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1 Introduction

Suppose that p > 1, 1% + é =1,f(%),g(») = 0,f € I’(R,), g € LY(R,), If ll, = ([ f7 (%) dx)}’ >
0, lligll; > 0, and we have the following Hardy-Hilbert integral inequality (cf. [1])

*fee0) . m
/ / xdy < W|V||p||g||qr @)

xX+Yy

where the constant factor is the best possible. If a,,, b, > 0, a = {a,,} 5, €, b =

(
b2, €l Nlall, =y ,,,)P > 0 151l > 0, then we have the following discrete analogy

of (1) with the same best possible constant —~— sm(n ) (cf [1]):

Mg

> lall,121l,. (2)
m=1

n()

I
—_

n

Inequalities (1) and (2) are important in analysis and its applications (c¢f. [1-5]).
If v >0 (5,j e N={1,2,...}),

u, = i Wi V, = 2": v;(m,n € N), (3)
i=1

j=1
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then we have the following Hardy-Hilbert-type inequality (¢f. [1], Theorem 321, replacing
1/q 1/p
W am and v, " b, by a,, and b,,):

00 o0 am ﬂfn 0 bZ %
ZIHZU +V, sm(p)<Z p_> (Z q_1> ‘ @

1 n=1 Yn
For p; = vj =1 (i,j € N), inequality (4) reduces to (2).

Note The authors of [1] did not prove that (4) is valid with the best possible constant
factor.

In 1998, by introducing an independent parameter A € (0,1], Yang [6] gave an extension
of (1) with the kernel - for p = g = 2. Following [6], Yang [5] gave some extensions of
(1) and (2) as follows

If A, A2 €R, A1 + A3 = A, ;. (%, %) is a non- negative homogeneous function of degree —2,
with k(A1) = [7 k(6 D)E171 de € Ry, ¢(x) = P02, 4 (x) = 1102271, £(x), g(y) > 0,

feLpyRy) = {f; I llpp := (/0 qb(x)[f(x)|pdx)1’7 < oo},

g€ Ly (R, fllpe lgllgy > 0, then we have

/o /o ko (6 ) (g ) dxdy < KO [ lpes 2l (5)

where the constant factor k(%;) is the best possible. Moreover, if k; (x,7) keeps a finite
value and kj (x, y)x* 1 (k; (x,y)y*>71) is decreasing with respect to x > 0 (y > 0), then, for
am,bn >0,

- !
ac€lyy= i“; llallpe = (Z¢(n)|a,,|p> < oo},

n=1

b=1{b,};2 €lyy, llalpg: 11bll4y >0, we have

WK

>

m=

k. (m, n)aby, < k(A1) llallp1Bllgy (6)

—_
]
—_

n

where the constant factor k(1) is still the best possible.
In 2015, by adding some conditions, Yang [7] gave an extension of (4) as follows:

o0 [o¢]
m=1 n=1 u + V
1 1
0o 5 pd-i1)-1 p [ 0 1,40-22)-1;9\ ¢
U, a V, b
<B()‘1’)‘2)<Z%) (Z n — n) ’ (7)
m=1 Him n=1 n

where the constant B(A;, 1) is still the best possible.
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Some other results including multidimensional Hilbert-type inequalities are provided
by [8-30].

About the topic of half-discrete Hilbert-type inequalities with the non-homogeneous
kernels, Hardy et al. provided a few results in Theorem 351 of [1]. But they did not prove
that the constant factors are the best possible. However, Yang [31] gave a result with the
kernel m by introducing a variable and proved that the constant factor is the best
possible. In 2011 Yang [32] gave the following half-discrete Hardy-Hilbert inequality with
the best possible constant factor B(A, A;):

/0 f@) {Z (acjin)'\:| dx < B, 22)f lpgllallgy ()

n=1

where 41 >0, 0 <Ay <1, A1 + Ay = L. Zhong et al. ([17, 33, 34]) investigated several half-
discrete Hilbert-type inequalities with particular kernels. Applying weight functions, a
half-discrete Hilbert-type inequality with a general homogeneous kernel of degree —A € R

and a best constant factor k(A;) are obtained as follows:

/0 @)k, mandx < k() llpglallgy ©)
n=1

which is an extension of (8) (¢f [35]). At the same time, a half-discrete Hilbert-type in-
equality with a general non-homogeneous kernel and a best constant factor are given by
Yang [36]. In 2012-2014, Yang et al. published three books [37, 38] and [39] concerned
with building the theory of half-discrete Hilbert-type inequalities.

