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In this paper, we apply optimal homotopy asymptotic method (OHAM) to compute an approximation to 
solve the problem of forced convection over a horizontal flat plate. We investigate in this work, that 
OHAM, being independent of free parameter, provides greater accuracy and yields a good agreement. 
Moreover, its convergence domain can be easily adjusted and controlled, which shows that OHAM is 
more effective and easy than the other approximate method. 
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INTRODUCTION:  
          
Most scientific problems, such as heat transfer, are 
inherently nonlinear. Most scientists believe that only a 
limited number of these problems can be solved; 
otherwise, most of them cannot be solved analytically by 
using traditional ways. Therefore, these nonlinear 
equations should be solved using other methods. Some 
of them are solved using numerical techniques. In the 
numerical method, stability and convergence should be 
considered so as to avoid divergence or inappropriate 
results. In the analytical perturbation method, we need to 
exert the small parameter in the equation (Nayfeh, 1985). 
Therefore, finding the small parameter and exerting it into 
the equation are difficulties of this method. Since there 
are some limitations with the common perturbation 
method, and also because the common perturbation 
method based on upon the existence of a small 
parameter, developing the method for different 
applications is very difficult. Therefore, many different 
powerful mathematical methods, such as artificial 
parameter method, have been recently introduced to do 
away with the small parameters. A thorough review on 
these methods is given by  He  (2006).  There  also  exist  
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some analytical approaches, such as Adomian 
decomposition method, the KBM method, Lindstedt-
Poincare method, elliptic perturbation method, the 
homotopy perturbation method by He (2006, 2005) and 
the variational iteration method by He (2005, 1998). One 
of the semi-exact methods is the homotopy perturbation 
method (He, 1999, 2000, 2006, 2005; Ganji and Sadighi, 
2006; Rafei and Ganji, 2006; Siddiqui et al., 2006a, b; 
Beléndez and Hernández, 2007). The applications of 
these methods in different fields of nonlinear equations, 
integro-differential equations, fluid mechanics and heat 
transfer have been studied in Cai et al. (2006), Cveticanin 
(2006), El-Shahed (2005), Abbasbandy (2006), Ganji and 
Rafei (2006) and Ganji (2006).  

In this paper, we apply optimal homotopy asymptotic 
method (OHAM), which is a development on homotopy 
perturbation method (Marinca and Herisanu, 2010), to the 
problem of forced convection over a horizontal flat plate 
for finding the approximate solution. The OHAM is valid 
not only for small parameters, but it has validity and great 
potential also for solving nonlinear problems in science 
and engineering. The method has been used by many 
authors  including some of the above in a wide variety of 
scientific and engineering applications to solve different 
types of governing differential equations: Linear and 
nonlinear,  homogeneous  and   non-homogeneous,   and  
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coupled and decoupled as well.  
 
 

BASIC IDEA OF OHAM 
           
The basic idea of OHAM was studied by several authors 
(Marinca and Nicolae, 2008; Marinca et al., 2008; 
Herisanu et al., 2008; Marinca and Nicolae, 2009; Islam 
et al., 2010; Ali et al., 2010; Idrees et al., 2010a; Idrees et 
al., 2010b; Idrees et al., 2010c; Ali et al., 2010; Shah et 
al., 2010). We applied the OHAM to the following 
differential equation: 
 

 
( ( )) ( ) ( ( )) 0, , 0.

du
L u x g x N u x B u

dx   (1) 
 

Here L  is a linear operator, x  denotes independent 

variable, ( )u x  is an unknown function, ( )g x  is a known 

function, N  is a nonlinear operator and  B  is a 

boundary operator. According to OHAM a deformation 
equation is constructed: 
 

(1 )[ ( ( , ) ( )] ( )[ ( ( , ) ( ) ( ( , ))],

,
, , 0,

p L x p g x H p L x p g x N x p

x p
B x p

x

(2) 

 

where 0,1p  is an embedding parameter, ( )H p  is a 

nonzero auxiliary function for 0p  and  

(0) 0, ,H x p is an unknown function. Obviously, 

for 0 and 1p p  the unknown function 

holds
0,0 and ,1x u x x u x , respectively. 

