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Abstract

In this article, the strict feasibility and solvability of generalized vector equilibrium
problem with set-valued mapping in reflexive Banach spaces are considered. By
introducing two generalized strict feasibility concepts for generalized vector
equilibrium problem, we establish some sufficient conditions to guarantee that the
solution set of the generalized vector equilibrium problem is nonempty and
bounded provided that it is generalized strictly feasible.
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1 Introduction
Let X be a real reflexive Banach space and U be a metric space, and K ⊆ X, D ⊆ U be

two nonempty and closed sets. Let T : K ® 2D be a nonempty-compact-valued map-

ping, i.e., T(x) is a nonempty compact subset for any x Î K, and upper semicontinuous

on K. Let F : D × K × K ® 2Y be a set-valued map, where Y is a real normed space

with an ordered cone C, that is, a proper, closed, and convex cone such that int C ≠ ∅.

The weak generalized vector equilibrium problem [1-4], abbreviated by WGVEP, is

to find x̄ ∈ K and ū ∈ T(x̄) such that

(WGVEP) F(ū, x̄, y) � −int C, ∀y ∈ K.

For the WGVEP, its dual problem is to find x̄ ∈ K such that

(DWGVEP) F(v, y, x̄) � int C, ∀y ∈ K, v ∈ T(y).

We denote the solution set of the WGVEP and the solution set of the DWGVEP by

WSK and WSDK , respectively.

The strong generalized vector equilibrium problem [5,6], abbreviated by SGVEP, is to

find x̄ ∈ K and ū ∈ T(x̄) such that

(SGVEP) F(ū, x̄, y)
⋂

−int C = ∅, ∀y ∈ K.
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For the SGVEP, its dual problem is to find x̄ ∈ K such that

(DSGVEP) F(v, y, x̄)
⋂

int C = ∅,∀y ∈ K, v ∈ T(y).

Similarly, we denote the solution set of the SGVEP and the solution set of the

DWGVEP by SSK and SSDK , respectively. Obviously,

SSK ⊆ WSK

The generalized vector equilibrium problem finds applications in economics, finance,

image reconstruction, ecology, transportation, network, and elasticity in [7]. In particu-

lar, when T(x) is singleton, i.e., T is a single-valued map, then the WGVEP collapse to

the problem considered in [1-4], and the SGVEP collapse to the problem considered in

[5,6]. In this case, based on the coercivity assumption, the existence of solution for the

generalized vector equilibrium problem are deeply discussed, see [1-13]. Recently, by

virtue of the recession method, Ansari established some necessary and/or sufficient

conditions for the nonemptiness and boundedness of the solution set for the SGVEP

[5]. Later, Farajzadeh and Amini established some sufficient conditions for the com-

pactness and convexity of the solution set of the SGVEP without the requirement of

the lower semi-continuity of the map y ® F(x, y) [6]. Lin derived some existence

results for the generalized vector quasi-equilibrium problem under pseudomonotoni-

city and u-hemicontinuity/l-hemicontinuity [11]. Al-Homidan proposed existence

results for generalized vector quasi-equilibrium problems by establishing some new

fixed point theorems and maximal element theorems [12,13]. Since the WGVEP and

the SGVEP are the generalizations of the generalized vector equilibrium problem when

T is a single-valued map, it is natural to ask whether the existence of the solution and

duality for the WGVEP and the SGVEP can be derived for that T(x) is multivalued,

which constitutes the motivation of this article.

Generally, the existence of solution for the classical vector equilibrium problem is

established under the strict feasibility condition which was originally used in scalar var-

iational inequality and vector variational inequality [14-17]. This technique can be

extended to the scalar equilibrium problem [18]. On the other way, Hu and Fang

extended the concept of strict feasibility to the classical vector equilibrium problem

and established the nonemptyness and boundedness of the solution set of the C-pseu-

domonotone vector equilibrium problem if it is strictly feasible in the strong sense

[19]. Motivated the study above, in this article, we first investigate the relations

between solution set of the WGVEP (SGVEP) and solution set of the WDGVEP

(SDGVEP) under the weakly (strongly) C-pseudomonotone condition. Furthermore, by

introducing two new concepts for strictly feasible in the generalized sense to match

the solvability of the WGVEP and the SGVEP, we establish some sufficient conditions

to guarantee the nonemptyness and boundedness of the solution set for the generalized

vector equilibrium problem if it is generalized strictly feasible. Our results generalize

and extend some results of [18,19] in some sense.