In this paper, by applying weight functions, the technique of real analysis, and Hermite-
Hadamard’s inequality, a half-discrete Hardy-Hilbert-type inequality related to the ker-
nel of exponential function with a best possible constant factor expressed by the gamma
function is given, which is similar to (7) and an extension of (9) in the following particular

kernel:

ko(x, 1) = (¢>0,0<y <1).

(%)

Furthermore, the more accurate equivalent forms, the operator expressions with the

norm, the reverses, and some particular cases are considered.
2 An example and some lemmas

In the following, we agree that v, >0,0 <7, < 2 (neN), V,, = > vi 4(2) is a positive

continuous function in R, = (0, 00),
X
U(0) := 0; U(x) := / ut)dt <oo  (x€(0,00)),
0

v(t):=v,, te(n— %,n+ %] (n € N), and

V(%)::O; V(y):=f;l)(t)dt <y€(%’00))’

2
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p#0,1 +2=18€{-L1},f(x),a, =0 (x €R, n €N), [fllp0, = (f5 Psx)P(x) dx)?,
lall,g = (X2, $(m)bi)1, where

up(l—ao)—l (x) . (Vn _ .L.n)q(l—a)—l
CD(g(x) = W (x [S R+)y \I’(n) = T (Vl € N)
Example1 Fora >0,0<y,0 <1, weset h(t) = e“% (teR,).
(i) Setting u = at”, we find
00 go-1 1 o o_ I'lo/
k(o) = dt = oy TG (10)
0 ext? yaﬁly 0 yaa/y

where
C'(y) :=/ e ldv (y>0)
0

is called the gamma function (cf. [40]).
(ii) We obtain, for £ >0, ® >0,0<y <1, h(t) = e"‘% >0,h(t) = —aytV‘lﬁ <0 and

) 1 2 1
H'(t) = —ay(y -1t leW + (ayt’™) prtd

(iif) If g(u) > 0, g'(u) < 0, g"(u) > 0, then we find that, for y € (n — 3,1 + 1), g(V(y)) > 0,
£e(V() =g (V(»))v, < 0,and

d2

e (VO) =g (Vo) >0 (neNy

For gi(u) > 0, gi(u) < 0, g/'(u) > 0, g»(u) > 0, gh(u) <0, gj(u) > 0 (u > 0), we obtain
&(w)g(u) >0, (g1(u)g2 (1) = g (u)ga(u) + g1 (u)g; (1) < 0, and

"

(@) =g/ (g (u) +2g(1)gy(u) + g1 (w)gy (1) >0 (u > 0).

(iv) Fora >0,0 <y, 0 <1,c> 0, we have h(cV(y)) V°7(y) > 0, d%(h(cV(y))V”’l(y)) <0,
and

d? 1 1
d—yz(h(cV(y))V"’l(y)) >0 (ye (n— 71t 5),11 € N).

Then by Hermite-Hadamard’s inequality (cf. [41]), we have

1

h(cV(n)) Vo lm) < /n’;* h(cV(y)) Vel (y)dy (neN). (11)

2

1

Lemmal Ifg(t) (> 0) is a strictly decreasing continuous function in (3, 00), which is strictly

convex satisfying | %oo g(t)dt e R,, then we have

/ b gyde <y gln) < /1 h g(t)dt. 12)
1 n=1 2



Liao and Yang Journal of Inequalities and Applications (2016) 2016:162 Page 5 of 21