Thus, as p  varies from 0 to 1 , the solution ( , )x p  

varies from 0 ( )u x  to the solution ( )u x , where 0 ( )u x  is 

obtained from Equation (2) for 0p : 

 

0
0 0( ) 0, , 0.

du
L u x g x B u

dx
          (3) 

 

We choose auxiliary function H p  in the form 

 
2

1 2, ...iH p C pC p C  ,                                 (4) 

 

where 1 2,, ...C C are constants to be determined latter. 

For solution, expanding , , ix p C  in Taylor’s series 

about p , we obtain: 

 

0

1

, , , , 1, 2,3,...k

i k i

k

x p C u x u x C p i

                                                                                 (5) 

 
 
 
 
Now substituting Equation (5) into Equation (2), and 
equating the coefficient of like powers of p , we obtain the 

following linear equations. 
Zeroth order problem is given by Equation (3), and the 

first and second order problems are given by the 
Equations (6) and (7), respectively: 
 

1
1 1 0 0 1, , 0,

du
L u x C N u x B u

dx
      (6) 

 

 
2 1 2 0 0

2
1 1 1 0 1 2, , , 0.

L u x L u x C N u x

du
C L u x N u x u x B u

dx

 (7) 

 

The general governing equations for 
ku x  are given by:  

   

1 0 0

1

0 1 1

1

, ,..., ,

2,3,..., , 0

k k k

k

i k i k i k

i

k
k

L u x L u x C N u x

C L u x N u x u x u x

du
k B u

dx

 (8) 

 

where 
0 1 1, ,...,m kN u x u x u x  is the coefficient 

of
mp in the expansion of , , iN x p C  about the 

embedding parameter .p  

     

0 0 0 1

1

, , , ,..., .m

i m m

m

N x p C N u x N u u u p  (9) 

 

It has been observed that the convergence of the series 

(5) depends upon the auxiliary constants 1 2,, ...C C . If it is 

convergent at 1p , one has  

 
 

1 2 0 1 2

1

, , ,..., , , ,..., .
m

m i m

i

u x C C C u x u x C C C

 (10)  
 

Substituting Equation (10) into Equation (1) (general 
problem), it results in the following residual: 
 

1 2 1 2 1 2, , ,..., ( ( , , ,..., )) ( ) ( ( , , ,..., )).m m mR x C C C L u x C C C g x N u x C C C    

                                                                               (11)                                                                          
 

If 0, thenR u  will be the exact solution. Generally it 

does not happen, especially in nonlinear problems. 

For the determinations auxiliary constants of iC  for i=1, 

2, ….m, we choose a and b in a manner which leads to 

the optimum values of ,iC s for the convergent solution of  



 
 
 
 
the desired problem. There are many methods like 
Galerkin’s method, Ritz method, collocation method to 

find the optimal values of iC  for i=1, 2, ….m. We apply 

the method of least squares as under: 
 

 
2

1 2 1 2, ,..., , , ,..., ,

b

m m

a

J C C C R x C C C dx

           
                                                                               (12) 
 

where, R is the residual, ( )R L u g x N u    and  

                       

1 2

... 0,
m

J J J

C C C
                                 (13) 

 

where anda b are properly chosen numbers to locate 

the desired ( 1,2,..., )iC i m . With these constants 

known, the approximate solution (of order m ) is well-

determined. 
 
 

GOVERNING EQUATIONS 
 

Boundary layer flow over a flat plate is governed by the 
continuity and the Navier-stokes equations. Under the 
boundary layer assumptions and a constant property 
assumption, the continuity and Navier-stokes equations 
become (Kays and Crawford, 1993): 
           

0
u v

x y
,                                                (14)   

 
2

2

1
.

u u dp u
u v v g T T

x y dx y
          (15) 

 

Under a boundary layer assumption, the energy transport 
equation is also simplified. 
 