2 Notations and preliminaries
In this section, we recall some notations and preliminary results needed in the follow-

ing sections. Let X, Y, K, D, C, T, F be same as in Section 1.

Definition 2.1 Let K ⊆ X be a nonempty, closed, and convex set.
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(i) The mapping F : K ® 2Y is said to be C-convex if

αF(x) + (1 − α)F(y) ⊆ F(αx + (1 − α)y) + C, ∀x, y ∈ K, α ∈ [0, 1].

(ii) The mapping F : K ® 2Y is said to be C-lower semicontinuous if the set {x Î K | F

(x) - a ⊈ int C} is closed on K for any a Î Y. F is said to be weakly C-lower semicontin-

uous if F is C-lower semicontinuous with respect to the weak topology of X. The map F

is said to be weakly lower semicontinuous on K if it is weakly lower semicontinuous on

K.

(iii) The mapping F : D × K × K ® 2Y is said to be: weakly C-pseudomonotone if for

all x, y Î K, u Î T (x), v Î T (y),

∃u Î T(x) such that F(u, x, y) ⊈ - int C ⇒ ∀v Î T(y) such that F(v, y, x) ⊈ int C, or

equivalently,

∃v Î T(y) such that F(v, y, x) ⊈ int C ⇒ ∀u Î T(x) such that F(u, x, y) ⊆ - int C.

The mapping F : D × K × K ® 2Y is said to be: strongly C-pseudomonotone if for all

x, y Î K, u Î T(x), v Î T(y),

∃u Î T(x) such that F(u, x, y) ⋂-int C = ∅ ⇒ ∀v Î T(y) such that F(v, y, x) ⋂ int C =

∅, or equivalently,

∃v Î T(y) such that F(v, y, x) ⋂ int C ≠ ∅ ⇒ ∀u Î T(x) such that F(u, x, y) ⋂-int C ≠

∅,

(iv) The asymptotic cone K∞ and barrier cone barr(K) of K are, respectively, defined

by

K∞ =
{
d ∈ X|∃tk → +∞, ∃xk ∈ Kwith

xk
tk

⇀ d
}

and

barr(K) = {x∗ ∈ X∗| sup
x∈K

〈x∗, x〉 < +∞},

where X* denotes the dual space of X and ⇀stands for the weak convergence.

Remark 2.1 (i) Definition 2.1 is a set-valued generalization of C-lower semicontinuity

in [8]

(ii) If the map is strongly C-pseudomonotone, then it is weakly C-pseudomonotone.

How-ever, the converse result is not true.

Example 2.1 Let X = R, K = [1, +∞), Y = R2, C = R2
+ , T(x) = {0, -1}.

Let F : D × K × K ® 2Y be defined by

F(u, x, y) =
{ 〈u, [(y − x), |y − x|]〉 ∀x, y ∈ [1, +∞), u ∈ T(x)
[1, 2] ∀x, y ∈ [1, +∞), u ∈ T(x),

∀x Î [1, + ∞), take u = 0 Î T(x), we have

F
(
u, x, y

)
= {0} × [1, 2] � −int C.
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Its dual problem is:

F(v, y, x) =
{ 〈v, [(x − y), |x − y|]〉 ∀x, y ∈ [1, +∞), v ∈ T(y)
[1, 2] ∀x, y ∈ [1, +∞), v ∈ T(y).

∀xÎ[1,+∞), if v = 0 Î T(y), we have

F(v, y, x) = {0} × [1, 2] � int C;

if v = -1 Î T(y), it holds

F(v, y, x) = [−|x − y|,−(x − y)] × [1, 2] � int C.

It is easy to see

F(v, y, x) � int C,∀y ∈ [1, +∞), v ∈ T(y).