Proof By Hermite-Hadamard’s inequality and the decreasing property, we have

n+l n+l n+%
/ g(t)dt < / g(n)dt = g(n) < f Cgdt (neN), (13)

and, for ny € N, it follows that

no+1 no no n+% nw%
/ gyde<y gmy<y / _gdt= / g(o)dt,
1 n=1 n=17""3

1
2

oo 00

/m gyde< Y g(n)S/ g(ydt < oo,

0+l n=ng+1 not+y
Hence, choosing plus for the above two inequalities, we have (12). O

Lemma2 Ifa >0,0<y,o0 <1,define the following weight coefficients:

ws(o, %) = g eaumx)l(vﬂn)v (‘Z‘Si(:n) ;’ia’ x€R,, (14)
Then we have the following inequalities:

ws(o,x) <k(c) (xe€R,), (16)

ws(o,n) <k(o) (neN), (17)

where k(o) is indicated by (10).

1

Proof Since V,, — 1, > f1n+2 v(t)dt -2 = f%"v(t)dt =V(n), and, for t € (n — %,n + %), v, =
3

V'(¢), by (11) (for ¢ = U’ (x)) and (12), we have

1 L% (x) 1 L% (x)
eausy(x)(vn_fn)v (Vn _ .L-n)l—a — eaUBV(x)vy(y,) Vl—o(n)

1
n+ 5 1 u&o (x)
< /’;_% eaU‘SV(x)VV(t) Vlfa (t) dt (l’l S N)r

) n+l 1 e (%)
ws(o,x) < Zl Vn /n% U WV () V1-0 (f) at
H=

_i/rﬁ% 1 uéa(x)v/(t) "
= 2 n_% e(xU5V(x)VV 0) Vi-o (t)

I R S OV
- eauW(x)W(t) Vl—a(t) :
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Setting u = U* (x) V(¢), by (10), we find

U8 (x)V(00) So -5
05(0%) / 1 WU~

wwv) e (ul? ()

* 1
< / —u” " du = k(o).
0 erxu

Hence, (16) follows.
Setting u = (V,, — 7,) U’ (x) in (15), we find du = §(V;, — 7,,) U’ (x) 1(x) dx and

1 [VammlP(e) 4
ws(o,n) = = / - uldu.
8 Jvu-rauio) €

If § =1, then

(V=) U (00) 1 (o] 1
wi1(o,n) :/ utdu 5/ u® Y du;
0 eauV 0 eauV

if § = -1, then
(Vn—‘rn)U_l(oo) 1 o0 1
w_i(o,n) = —/ —u’du < / —u’ " du.
00 € 0 €
Hence, by (10), we have (17). O

Remark 1 (i) We do not need the condition of ¢ <1 in obtaining (17). (ii) If U(c0) = oo,

then we have
ws(o,n)=k(o) (neN). (18)

For example, we set u(£) = w —— (¢ >0; 0 <a <1), then for x > 0, we find

1+x)1“1 0< 1
U(x) = f a0 USASh
1+t Inl+x), a=1

U(0) =0, and U(o0) = OOO (lf—f)ﬂ = 00.

Lemma 3 Ifa>0,0<y, o <1, there exists ny € N, such that {v,}°

reng 1S decreasing and

V(00) = 00, then: (i) for x € R, we have

k(a)(l — 05 (a,x)) < ws(o,x), (19)

U (x)V(ng+1) o1 5o
95(0’,96) = m /0 6‘17 du = O((U(x)) ) (S] (0, 1),
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(ii) for any b > 0, we have
i VU 1 ( 1 )
— (= +b00)). (20)
; (Vn - rn)hb b Vf]
Proof Since V, -1, <V, <V, =V(m+1),and v, > V'(¢t) (t € (n,n+1); n > ng), by
(13), we find
[ee]
1 us %)V
COS(ny) = V;} eaU‘SV(x)VV(VH-l) Vli-o (I’l + 1)

i 1 use (x)v,

U @V () V1-0(y)

n=np+1
[}
1 U (x)V'(t
S Z : (%) ()dt
ex U7 (V7 (t) Vl‘”(t)
n=np+1

dt.

