. 

To make predictions based on the foregoing analysis, it 
is necessary to know material coefficients in the 
constitutive equations. For a mixture composed of water 

and oil with water volume fraction 1 , we benefit from the 

formulae suggested by Sampaio and Williams (1977) to 
assign the reasonable values to the material coefficients. 
In  all  the  computations  presented  here,  the   following  
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values of the dimensionless parameters are used (Barış 
and Demir, 2012): 
 

1 2 3 4

6

1 2 1

0.4868, 0.2497, 0.5132,

10 , 0.8108, 0.1892, 0.75

M M M M

   

   

   
        (72) 

 
Now we want to discuss the reliability of the series 
solutions given in Equations (51) and (71). As expected, 
these series are rapidly convergent for large values of 
time but slowly convergent for small values of time. 
However, it is important to note that these series 
solutions can also be used for small values of time 
provided number of terms in the series expansions is 
enough to yield satisfactory accuracy. For example, in the 
case of unsteady Couette flow 

with 1 2 1000Ha Ha  ,
1 2Ha   and 0.1t  , the fourth term 

is the first one in the series expansion, absolute value of 

which is less than 1210 . Therefore, the sum of the first 

four term will give the velocity values of the fluids with an 

error of less than 1210 . On the other hand, it is necessary 

to take the first nine term into account for the same order 

of accuracy in the case of 0.02t  . 

The analytical solutions in the present work include 
those corresponding to pure Newtonian fluid as a special 
case. If one sets 

1 2 3 4 1 4M M M M    , 
1 2 1 1 2     ,and 

1 2 2Ha Ha Ha   in Equations (51) and (71), these are 

obtained as follows: 
 

Unsteady hydromagnetic Couette flow between two 
parallel plates: 
 

2 2 2( )

2 2 2
1

sinh[ (1 )]
( , ) 2 sin[ ]

sinh[ ]

n Ha t

N

n

Ha y n
u y t n y e

Ha n Ha







 




 




                                                                         (73) 
 
Unsteady hydromagnetic Poiseuille flow between two 
parallel plates: 
 

2 2 2( )

2 2 2 2 2
1

1 cosh[ ] cosh[ ] 1 1 ( 1)
( , ) sinh[ ] 2 sin[ ]

sinh[ ] ( )

n
n Ha t

N

n

Ha y Ha
w y t Ha y n y e

Ha Ha Ha n n Ha


 


 



   
  




                                                                         (74) 
 

The limiting solutions mentioned above give us 
confidence regarding our analytical calculations. To 
demonstrate the influence of the applied magnetic field 
on the velocity profiles, numerical evaluations of the 
analytical solutions are performed and results are plotted 
in Figures 2 to 5. In these figures the material parameters 

1 2 1 1 2 3 4, , , , , , ,M M M M     and the ratio 1 2Ha Ha  are kept 

the constant values. It is clear from these figures that the 
main effect of the magnetic field on the flow is to 
decrease the velocity. This is expected since the 
application of a transverse magnetic field normal to the 
flow  direction  has  a  tendency   to   create   a   drag-like  
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Figure 2. Velocity profiles of steady hydromagnetic Couette flow between parallel plates for 

1 2 1000Ha Ha  . 

 

 

 
 

Figure 3. Velocity profiles of steady hydromagnetic Poiseuille flow between parallel plates for 

1 2 1000Ha Ha  . 
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Figure 4. Velocity profiles of unsteady hydromagnetic Couette flow between parallel plates for 

1 2 1000Ha Ha  . 

 
 

 

 
 

Figure 5. Velocity profiles of unsteady hydromagnetic Poiseuille flow between parallel plates for 

1 2 1000Ha Ha  . 
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Figure 6. Velocity profiles of steady hydromagnetic Couette flow between parallel plates for 

different values of 1 2Ha Ha ( 1 3Ha  ). 

 
 
 
Lorentz force. This force has a decreasing effect on the 
velocity. 

We observe from Figure 2 that when the Hartmann 
number increases, the velocity gradient at the moving 
plate increases and hence the force necessary to move 
this plate is greater. Figure 3 shows that as the strength 
of the applied magnetic field increases, the velocity 
profiles are flattened over the greater part of the cross-
section. In other words, the magnetic field causes the 
shear stresses in the fluid in the vicinity of the plates to 
become larger. Figures 4 and 5 illustrate the time 
histories of hydromagnetic Couette and Poiseuille flows 
for various values of the Hartmann number, respectively. 
These figures exhibit the same transient behavior, 
namely the velocity gradually increases with in time and it 
reaches the steady-state values. Again from these 
figures, we arrive at the conclusion that the application of 
the magnetic field speeds up the transition from the 
unsteady-state to the steady-state. For example, in the 

case of Poiseuille flow with 1 6Ha  , the transient 

behavior lasts about one-sixth as long as it does in the 
non-mhd case. The effect of the ratio of Hartmann 

numbers ( 1 2Ha Ha ) on the velocity field is shown in 

Figures 6 to 9. It is found that the effect of decreasing 

1 2Ha Ha  is to decrease the velocity field. 

Validations of the results presented in this paper can be 
judged  by comparing them with the experimental results. 

Unfortunately, no comparisons with experimental data 
were performed due to a lack of existence of such data. 
For this reason, it is not possible to comment with any 
certainty on the relative merits of the constitutive 
equations used here. It is hoped that the exact results 
presented in this paper can be useful as a benchmark for 
validating the numerical solutions to more complicated 
two-fluid MHD flows. 
 
 
Conclusions 
 
Couette and Poiseuille flows of a binary fluid mixture 
between two infinitely long parallel plates in the presence 
of a transverse magnetic field were investigated. Under 
very special conditions stated previously, steady-state 
and transition solutions were obtained analytically by the 
usual methods of solving these kinds of equations. 
Numerical evaluations of the analytical solutions were 
performed and graphical results for the velocity 
distributions were presented to illustrate the influence of 
the magnetic field on the solutions. It was found that, 
owing the presence of a transverse magnetic field, 
increases in the values of the Hartmann number have the 
tendency to slow the motion of the fluid mixture. In 
addition, as the Hartmann number increased, the 
transition to the steady-state became faster. It should be 
noted  that  the  velocity  distributions  for the fluid mixture  
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Figure 7. Velocity profiles of steady hydromagnetic Poiseuille flow between parallel plates for different 

values of 1 2Ha Ha ( 1 3Ha  ). 

 
 
 

 
 

Figure 8. Velocity profiles of unsteady hydromagnetic Couette flow between parallel plates for 
different values of 

1 2Ha Ha (
1 3Ha  , 0.1t  ). 



 

354          Int. J. Phys. Sci. 
 
 
 

 
 

Figure 9. Velocity profiles of unsteady hydromagnetic Poiseuille flow between parallel plates 

for different values of 
1 2Ha Ha (

1 3Ha  , 0.1t  ). 

 
 
 
have qualitatively the same characteristics as those 
exhibited by a single Newtonian fluid. Also, all the results 
corresponding to 

1 2 3 4 1 4M M M M    , 
1 2 1 1 2     ,and 

1 2 2Ha Ha Ha   reduce the classical solutions of a single 

Newtonian fluid. This provides a useful check. A further 
check on the validity of the theoretical results presented 
here can be accomplished by comparisons with 
experimental data. As far as the authors are aware, such 
a quantitative comparison has been hampered by a lack 
of reliable experimental data. For this reason, the 
researcher of necessity has to rely on the mixture theory 
to produce the correct results qualitatively at least. 
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