Hence F is weakly C-pseudomonotone. However, F is not strongly C-pseudomono-

tone.

The asymptotic cone K∞ has the following useful properties.

Lemma 2.1 [20]Let K ⊂ X be nonempty and closed. Then the following conclusions

hold:

(i) K∞ is closed cone;

(ii) If K is convex, then K∞ = {d Î X | K + d ⊂ K} = {d Î X | x + td Î K, ∀t > 0},

where x Î K is arbitrary point;

(iii) If K is convex cone, then K∞ = K.

Definition 2.2 The GVEP is said to be

(i) generalized strictly feasible in the weak sense if Fw
+ ≠ ∅, where

Fw+ =
{
x ∈ K|F(u, x, x + y)

⋂
intC �= ∅,∀y ∈ K∞\{0}, u ∈ T(x)

}
;

(ii) generalized strictly feasible in the strong sense if Fs
+ ≠ ∅, where

Fs+ = {x ∈ K|F(u, x, x + y) ⊆ int C,∀y ∈ K∞\{0}, u ∈ T(x)}.

Obviously, both Fw
+, Fs

+ are equivalent to the Fs
+ [19], when F is a single-valued

map.

The following example is to explain that Definition 2.2 is applicable.

Example 2.2 Let X = R, K = [1, +∞), Y = R, C = R+, T (x) = {1}.

Let F1 : D × K × K ® 2Y be defined by

F1(u, x, y) = 〈u, [−(y − x), y − x]〉,∀x, y ∈ [1, +∞), u ∈ T(x).

Wang and Che Journal of Inequalities and Applications 2012, 2012:66
http://www.journalofinequalitiesandapplications.com/content/2012/1/66

Page 4 of 11



It is verified that K∞ = [0, +∞). For any x Î [1, +∞) and t Î K∞\{0}, one has

F1(u, x, x + t) = 〈1, [−t, t]〉 = [−t, t]
⋂

intC �= ∅.

So, Fw
+ = [1, +∞). However, Fs

+ = ∅.

Let F2 : D × K × K ® 2Y be defined by

F2(u, x, y) = 〈u, [(y − x), 2(y − x)]〉,∀x, y ∈ [1, +∞), u ∈ T(x).

It is verified that K∞ = [0, +∞). For any x Î [1, +∞) and t Î K∞\{0}, one has

F2(u, x, x + t) = 〈1, [t, 2t]〉 = [t, 2t] ⊆ intC.

So, Fw+ = Fs+ = [1, +∞).

Definition 2.3 [21]A set-valued map F : E ® 2X is said to be KKM mapping if, for

each finite set Λ = {x1, . . ., xn} ⊆ E, one has co� ⊆ ⋃n
i=1 F(xi),where co(.) stands for

the convex hull.

The main tools for proving our results are the following well-known KKM theorems.

Lemma 2.2 [22]Assume that X is a topological vector space, E ⊆ X is a nonempty

convex and F : E ® 2X is a KKM mapping with closed values. If there is a subset X0

contained in a compact convex subset of E such that
⋂

x∈X0
F(x) is compact, then ⋂x Î E

F(x) ≠ ∅.

Definition 2.4 [23,24]Let K be a nonempty, closed, and convex subset of a real reflex-

ive Banach space X with its dual X*. We say that K is well-positioned iff there exist x0
Î X and g Î X* such that

〈g, x − x0〉 ≥ ||x − x0||,∀x ∈ K.

Lemma 2.3 [23,24]Let K be a nonempty, closed, and convex subset of a real reflexive

Banach space X with its dual X*. Then K is well-positioned if and only if the barrier

cone barr(K) of K has a nonempty interior. Furthermore, if K is well-positioned then

there is no sequence {xn} ⊆ K with ||xn|| ® +∞ such that origin is a weak limit of{
xn

||xn||
}
.

Lemma 2.4 [25]Let X and Y be two metric spaces and T : X ® 2Y be a nonempty-

compact-valued mapping and upper semicontinuous at x*. Then, for any sequences xn
® x* and un Î T(xn), there exist a subsequence {unk}of {un} and some u* Î T(x*) such

that unk → u∗ .