/00 1 Ue V)

0+l U WV V1o (f)

Setting u = U® (x) V(¢), in view of V/(c0) = 00, by (10), we find

o) u’- LI‘S V(ng+1) u® -1
ws (0, %) >/ — du k(o) — / - du = k(o)(l 05(o, x))
W) Ving+1) € e
We find
U‘S(x)V(n0+1) (ua(x)v(n +1))o
0<6 <— oAy = 2 T V0T R,),
<0s(0,x) < K@) ), u U oK) (xeR,)
and then (19) follows.
For b > 0, we find
i Vy < i Vy V1 i Vy
= +
— (Vn —‘L’,,)1+h - — V1+b(n) V1+b(1) — V1+b(1’1)

oo

21+b ./*n+% V’(x)dx 21+b /00 V/(x) dx
+
2 v 5

—_— -
vlb _% V1+b(x) U{? V1+b(x)

<

21+h -b 1 1 21+h
= + 17 = —(— + b—>,

b b b
vy b\ vy vy

o0

S} 0
Vn Vn Vn+l
E > E > E
ol (Va— )0 — o (Va— )0~ prapt Vi (n +1)

it Ly (x) dx ® V'(x)dx
= Z Vl*b(n) Z / V() /n0+1 VI (x)

n=np+1

- (b
bVh(mo +1) b\ub b

1 _1<1 Vb(n0+1)—v1‘b>

b
Since % — Constant (b — 0*), we have (20). (]
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Note Forexample, v, = a (n € N; 0 < a <1)satisfies the conditions of {v,}°; in Lemma 3
(for ng =1).

3 Main results and operator expressions

Theorem 1 Ifa > 0,0 <y, 0 <1, then for p >1, 0 < |[fllpes llal,s < 0o, we have the
following equivalent inequalities:

anf (x T(o/y)
I:= Z/ eauay?van — dx < o If 11,05 1]l 4,5 (1)
o0 00 »

— Yy f(x) dx O'/)/)

]1 B ; (Vn - rﬂ)l_pa [,/(; eauéy(x)(vn—l'n)y < ao—/y ”f”p [oF ) (22)
0 q %
[e¢]

S @ Moty)

f2i2 {/o L1457 (x) |:Z Qe (x )(vn—rn)y] dx} < WH g3 (23)

Proof By Holder’s inequality with weight (cf [41]), we have

S I ¢
o el Ve ©F

:[/w 1 U%(x)f‘( ) (V _r”) p I'Lq(x) x]
o eau Y (%) (V=) (V, —Tn) p Mﬂ(x) U q (x)

° (V-5 <x>fp<x> ]
S/(; eaUSV(x)(Vn—rn)V |:(V _ Tn)l Ul,w(x) *

T _Vamw) (Va- ) ) " p
o e @Va-ta)¥ U89 (x)

-1 poo (1-80)(p-1)
(w5(o, m))P / — 1 U=0ED (), f7 (x) (24)
0

JCZEEAZE Ve (V= )17 P x)
In view of (17) and the Lebesgue term by term integration theorem (cf. [42]), we find

1

1 L[(l—ﬁn)(p—l)( YWy r
hi = (Kt Z/ e"‘uay V=t (Vyy = 1)1 "Hj ‘;(x)fp(x) dxi|

1

i [ poo o 1 u(l—SJ)(p—l)(x)vn r
= (k(@))" I /O ; U @ (V=) (V,, — r,,)l‘”u}"l(x)f ') dx}

:(k(o))‘l’/O ws(o,x)

up(l—éc)—l }7
Wx)(x)f”(x) dx] : (25)

Then by (16), we have (22).
By Hélder’s inequality (cf. [41]), we have

1
> f(x) (Vn - tn)__aan
I= ;[(V Y= / Sl e o7

< hllall,- (26)

x‘m»—
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Then by (22), we have (21). On the other hand, assuming that (21) is valid, we set

Vn oo 1 Pl
an = (V, — 7)1 P |:/(; U (x)(Viy— rn)Vf(x) dxj| » neN.