2

2

T T v
u v

x y y
                    (16)  

 

From Equations (15) and (16), the solutions of the energy 
and momentum equations are coupled. However, the 
bouncy force may be neglected if there is a pressure 
gradient perpendicular to the gravitational force. Thus, in 
the case of the forced convection over a horizontal flat 
plate, the solution to the momentum equation is 
decoupled from the energy equation. However, the 
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solution of the energy equation is still linked to the 
momentum solution. The following dimensionless 
variables are introduced in the transformation given by 
                                                

0.5Re ,x

y

x
                                            (17)                                                                

                                     

w

T T

T T
.                       (18) 

 

where  is non-dimensional form of the temperature and 

the Reynolds number is defined as: 
                                                    

Re
u x

v
.                                                        (19) 

 

Using equations (14) through (18), the governing 

equations can be reduced to two equations where f  is a 

function of the similarity variables : 

 
1 1

0, 0
2 2

f f f f ,        (20) 

 

where 1

pr

and f  is related to the velocity u  is 

given by 
                                                  

u
f

u
.                                                         (21)    

 

The reference velocity is the free stream velocity of 
forced convection. The boundary conditions are obtained 
by considering the similarity of variables. By using the 
forced convection technique presented in Kays and 
Crawford (1993) and Esmaeilpour and Ganji (2007), we 
have 
    
 0 0, 0 0, 0 1, 1, 0f f f    (22) 

 
 
OHAM SOLUTION FOR FLOW OVER A FLAT PLATE 
      

Here, we apply the OHAM to nonlinear system (20) 
consisting of ordinary differential equations. According to 
the OHAM, we can construct a homotopy of system (20) 
as follows: 
 

2 3

2 3

2 3

1 2 3 2 3 2 3

1

1

2

p f pf p f p f

f pf p f p f

pc p c p c
f pf p f p f f pf p f p f

(23)
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and  
 

 2 3

2 3

2 3

1 2 3
2 3 2 3

1

(24)1

2

p p p p

p p p

pc p c p c
f pf p f p f p p p

     
                                                                               (24) 
 

We consider f  and  as the following: 

 

 2 3

0 1 2 3

2 3

0 1 2 3

......,
(25)

.......

f f pf p f p f

p p p
 (25) 

 

Considering 
0 00, 0f  and substituting f  and  

from Equation (25) into Equation (24) and after 
simplification and rearranging depends on powers of p-
terms, we get: 
 

0

0 0,p f                                        (26)             

                                                           
 

0 0 0 0 00 0, 0 0, 1, 0 0, 0, (27)f f f
     (27)   

    

 1

1 0 0 0 1 0 1 1 0 0 0 1 0 1

1 1
; 28

2 2
p c f f f c f f c f c

  
                                                                              (28)

  
 

1 1 1 1 10 0, 0 0, 1, 0 0, 0, 29f f f
  (29)

   
 
 
 
 

 
 
 
 
 

2 0 0 1 1 0 1 0 1 2 0 1 1 1 2
2

2 0 0 1 1 0 1 0 1 2 0 1 1 1 2

1 1 1
;

2 2 2
30

1 1 1

2 2 2

c f f c f f c f f c f f c f f

p

c f c f c f c c

                                                                                (30) 

 
 

2 2 2 2 20 0, 0 0, 0, 0 0, 0, 31f f f         (31) 
 
 

3 0 0 2 1 0 1 2 0 2 0 1 1 1 1

1 0 2 3 0 2 1 2 1 2 3
3

3 0 0 2 1 0 1 2 0 2 0 1 1 1 1

1 0 2 3 0 2 1 2 1 2 3

1 1 1 1 1

2 2 2 2 2

1
;

