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The vibrational behavior of coupled-domain micro electro mechanical systems (MEMS) devices with 
electrostatic actuation and squeeze film effect is investigated in this article. π-Buckingham theory is 
used to extract dimensionless parameters for this problem. Using these parameters, non-dimensional 
equation of Euler-Bernoulli beam theory and Reynolds equation of squeeze film damping are 
developed. Finite difference method is applied to solve these dimensionless equations simultaneously. 
After validation of presented non-dimensional model through comparison with literature, pull-in voltage 
is calculated for different conditions of microbeam. In addition, stability of the system is investigated 
for different non-dimensional voltage. The results will be useful in designing coupled-domain 
microbeams. 
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INTRODUCTION 
 
Micro electro mechanical systems (MEMS) have a lot of 
application recently. Their light weight, low cost, small 
dimensions, low-energy consumption and durability make 
them quite useful. Electrostatic actuation is an essential 
method of driving MEMS devices because of its second 
order gain, its compatibility with micro-fabrication 
technology and its high power density. Electrostatically 
actuated micro-structures are widely used for various 
applications and tools, such as acoustic resonators, radio 
frequency (RF) switches, pressure sensors, electrostatic 
step motors and thermal loading. 

Many studies have been performed by researchers on 
the dynamic behavior of micro-structures. Veijola et al. 
(1999) presented a dynamic simulation model for a 
vibrating fluid density sensor. The model included 
electrostatic excitation, two torsional and two bending 
vibration modes of the double-loop structure and gas film 
damping. Miki et al. (2003) investigated high speed 
micro-rotors for power MEMS application to enhance 
rotor dynamics performance. Vibration of an angular-rate 
microgyroscope was simulated by Rajendran  and  Liewa  
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(2004). Also, performance analysis of a vibrating beam 
microgyroscope under general support motion was 
presented by Esmaeili et al. (2007). An electric field 
sensor which uses a micromachined micro-spring sup-
ported membrane as the sensing element was presented 
by Roncin et al. (2005). Moghimi and Ahmadian (2007) 
investigated on vibrational behavior and dynamics of 
multi-layer microplates using coupled finite element and 
finite difference methods. Also, nonlinear oscillations of 
microbeams, actuated by electrostatic force, were 
investigated by Moghimi et al. (2009a). In addition, they 
(Moghimi and Ahmadian, 2009b) simulated the vibrational 
behavior of electrostatically actuated microplate 
subjected to nonlinear squeeze film damping and in-
plane electrostatic forces. Also, using homotopy per-
turbation method, static pull-in analysis of electrostatically 
actuated microbeams was presented by Mojahedi et al. 
(2010). On the basis of the Euler-Bernoulli hypothesis, 
nonlinear static and dynamic responses of a viscoelastic 
microbeam under two kinds of electric forces (a purely 
direct current (DC) and a combined current composed of 
a DC and an alternating current) were studied by Fu and 
Zhang (2009). The effect of thermoelastic coupling on a 
micro-machined beam resonator was investigated by 
Guo and Rogerson (2003). Effect of geometric non-
linearity on dynamic  pull-in  behavior  of  coupled-domain  
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Figure 1. Schematic view of a double-clamped electrostatically actuated micro-beam. 
 
 
 

microstructures based on classical and shear de-
formation plate theories is investigated by Tajalli et al. 
(2009). Also, analysis of one-dimensional deformations in 
a structural interface with micro-rotations was presented 
by Vasiliev et al. (2010). In this reference, the static and 
dynamic properties of a Cosserat-type lattice interface of 
finite thickness were studied. Design and analysis of a 
novel 2.4 GHz MEMS/NEMS voltage controlled oscillator 
was presented by Sreeja and Radha (2011). In this 
research, the variable capacitors and the inductors were 
designed using ANSYS and imported through data 
access component (DAC) in advanced design software 
(ADS). 

The objective of this study is to develop a 
comprehensive model of electrostatically actuated micro-
beams using dimensionless groups. Euler-Bernoulli beam 
theory is used to model dynamical system, while 
Reynolds equation is applied to model nonlinear squeeze 
film damping. Dimensionless model is used to verify 
microbeam pull-in results with the results published in the 
literature. Afterwards, vibrational analysis for the model is 
performed to compare results with literature. Using these 
certifications, an analysis for vibrational and dynamic 
behavior of dimensionless microbeams is presented. 
 

 
EQUATIONS OF MOTIONS 
 

Schematic view of electrostatically actuated doubly clamped micro-
beam is depicted in Figure 1. Using Euler-Bernoulli beam theory, 
the nonlinear differential equation of microbeam can be expressed 
as (Meirovitch, 2001): 
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In which  ,F x t  is the force per unit length of microbeam and 

contains electrostatic and squeeze film forces. The electrostatic 
force per unit length takes the following form (Chowdhury et al., 
2005): 
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Here, the term  accounts for the fringing fields effect due to the 

finite width of the beam. For a double-clamped beam 0.65  . 