Then we find ]{7 = ||a||Z®. If ; = 0, then (22) is trivially valid; if /; = oo, then (22) remains
impossible. Suppose that 0 < J; < co. By (21), we have

q P ~
lall, g =/ =1 <k@)Ifllpe;lall,s

lallZ5 =1 < k@)IIf .05

and then (22) follows, which is equivalent to (21).
Still by Holder’s inequality with weight (c¢f [41]), we have

0 q
an
[Z eauﬁy( x)(Vi=t)Y ]

1-8o0 1 1-0
{“’ U@y, (Vy —mTanT
5 ey

— eotl[ Y (%) (Vip—tn)Y (Vn _ Tn) 7 (x)vl/p

<

L1500 ), 17
n= eaL[‘W(x Va=tn)? (V';fl_":n)l_(7

i 1 (Vy—1,) P
X

S —
— U @) (Vi—ta)V [ 1- 6o(x) q-1

q(1-0)

q
an

(@5(0, %)) & 1 (Vu— )" V()
- Z eotl,[‘sy Viu—1n a (27)

UPT () u(x) = L1-50 (x) v~ "

Then by (16) and the Lebesgue term by term integration theorem (cf. [42]), it follows that

i 1
L 0o 00 1 vV, - rn)(l“’)(‘l‘l)u(x) 1
a
J < (k@) /0 21: U () (Vor—tn)? e
L n=

U150 (x) UZ_l

_ 1
s [ 1 (Vo= )
= (k(U)) p 21: ‘/(; eau‘W(x)(Vn—rn)V ul_&’ (x)qu a, dx
L 1= n
( 1
1 _ q(1-0) q
= (k(o))? Zwa(a n) Vi Tn) a’,{:| . (28)

Then by (17), we have (23).
By Holder’s inequality (cf. [41]), we have

o0 Ua—&r( 1 0
AT Fo S——

Mq (%) n=1
< Wfllposf (29)
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Then by (23), we have (21). On the other hand, assuming that (23) is valid, we set

pe [& 1 "~
f(x) = U459 (x) |:ZI: e U ()(Vy—t)¥ a”i| , x¥€eR,.
n=

Then we find /7 = |[f||p o5 If J, = 0, then (23) is trivially valid; if J, = oo, then (23) keeps
impossible. Suppose that 0 < J < co. By (21), we have

W10, =T =1 <k@fllposlalgr  If1Ea, =2 < k(o) lall, 50

and then (23) follows, which is equivalent to (21).
Therefore, (21), (22), and (23) are equivalent. O

Theorem 2 As regards the assumptions of Theorem 1, if there exists ny € N, such that
L(aly)

{vukily, is decreasing and U(co) = V(00) = 00, then the constant factor k(o) = a7 in
(21), (22), and (23) is the best possible.
Proof Fore € (0,g0), weseto =0 — 3’ (e (0,1)), andf ='7(x), xRy, d=1{a,152,
~ e u(x), 0<a’ <1,
x) = - 30
Fe { N ooo (30)
Zin =(Vu— Tn) v, =(V, — Tn) Vm neN. (31)
Then for § = &1, since U(00) = 00, we find
w(x) 1 5
dx = -U°*(1). 32
\/{x>0;0<x5<1} Ul—&s(x) * & ( ) ( )
By (20), (32), and (19), we obtain
e . T
5 s u(x) dx 7| o
1
1 s 1 q
=_Uv (1)(—S + 80(1)) , (33)
e v
/0 2_1: e“”‘s"(x Vi=tn)? V(f(x
= (V- Tn) VnI'L(x)
d
/x>0 0<x8<1} nXﬂ: eau5y (Va=tn)? ul ~8E+e (x) x
w(x)
, d
/x>0 ;0<xd <1} 5 g )ul—és(x) g
~ ~ p(x)
> k(o) 1-65(0,x)
[x>0;0<x5§1}( ’ ) ul—és (x)

N 5y &)
B k(a) /{x>0;0<x5<1} (1 - O((U(x))a )) Ul—&s (x) dx
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:k(E)[/ i —/ o<7“(x) )dx]
{x>0;0<x5§1} ut- F(x) {x>0;0<x5§1} ul 3o+y) (x)