2

1 1 1 1 1

2 2 2 2 2

1

2

c f f c f f c f f c f f c f f

c f f c f c f f c f f

p

c f c f c f c f c f

c f c c c

32

 (32)  
   
 

3 3 3 3 30 0, 0 0, 0, 0 0, 0, 33f f f
       (33) 

 
By solving Equations (26) to (32) with boundary 
conditions (27) to (33), we get: 

 
2

0 , 34
10

f
                                                              (34)

  

 
2 5

1 1
1

625 2
, 35

12000

c c
f

                                         (35) 

 
2 5 2 2 5 2

1 1 1 1

2 8 2 2 5

1 2 2

1050000 3360 643750 1401
36

20160000 11 1050000 3360

c c c c
f

c c c    

                                                                               (36)

2 5 2 2

1 1 1

5 2 8 2 2 2

1 1 1

5 3 8 3 11 3 2

3 1 1 1 2

5 2 5

1 1 2 1 2

8

1 2

554400000 1774080 679800000

147840 11616 14688375
1

725670 2541 20 55400000
1064480000

1774080 679800000 147840

11616 554400000

c c c

c c c

f c c c c

c c c c c

c c 2 5

3 3

37

1774080c c

 (37) 

 

 

0 1 2 3 38f f f f f                                              (38) 

 

 

Put Equations (34) to (37) in Equation (38), we get: 
  

             

2 5 2 22 52
1 1 11 1

5 2 8 2 2 5

1 1 2 2

2 5 2 2

1 1 1

5 2 8 2

1 1

1050000 3360 643750625 2 1

10 12000 20160000 140 11 1050000 3360

554400000 1774080 679800000

147840 11616 14688375
1

1064480000

c c cc c
f

c c c c

c c c

c c 2 2 5 3

1 1

8 3 11 3 2 5

1 1 2 1

2 5 8

1 2 1 2 1 2

2 5

3 3

725670

2541 20 55400000 1774080 (39)

679800000 147840 11616

554400000 1774080

c c

c c c c

c c c c c c

c c

 

 

 

   (39)

 



 

 

 

 

0

5
40

5                                                                (40) 
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4

1 1
1

125
41

1200

c c

                                               (41) 

 

4 2

1 1 1

2 4 2 4 2

1 1 1

2 2 7 2 7 2

1 1 2

4

2

1050000 8400 78125

565625 4375 40251
42

10080000 40 4 1050000

8400

c c c

c c c

c c c

c

  (42) 

 

 
 

2 2 4 2

1 1 1

2 2 4 2 2 4 2

1 1 1

7 2 2 7 2 3

1 1 1

3 2 3 4 3

1 1 1

3 3

3780000000 30240000 562500000

4072500000 31500000 28980000

288000 28800 224609375

363281250 862812500 1171875

160311

36288000000

c c c

c c c

c c c

c c c

4 3 2 3 7 3 7 3

1 1 1 1

2 7 3 10 3 10 3 2 10 3

1 1 1 1

2 2 4

2 2 1 2

2 4 2 4

1 2 1 2 1 2

7

250 4833750 75000 130500

13800 560 168 22

3780000000 30240000 562500000

4072500000 31500000 28980000

288000

c c c c

c c c c

c c c c

c c c c c c

2 7 2

1 2 1 2 3

2 4

3

43

28800 3780000000

30240000

c c c c c

c

   (43) 

 

0 1 2 3 44                                                (44)  
 

 
Put Equations (40) to (43) in Equation (44), we get: 
 