3 Solvability of the WGVEP and the SGVEP
First, we investigate relations between solution set of the WGVEP (SGVEP) and solu-

tion set of the DWGVEP (DSGVEP) when K is bounded.

Theorem 3.1 Let K ⊆ X be a nonempty and convex closed bounded set. If F : D × K

× K ®2Y satisfies the followings:

(i) F (u, x, x) ⊆ C, ∀x Î K, u Î T (x);

(ii) the set {(u, x), u Î T (x), x Î K : F (u, x, y) ⊈ -int C} is closed for any y Î K;

(iii) F is weakly C-pseudomonotone;
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(iv) the set {y Î K | F(u, x, y) ⊈ int C} is closed and F (u, x, .) is C-convex for any x

Î K, u Î T(x).

Then the WGVEP has a nonempty solution set and x* Î K is a solution of the

WGVEP if and only if

F(v, y, x∗) � intC,∀y ∈ K, v ∈ T(y).

Proof. Set Γ: D × K ® 2K by

�(v, y) = {x ∈ K|F(v, y, x) � intC},∀y ∈ K, v ∈ T(y).

We claim that Γ is a KKM map. Suppose on the contrary, it does not hold, then

there exists a finite set {x1, . . ., xn} ⊆ K and z Î co{x1, . . ., xn} such that

z /∈ ⋃n
i=1 �(v, xi). Thus, there exists vi Î T(xi) such that F(vi, xi, z) ⊆ int C, ∀i = 1, . . .,

n. It follows from the weak C-pseudomonotonity of F that

F(u, z, xi) ⊆ − intC,∀i = 1, . . . ,n. (3:1)

Taking into account that int C is convex, we obtain

t1F(u, z, x1) + . . . + tnF(u, z, xn) ⊂ −intC,

where z =
∑n

1 tixi and
∑n

1 ti =1, ti ≥ 0, i = 1, 2, . . . ,n. For the above ti, due to the

convexity of F(u, x,.), one has

t1F(u, z, x1) + . . . tnF(u, z, xn) ⊆ F(u, z, z) + C ⊆ C + C ⊆ C,

which contradicts (3.1). By the condition (iv), we derive that the Γ is closed valued.

Hence Γ is a KKM map. By the KKM Theorem, there exists x*Î K such that x* Î ⋂v Î

T(y), y Î K Γ(v, y). That is, F (v, y, x*) ⊈ int C,∀y Î K, v Î T(y).

Let us verify WSDK ⊆ WSK . Take any x*Î K, obviously

F(v, y, x∗) � intC,∀y ∈ K, v ∈ T(y). (3:2)

For every y Î K, consider xt = x* + t(y - x*), ∀t Î (0, 1). Clearly, xt Î K. The C-con-

vexity of F (u, xt,.) implies that

(1 − t)F(u, xt, x∗) + tF(u, xt , y) ⊆ F(u, xt , xt) + C ⊆ C + C ⊆ C.

Let us show tF (u, xt, y) ⊈-int C by contradiction. Suppose on the contrary, then tF

(u, xt, y) ⊆ -int C. For any p Î tF (u, xt, y), it holds

(1 − t)F(u, xt, x∗) ⊆ C + p ⊆ C + intC ⊆ intC.

So F (u, xt, x*) ⊆ int C, which contradicts (3.2). Noting that -int C is convex cone,

we deduce

F(u, xt, y) � −int C. (3:3)

Letting t ® 0 in (3.3), we obtain by assumption (ii) and Lemma 2.4 that there exists

u* Î T(x*) such that

F(u∗, x∗, y) � −intC,∀y ∈ K.
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On the other hand, by the weak C-pseudomonotonity of F, we have WSK ⊆ WSDK .

Hence, WSDK = WSK .

Theorem 3.2 Let K ⊆ X be a nonempty and convex closed bounded set. If F : D × K

× K ®2Y satisfies the followings:

(i) F (u, x, x) ⊆ C,∀x Î K, u Î T(x);

(ii) the set {(u, x), u Î T(x), x Î K | F (u, x, y) ∩ -int C = ∅} is closed for all y Î K;

(iii) F is strongly C-pseudomonotone;

(iv) the set {y Î K | F (u, x, y) ∩ int C = ∅} is closed and F (u, x, .) is C-convex for

any x Î K, u Î T(x).