= —k(a — —) (Usg(l) - 501(1))
e q

If there exists a positive constant K < k(o), such that (21) is valid when replacing
k(o) to K, then in particular, by Lebesgue term by term integration theorem, we have

¢ < eK|[fl 04 1ll ., namely,

k<a - 6—]>(U58(1) -£01(1)) <K - uv (1)(])_ + 50(1)) q'

1
It follows that k(0) < K (¢ — 0*). Hence, K = k(o) is the best possible constant factor of
(21).
The constant factor k(o) in (22) ((23)) is still the best possible. Otherwise, we would

reach a contradiction by (26) ((29)) that the constant factor in (21) is not the best possi-
ble. a

(neN), d:~ s 1x) = 1) (x e R,), and we define

For p > 1, we find W' () = a5 ()

the following real normed spaces

7

Lp,dD,; (R+) = {frf =f(x))x € R+1 ”f”p,@g < OO},
Lo ={aa=1{a)2, llall,g < oo},

Lq¢1 «(Ry) = {h h=h(x),x €R,, ||h||q’¢,(1§*q < OO},

lp‘ﬁl—p = {c;c ={culooss llcll,,g1-» < oo}.

Assuming that f € L, ¢,(R,), setting

U (x)(Vig—t)¥

e 1
c={culpiy Cpi= / 7]’(96) dx, neN,
0

we can rewrite (22) as |[c|,, g1-» < k(o) |[f]lp,0; < 00, namely, c € [, g1-».

Definition 1 Define a half-discrete Hardy-Hilbert-type operator 71 : Ly¢;(R}) — [, g1»
as follows: For any f € Lj¢,(R.), there exists a unique representation T1f = c € [, g1».

Define the formal inner product of 71f and a = {a,};2, € [, as follows:
oo o0 1
(T\f,a) := Z[ fo Wf(x dx}zn (34)

n=1

Then we can rewrite (21) and (22) as follows:

(T1fsa) <k(@)If lp.05 lall 4 (35)
1T Nl 510 < k(@)1 llp,05- (36)
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Define the norm of operator 77 as follows:

1T 1l 51-»

1710 == —
Felpa; @) fllpes

Then by (36), it follows that || 71| < k(o). Since, by Theorem 2, the constant factor in (36)
is the best possible, we have

['(o/y)
]/O[U/y :

IT1ll = k(o) = (37)

Assuming that a = {a,};2; €/, 3, setting

00
1
h(x) IZZmﬂn, xER+,

n=1

we can rewrite (23) as ||k|| _1-¢ <k(o)llall,§ < oo, namely, he L _1-4(R,).
q,CI){S 9 qv‘b(s

Definition 2 Define a half-discrete Hardy-Hilbert-type operator T5 : [, g — Lq o-1(Ry)
i}
as follows: For any a = {a,};2; € [,§, there exists a unique representation Tra = h €
Lq q>1—q(R+). Define the formal inner product of Toa and f € L, 4,(R,) as follows:
)

(Tha,f) := /0 [Z man}/(x)dx. (38)

n=1

Then we can rewrite (21) and (23) as follows:

(Taa, f) < k(©@)If llp0; l2ll 4,5 (39)

IT2all, g1-a < k(o)lallys- (40)

Define the norm of operator 7 as follows:

| Tya ||q’¢§—q
T2l := sup ————
ael,g  Nallys

Then by (40), we find || T3 || < k(o). Since, by Theorem 2, the constant factor in (40) is the
best possible, we have

TC(o/y)

ITall = ko) = 25

= I (41)

4 Some equivalent reverses
In the following, we also set

up(l—éa)—l (x)

55(96) = (1 - Gg(o,x))W

(x €R,).