4

1 1

4 2

1 1 1

2 4 2 4 2

1 1 12

7 2 7 2 4

1 1 2 2

2 2 4

1 1

3

1255

5 1200

1050000 8400 78125
1

565625 4375 4025
10080000

40 4 1050000 8400

3780000000 30240000 56250

1

36288000000

c c

c c c

c c c

c c c c

c c 2

1

2 2 4 2 2 4 2

1 1 1

7 2 2 7 2 3 7 3

1 1 1 1

7 3 2 7 3 10 3 10 3

1 1 1 1

2 10 3 2 2 4

1 2 2

0000

4072500000 31500000 28980000

288000 28800 224609375 75000

130500 13800 560 168

22 3780000000 30240000

56

c

c c c

c c c c

c c c c

c c c

2 4

1 2 1 2 1 2

2 4 7 2 7

1 2 1 2 1 2

2 2 4

3 3

45

2500000 4072500000 31500000

28980000 288000 28800

3780000000 30240000

c c c c c c

c c c c c c

c c

(45) 

 
Using, the method of least square to obtain the unknown 

convergent constants in f :

 

 

 
 

1 2 30.9874136915279734; 0.20338113796491977; 0.046365760104753885c c c
 

 
Substituting these values in Equation (39), we get: 
 

 2
2 5

2 5

8

2 5

1
617.1335572049834 1.9748273830559469

10 12000

195587.07363907702 2770.84739172222631

20160000 10.7248437803859

2.409315026252579918 724519.07363901

1064480000 6546.437473466595

f

8 11
46

19.25428652409394 (46)
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Table 1. The results of OHAM, HPM (Esmaeilpour and Ganji, 2007) and NM (Bejan, 

1995) methods for f . 

 

 f HPM f NM f OHAM 

0 0 0 0 

0.2 0.0069699 0.0066412 0.0065356 

0.4 0.0278758 0.0266762 0.0261391 

0.6 0.0626959 0.0597215 0.0587927 

0.8 0.1113738 0.1061082 0.10445 

1.0 0.1738016 0.1655717 0.163024 

1.2 0.2498038 0.2379487 0.23437 

1.4 0.3391216 0.3229815 0.318277 

1.6 0.4414008 0.4203207 0.414454 

1.8 0.5561797 0.5295180 0.522526 

2.0 0.6828833 0.6500243 0.642019 

2.2 0.8208206 0.7811933 0.772368 

2.4 0.9691873 0.9222901 0.912911 

2.6 1.1270772 1.0725059 1.0629 

2.8 1.2935005 1.2309773 1.22149 

3.0 1.4674133 1.3968082 1.38781 

3.2 1.6477584 1.5690949 1.56093 

3.4 1.8335195 1.7469501 1.73989 

3.6 2.0237911 1.9295251 1.92378 

3.8 2.2178650 2.1160298 2.11172 

4.0 2.4153361 2.3057464 2.30291 

4.2 2.6162294 2.4980396 2.49668 

4.4 2.8211494 2.6923609 2.69246 

4.6 3.0314545 2.8882480 2.88982 

4.8 3.2494582 3.0853206 3.08845 

5.0 3.4786579 3.2832736 3.28806 

 
 
 
Again by using, the method of Least Square to obtain the 
unknown constants in: θ 
 
 

1 2 30.9874136915279734, 0.20338113796491977, 0.046365760104753885c c c  
Substituting these values in Equation (45), we get:

 

 

4

4

7

4

5 1
123.42671144099668 0.9874136915279734

5 1200

195587.073630907702 6927.1184793055651

10080000 42.8993751215436

1.6427147906304502 1.23497638000201061

36288000000 178539.2038218 7 10
47

1625 722.0357446535227

(47)

 
(Tables 1 and 2 and Figures 1 to 4.) 

 
 
Conclusion 

 
In this study, we discussed heat transfer problem with a 
small parameter, but the new technique was used to 
solve the coupled nonlinear equations. The procedure 
has explicit, effective  and  distinct  advantages  over  the 

 
existing approximation methods. Moreover, the 
approximate solution obtained here is valid not only for 
weakly nonlinear equations, but also for highly nonlinear 
ones.  