Then the SGVEP has a nonempty solution set and x* Î K is a solution of the SGVEP

if and only if

F(v, y, x∗)
⋂

int C = ∅,∀y ∈ K, v ∈ T(y).

Proof. Set Γ: D × K ® 2K by

�(v, y) = {x ∈ K|F(v, y, x)
⋂

intC = ∅},∀y ∈ K, v ∈ T(y).

Following the similar arguments in the proof of Theorem 3.1, we can obtain the

desired result.

In following sequel, we shall present some sufficient conditions for the nonemptiness

and boundedness of the solution set of the WGVEP provided that it is strictly feasible

in the strong sense.

Theorem 3.3 Let K ⊆ X be a nonempty, closed, convex and well-positioned set. If F :

D × K × K ® 2Y satisfies the followings:

(i) F (u, x, x) ⊆ C, ∀x Î K, u Î T(x);

(ii) the set {(u, x), u Î T (x), x Î K | F (u, x, y) ⊈-int C} is closed for any y Î K;

(iii) F is weakly C-pseudomonotone;

(iv) F (u, x, .) is C-convex and weakly lower semicontinuous for x Î K, u Î T(x).

Then the WGVEP has a nonempty bounded solution set whenever it is generalized

strictly feasible in the strong sense.

Proof. Suppose that the WGVEP is generalized strictly feasible in the strong sense.

Then there exists x0 ÎK such that x0 Î Fs
+, i.e.,

F(u, x0, x0 + z) ⊆ int C,∀u ∈ T(x0).

Set

D = {x ∈ K|F(u, x0, x) � int C},∀u ∈ T(x0).

By assumptions (i) and (iv), x0 Î D and D is weakly closed. We assert that D is

bounded. Suppose on the contrary it does not holds, then there exists a sequence {xn}

⊆ M with ||xn|| ® +∞ as n ® +∞. Since X is a reflexive Banach space, without loss of

generality,
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we may take a subsequence {xnk
} of {xn} such that

1
||xnk − x0|| ∈ (0, 1), lim

k→+∞
xnk − x0

||xnk − x0|| = lim
k→+∞

xnk
||xnk ||

⇀ z ∈ K∞.

By Lemma 2.3, z ≠ 0 since K is well-positioned. It follows from x0 Î Fs
+ that

F(u, x0, x0 + z) ⊆ int C. (3:4)

Noting that F (u, x, .) is C-convex, we have
(
1 − 1

||xnk−x0||
)
F(u, x0, x0) + 1

||xnk−x0||F(u, x0, xnk) ⊆ F
(
u, x0,

(
1 − 1

||xnk−x0||
)
x0 +

xnk
||xnk−x0||

)
+ C

= F
(
u, x0, x0 +

xnk−x0
||xnk−x0||

)
+ C.

That is,

1
||xn − x0||F(u, x0, xnk) ⊆ F

(
u, x0, x0 +

xnk − x0
||xnk − x0||

)
+ C.

We claim that F
(
u, x0, x0 +

xnk−x0
||xnk−x0||

)
� int C. Suppose on the contrary,

F
(
u, x0, x0 +

xnk−x0
||xnk−x0||

)
⊆ inC, we observe

1
||xnk − x0||F(u, x0, xnk) ⊆ F

(
u, x0, x0 +

xnk − x0
||xnk − x0||

)
+ C ⊆ inC + C ⊆ int C,

which contradicts F(u, x0, xnk
) � int C. Taking into account the condition (iv), we

obtain

F(u, x0, x0 + z) � int C.

This is a contradiction to (3.4). Thus, D is bounded and it is weakly compact. For

each p Î K, set

Dp = {x ∈ D|F(v, p, x) � intC},∀p ∈ K, v ∈ T(p).