The squeeze film damping occurs as a result of the movement of 
the fluid underneath the microbeam and can be modeled by 
compressible Reynolds equation. The Reynolds equation can be 
written as (Karniadakis et al, 2005): 
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where  represents the rarefaction effects for air microflow and 

can be obtained from: 
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So the squeeze film force per unit length can be obtained as: 

 

    0, ,sF x t b p p x t                                                  (5)                                                                                           

 
Investigation of effective parameters on microbeam vibration is 
difficult, because of many significant variables in Equations 1 to 5. 
By grouping significant quantities into dimensionless parameters, it 
is possible to reduce the number of variables and to make the 
compact results applicable to all similar situations. Using π-
Buckingham theory (White, 2010), 9 dimensionless parameters are 
extracted for this problem. These parameters are presented in 
Table 1. Using these parameters, non-dimensional expression of 
Equations 1 and 3 can be expressed as: 
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Table 1. Dimensionless parameters of microbeam and squeeze film damping. 
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SOLUTION TECHNIQUE FOR DYNAMICAL ANALYSIS 
 

The dimensionless vertical deflection   of the microbeam is 
obtained using modal superposition as: 
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where  ,i X  is the ith mode shape functions of the 

dimensionless vertical deflection of the microbeam,  i T  is the 

ith mode time coefficients of the dimensionless vertical deflection 

and rotation of the microbeam and cN  is the number of modes 

considered. Substituting Equation 9 into Equation 6 will yield: 
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Using finite difference method (FDM) the discrete form of Equation 
10 is: 
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and k is the time step and n represents properties of the nth time. 
Also, the discrete form of Equation 7 can be expressed as: 
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where h is dimensionless length step and j represents properties 

of the jth node. Using Equation 13, air pressure of each node at 
each time step can be calculated. Also, the vertical deflection and 
velocity of each node at each time step can be obtained using 
Equations 9 and 10. A computer code developed in MATLAB 
software is used to simulate microbeam vibration by applying this 
approach. 

 
 
SIMULATION RESULTS AND DISCUSSION 
 
Mid-point deflection of undamped microbeam 
 
Pull-in voltage is a critical voltage in which the system 
becomes unstable. In other words, if the applied voltage 
reaches this critical value, there will be no static equilibrium 
in the system. Using the computer code developed earlier, 
time history of mid point deflection of an undamped 
microbeam is plotted in Figure 2a. According to this figure, 

non-dimensional pull-in voltage ( 0pi piAp V  ) for 

this microbeam is 0.13863. Also, the results obtained by 
Krylov (2007) are presented in Figure 2b. Comparing these 
figures, show high performance of dimensionless model in 
simulation of microbeam vibration. 
 
 

Mid-point deflection of microbeam with squeeze film 
air damping 
 
Time history of a microbeam vibration is plotted in Figure 
3a considering the compressible squeeze film model. 
This figure can be compared with Figure 3b which is the 
results presented by Krylov (2007). This comparison 
shows compatibility of presented model in this paper with 
the results presented by Krylov (2007) that used the 
Galerkin decomposition with undamped linear modes as 
base functions. 
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Figure 2. Midpoint deflection of undamped microbeam. 

 
 
 

 
 

Figure 3. Midpoint deflection of microbeam with squeeze film air damping. 
 
 
 

The pull-in analysis of microbeam 
 
After validation of presented model through comparison 
with literature, vibrational analysis of the microbeam for 
different applied voltage is performed and pull-in voltage 
is calculated. Variations of non-dimensional pull-in 

voltage ( pi ) versus non-dimensional microbeam width 

( B b L ) for different initial air gaps ( gapD d L ) are 

presented in Figure 4. 
The phase portrait is plotted for non-dimensional voltage  

( 0.12639  ) in Figure 5 for several cycles. As shown 

in this figure, the system is stable in this voltage. In 

addition, the phase portrait for an input ( 0.13869  ) is 

plotted in Figure 6. This figure shows dynamic instability 
in this voltage. 
 

 
Conclusion 
 
In this paper, the nonlinear dynamic responses of a 
dimensionless  electrically   actuated   microbeam   under 
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Figure 4. Non-dimensional pull-in voltage versus non-dimensional microbeam width. 

 
 
 

 
 

Figure 5. The phase portrait for non-dimensional voltage 0.12639  . 
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Figure 6. The phase portrait for non-dimensional voltage 0.13869  . 

 
 
 
suddenly applied DC voltage have been studied. The 
model has been developed to consider nonlinear 
electrostatic actuation and nonlinear squeeze film 
damping. Using the developed model in this article, pull-
in analysis of microbeams is performed and results are in 
good agreement with literature. Considering nonlinear 
dimensionless Reynolds equation and electrostatic 
actuation, effect of non-dimensional microbeam width and 
initial air gap on the non-dimensional pull-in voltage has 
been studied. Also, vibrational behavior of microbeams 
has been investigated and pull-in voltage is calculated for 
different conditions of microbeam. This model will be 
useful in designing coupled-domain microbeams. 
 
 

Nomenclature:  , Microbeam density; A , microbeam 

cross-sectional area; E , Young’s module of elasticity; I , 

moment of inertia; w , microbeam deflection; L , 

microbeam length; 
gapd , initial air gap; b , micro-beam 

width; 0P , ambient pressure; P , squeez film air 

pressure;  , coefficient of the air viscosity;  , electrical 

permittivity; V , applied actuating voltage; Kn , Knudsen 

number; v , tangential momentum accommodation 

coefficient. 
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