The convergence and low error is remarkable, clearly 
for 1, which represents that the OHAM has a very 

high accuracy.  
Finally, it has been observed that OHAM reveals very 

good agreement with numerical results. 
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Figure 1. The comparison of the answers resulted by OHAM, 

HPM and NM for f . 

 
 
 
Table 2. The results of OHAM and HPM (Esmaeilpour and Ganji, 

2007), NM (Bejan, 1995) methods for f . 

 

 f HPM f NM f OHAM 

0 0 0 0 

0.2 0.0696975 0.0664077 0.0653542 

0.4 0.1393444 0.1327641 0.130667 

0.6 2.088105 0.1989372 0.195832 

0.8 0.2778800 0.2647094 0.260673 

1.0 0.3462538 0.3297800 0.324945 

1.2 0.4135539 0.3937761 0.388339 

1.4 0.4793309 0.4562617 0.450488 

1.6 0.5430747 0.5167567 0.510975 

1.8 0.6042289 0.5747581 0.569345 

2.0 0.6622097 0.6297657 0.62512 

2.2 0.7164291 0.6813103 0.677819 

2.4 0.7663226 0.7289819 0.726977 

2.6 0.8113803 0.7724550 0.772174 

2.8 0.8511819 0.8115096 0.813057 

3.0 0.8854328 0.8460444 0.84937 

3.2 0.9140010 0.8760814 0.880976 

3.4 0.9369507 0.9017612 0.907886 

3.6 0.9545718 0.9233296 0.930268 

3.8 0.9673977 0.9411181 0.948451 

4.0 0.9762106 0.9555182 0.96292 

4.2 0.9820237 0.9669570 0.974274 

4.4 0.9860369 0.9758708 0.983168 

4.6 0.9895542 0.9826835 0.990212 

4.8 0.9938540 0.9877895 0.995818 

5.0 0.9999999 0.9915419 1 

Islam et al.          5517 
 
 
 

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

OHAM

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

NM

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

HPM

 
 
Figure 2. The comparison of the answers resulted by OHAM, HPM 

and NM for f . 

 
 
 
Table 3. The results of OHAM and HPM (Ganji, 2007), NM 

(Bejan, 1995) methods for 
.
 

 

 HPM NM OHAM 

0 1 1 1 

0.2 0.9303024 0.9335922 0.934646 

0.4 0.8606555 0.8672358 0.869333 

0.6 0.7911894 0.8010627 0.804168 

0.8 0.7221199 0.7352908 0.739327 

1.0 0.6537461 0.6702199 0.675055 

1.2 0.5864460 0.6062238 0.611661 

1.4 0.5206690 0.5437381 0.549512 

1.6 0.4569252 0.4832432 0.489025 

1.8 0.3957710 0.4252418 0.430655 

2.0 0.3377909 0.3702342 0.37488 

2.2 0.2835708 0.3186896 0.322181 

2.4 0.2336773 0.2710180 0.273023 

2.6 0.1886196 0.2275449 0.227826 

2.8 0.1488180 0.1884903 0.186943 

3.0 0.1145671 0.1439554 0.15063 

3.2 0.0959989 0.1239183 0.119024 

3.4 0.0630492 0.0882386 0.0921138 

3.6 0.0554281 0.0666702 0.0697324 

3.8 0.0326022 0.0588819 0.0515487 

4.0 0.0237893 0.0314817 0.0370799 

4.2 0.0179762 0.0330429 0.0257259 

4.4 0.0139630 0.0241292 0.0168318 

4.6 0.0104457 0.0173165 0.0097884 

4.8 0.0061459 0.0122105 0.00418158 

5.0 3.359E-10 0.0084581 -1.17853E-16 
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Figure 3. Comparison of the answers resulted by OHAM, HPM 

and NM for Pr 1at . 
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Figure 4. Comparison of the answers resulted by OHAM, 

HPM and NM for
 Pr 1.2at . 
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