Then Dp ≠ ∅. Indeed, given p Î K, v Î T (p), set K0 = conv (D ⋃ p) ⊆ K, where conv

means the convex hull of a set. Then K0 is nonempty, convex, and weakly compact. By

Theorem 3.1, there exists x̄ ∈ K0 such that

F(v, y, x̄) � int C,∀y ∈ K0, v ∈ T(p).

Then F(u, x0, x̄) � int C implies x̄ ∈ D and F(v, p, x̄) � int C implies x̄ ∈ Dp. We

obtain Dp ≠ ∅. Obviously, Dp is nonempty and weakly compact.

Next we prove that {Dp | p Î K} has the finite intersection property. For any finite

set {pi | i = 1, 2, . . ., n} ⊆ K, let K1 = conv{D ⋃ {p1, p2, . . ., pn}}. Then K1 is weakly

compact. By Theorem 3.1, there exists x̂ ∈ K1 such that

F(v, y, x̂) � int C,∀y ∈ K1, v ∈ T(p).

In particular, it holds

F(u, x0, x̂) � int C, F(v, pi , x̂) � int C, i = 1, 2, . . . ,n.
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This means that x̂ ∈
⋃n

i=1
Dpi Thus {Dp | p Î K} has the finite intersection property.

Since D is weakly compact and Dp ⊆ D is weakly closed for all p Î K, v Î T (p), It fol-

lows that⋂
p∈K

Dp �= ∅.

Let x* Î ⋂p Î K Dp It follows that

F(v, y, x∗) � int C,∀y ∈ K, v ∈ T(y).

By Theorem 3.1, x* is a solution of the WGVEP. As for the boundedness of the solu-

tion set of the WGVEP, it follows from Theorem 3.1 that the solution set of the

WGVEP is a subset of D.

Theorem 3.4 Let K ⊆ X be a nonempty, closed, convex, and well-positioned set. If F :

D × K × K ® 2Y satisfies the followings:

(i) F (u, x, x) ⊆ C, ∀x Î K, u Î T (x);

(ii) the set {(u, x), u Î T(x), x Î K | F(u, x, y) ⋂ - int C = ∅} is closed for all y Î K;

(iii) F is strongly C-pseudomonotone;

(iv) F (u, x, .) is C-convex and weakly lower semicontinuous for x Î K, u Î T(x);

(v) F is positively homogeneous with degree a > 0, i.e., there exists a > 0 such that

F(u, x, x + t(y − x)) = tαF(u, x, y),∀x, y ∈ K, u ∈ T(x), t ∈ (0, 1).

Then the SGVEP has a nonempty bounded solution set whenever it is generalized

strictly feasible in the weak sense.

Proof. Suppose that the SGVEP is generalized strictly feasible in the weak sense.

Then there exists x0 Î K such that x0 ∈ F+w , i.e.,

F(u, x0, x0 + z)
⋂

int C �= ∅.

Set

D = {x ∈ K|F(u, x0, x)
⋂

int C = ∅}.

By assumptions (i) and (iv), x0 Î D and D is weakly closed. We claim that D is

bounded. Suppose on the contrary it does not holds, then there exists a sequence {xn}

⊆ M with ||xn|| ® +∞ as n ® +∞. Since X is a reflexive Banach space, without loss of

generality, we may take a subsequence {xnk
} of {xn} such that

1
||xnk ||

∈ (0, 1), lim
n→+∞

xnk
||xnk ||

⇀ z ∈ K∞.

By Lemma 2.3, z ≠ 0 since K is well-positioned. It follows from x0 Î Fw+ that

F(u, x0, x0 + z)
⋂

int C �= ∅. (3:5)
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Since xnk
∈ D and F is positively homogenous with degree a > 0, it holds

F
(
u, x0, x0 +

xnk − x0
||xnk ||

)
=

1
||xnk ||α

F(u, x0, xnk)
⋂

int C = ∅.

Taking into account the condition (iv), we obtain

F(u, x0, x0 + z)
⋂

int C = ∅.

This is a contradiction to (3.5). Thus, D is bounded and it is weakly compact. Fol-

lowing the similar arguments in the proof of Theorem 3.3, we can prove the Theorem

3.4.

Remark 3.1 Assumption (v) of Theorem 3.4 is not new. Clearly, if F(x, y) = 〈u, y -x〉,

∀u Î T(x), then F is positively homogeneous with degree = 1.

Remark 3.2 Since SSK ⊆ WSK, conditions for the solution set of the SGVEP to be

nonempty and bounded are stronger than the WGVEP. Compared with Theorem 3.3,

the condition that F is positively homogeneous in Theorem 3.4 is not dropped for the

SGVEP.

The following example shows that the converse of Theorem 3.3 or 3.4 is not true in

general.

Example 3.1 Let X = R, K = R, D = [0, 1], Y = R, C = R2
+and

T(x) =
{ {1}, if x > 0

{0, 1}, if x = 0.

Let F : D × K × K ® 2Y be defined by

F(u, x, y) =

{〈
u,

[
(y2−x2)

2 , (y2 − x2)
]〉

∀x, y ∈ K, u ∈ T(x);

〈u, (y − x)〉 ∀x, y ∈ K.

It is easily to see that K is well-positioned and F satisfies assumptions of Theorems

3.3 and 3.4. It can be verified that the WGVEP and the SGVEP have the same solution

set {0}. On the other hand, it is easy to verify that Fw+ = Fs+ = ∅.
For general generalized vector equilibrium problem, the following example shows

WSK ≠ ∅, but SSK = ∅.

Example 3.2 Let X = R, K = R, D = [-1, 1], Y = R, C = R+ and

T(x) = {−1, 1},∀x ∈ K

F(u, x, y) = [−1, 1],∀x, y ∈ K, u ∈ T(x).

It is obvious that the WGVEP has solution set WSK = R, but solution set of the

SGVEP SSK = ∅.

Acknowledgements
This research was supported by the Natural Science Foundation of China (Grant Nos.11171180, 71101081 and
Tianyuan fund for Mathematics, No. 11126233), and Specialized Research Fund for the doctoral Program of Chinese
Higher Education (Grant Nos. 20113705120004, 20113705110002). The authors are in debt to the anonymous referees
for their numerous insightful comments and constructive suggestions which help improve the presentation of the
article.

Author details
1School of Management Science, Qufu Normal University, Shandong Rizhao, 276826, China 2School of Mathematics
and Information Science, Weifang University, Shandong Weifang, 261000, China

Wang and Che Journal of Inequalities and Applications 2012, 2012:66
http://www.journalofinequalitiesandapplications.com/content/2012/1/66

Page 10 of 11



Authors’ contributions
All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 26 November 2011 Accepted: 19 March 2012 Published: 19 March 2012

References
1. Konnov, IV, Yao, JC: Existence of solutions for generalized vector equilibrium problems. J Math Anal Appl. 233, 328–335

(1999). doi:10.1006/jmaa.1999.6312
2. Ansari, QH, Yao, JC: An existence result for the generalized vector equilibrium problems. Appl Math Lett. 12(8):53–56

(1999). doi:10.1016/S0893-9659(99)00121-4
3. Ansari, QH, Konnov, IV, Yao, JC: On generalized vector equilibrium problems. Nonlinear Anal. 47, 543–554 (2001).

doi:10.1016/S0362-546X(01)00199-7
4. Ansari, QH, Siddiqi, AH, Wu, SY: Existence and duality of generalized vector equilibrium problems. J Math Anal Appl.

259, 115–126 (2001). doi:10.1006/jmaa.2000.7397
5. Ansari, QH, Flores-Bazán, F: Recession methods for generalized vector equilibrium problems. J Math Anal Appl. 321,

132–146 (2006). doi:10.1016/j.jmaa.2005.07.059
6. Farajzadeh, AP, Harandi, AA: On the generalized vector equilibrium problems. J Math Anal Appl. 344, 999–1004 (2008).

doi:10.1016/j.jmaa.2008.02.065
7. Gianness, F: Vector Variational Inequalities and Vector Equilibria. Mathematical Theories, 38 of Nonconvex Optimization

and Its Applications. Kluwer, The Nether-lands (2000)
8. Bianchi, M, Hadjisavvas, N, Schaible, S: Vector equilibrium problems with generalized monotone bifunctions. J Optim

Theory Appl. 92(3):527–542 (1997). doi:10.1023/A:1022603406244
9. Hadjisavvas, N, Schaible, S: From scalar to vector equilibrium problems in the quasi-monotone case. J Optim Theory

Appl. 96, 297–309 (1998). doi:10.1023/A:1022666014055
10. Ansari, QH, Konnov, IV, Yao, JC: Characterizations of solutions for vector equilibrium problems. J Optim Theory Appl.

113(3):435–447 (2002). doi:10.1023/A:1015366419163
11. Lin, LJ, Huang, YJ, Ansari, QH: Some existence results for solutions of generalized vector quasi-equilibrium problems.

Math Meth Oper Res. 65, 85–98 (2007). doi:10.1007/s00186-006-0102-4
12. Al-Homidan, S, Ansari, QH: Fixed point theorems on product topological semilattice spaces, generalized abstract

economies and systems of generalized vector quasi-equilibrium problems. Taiwanese J Math. 15(1):307–330 (2011)
13. Al-Homidan, S, Ansari, QH, Yao, JC: Collectively fixed point and maximal element theorems in topological semilattice

spaces. Applicable Anal. 96(6):865–888 (2011)
14. He, YR, Ng, KF: Strict feasibility of generalized complementarity problems. J Austral Math Soc Ser A. 81(1):15–20 (2006).

doi:10.1017/S1446788700014609
15. He, YR, Mao, XZ, Zhou, M: Strict feasibility of variational inequalities in reflexive Banach spaces. Acta Math Sin. 23,

563–570 (2007)
16. Fang, YP, Huang, NJ: Feasibility and solvability for vector complementarity problems. J Optim Theory Appl.

129(3):373–390 (2006). doi:10.1007/s10957-006-9073-0
17. Fang, YP, Huang, NJ: Feasibility and solvability of vector variational inequalities with moving cones in Banach spaces.

Nonlinear Anal. 47, 2024–2034 (2009)
18. Hu, R, Fang, YP: Feasibility-solvability theorem for a generalized system. J Optim Theory Appl. 142(3):493–499 (2009).

doi:10.1007/s10957-009-9510-y
19. Hu, R, Fang, YP: Strict feasibility and solvability for vector equilibrium problems in reflexive Banach spaces. Optim Lett.

5, 505–514 (2011). doi:10.1007/s11590-010-0215-9
20. Auslender, A, Teboulle, M: Asymptotic Cones and Functions in Optimization and-Variational Inequalities. Springer, New

York (2003)
21. Fan, K: Some properties of sets related to fixed point theorems. Math Ann. 266, 519–537 (1984). doi:10.1007/

BF01458545
22. Tarafdar, E: A fixed point theorem quivalent to the Fan-Knaster-Kuratowski-Mazurkiewcz theorem. J Math Anal Appl.

128, 475–479 (1987). doi:10.1016/0022-247X(87)90198-3
23. Adly, S, Ernst, E, Théra, M: On the closedness of the algebraic difference of closed convex sets. J Math Pures Appl.

82(9):1219–1249 (2003). doi:10.1016/S0021-7824(03)00024-2
24. Adly, S, Ernst, E, Théra, M: Well-positioned closed convex sets and well-positioned closed convexfunctions. J Global

Optim. 29, 337–351 (2004)
25. Wang, G, Huang, XX, Zhang, J, Chen, GY: Levitin-Polyak weii-posedness of generalized vector equilibrium problems with

functional constraints. Acta Math Sci. 30, 1400–1412 (2010)

doi:10.1186/1029-242X-2012-66
Cite this article as: Wang and Che: Generalized strict feasibility and solvability for generalized vector equilibrium
problem with set-valued map in reflexive Banach spaces. Journal of Inequalities and Applications 2012 2012:66.

Wang and Che Journal of Inequalities and Applications 2012, 2012:66
http://www.journalofinequalitiesandapplications.com/content/2012/1/66

Page 11 of 11


	Abstract
	1 Introduction
	2 Notations and preliminaries
	3 Solvability of the WGVEP and the SGVEP
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