For 0 <p <1lorp <0, westill use the formal symbols ||f ||, [If1l,,3,, and llall;s-
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Theorem 3 As regards the assumptions of Theorem 2, for p <0, 0 < ||fllp,05, llall, < oo,

we have the following equivalent inequalities with the best possible constant factor k(o) =

INCOR
)/aJ/V .
anf (%) T(o/y)
I= Z/ el () Von)? dx > Sa 1f 11,5 12l 4,5 (42)
o0 00 »
_ Vy f(x) F(G/y)
Ji= n2=1: (Vu— ‘L'n)l—PU |:/0 e UdY (0)(Viy—n)? dx:| s Hf”p (39 (43)
oo q %
o0
_ n(x) an T(o/y) A
" { o UP7() [ZE eauﬁwxxvn-rnw} dx} > gty 143 (44)
n=

Proof By the reverse Holder inequality with weight (c¢f. [41]), since p < 0, in the similar way
to obtaining (24) and (25), we have

oo 1 »
Uo AL dx]

(ws(o, n))p_l *© 1 y-30)p-1) (x )Vy fp( )d
S Voo o, Jo et @O0 (V= oo pp iy

Then by (18) and the Lebesgue term by term integration theorem, it follows that

L0-50)0-D (), b
|:Zf eotlﬂ)/ Vi) (V, — Tn)l"fu}’*l(x)fp(x) dx:|
1 e Lp(-0)-1 é
= (k(o))q[/o “’B(U’x)wx)(x)fp(x)dx] .

Then by (16), we have (43).
By the reverse Hélder inequality (cf. [41]), we have

L 1
> vy o f(x) (V- Tn)l_faan
= Z|: ) I ,/0 eaU‘SV(x)(Vn—rn)}/ dx]|: U;/P :|

n= (V —Tn
> Jillallgg- (45)

Then by (43), we have (42). On the other hand, assuming that (42) is valid, we set a,, as in
Theorem 1. Then we find J} = ||a||q . If 1 = oo, then (43) is trivially valid; if ; = 0, then
(43) keeps impossible. Suppose that 0 < J; < 00. By (42), it follows that

-1
IIaIIZ@ =J =1>k(©)|f lpslall, IIaIIZ@ =N > k(0)|f llp,5

and then (43) follows, which is equivalent to (42).
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Still by the reverse Holder’s inequality with weight (cf. [41]), since O < g < 1, in the similar
way to obtaining (27) and (28), we have

0 1 q
|:Z e U () (Vir—14)Y ﬂn:|

n=1

Vl'

_ (@50, i 1 (Vo = 2) D),
= U1 () 11 (x) el () (Vi=1)? L-50 (x) vt

n=1
Then by (16) and the Lebesgue term by term integration theorem, it follows that

1

1 1 V. — 1,)d-0)(g-1) q
I > k(cT) p / § — . (Vi —14) 71,U«(x)az dx
—~ eal®Y (x)(Vi—1n) U180 (x) v

1
n_-[n)q(lq 1
q
E w,;an e ——al]| .

Then by (18), we have (44).
By the reverse Hélder inequality (cf. [41]), we have

% (177 (x) ) () —
I = d
fo < e [ur“(x X } '

n=1

> If llp,05)2- (46)

Then by (44), we have (42). On the other hand, assuming that (44) is valid, we set f(x) as
in Theorem 1. Then we find J{ = |[f||p - If J, = 0o, then (44) is trivially valid; if /; = 0, then
(44) remains impossible. Suppose that 0 < J; < 0o. By (42), it follows that

1B 6, =J5 =1 > Ko fllposlallys  1f1a, =2 > k(@)llall,s

and then (44) follows, which is equivalent to (42).
Therefore, inequalities (42), (43), and (44) are equivalent.
Fore €(0,q0), wesetog =0 — £ (e (0,1)) andf f( ), x € Ry, d=1{d,152,

WO u(x), 0<a’ <1,

S = [ 0, x>0,

1

Zin = (Vn - fn)gilvn = (Vn - fn)o_é_ Vy, HNE N.

By (20), (32), and (16), we obtain
1
~ ~ 1 s 1 a
Ifllp,05 121l 4,5 = EU" (1)<F + 80(1)> )

270 ~ M)
15[ et 4 [ s O o
e UV (x)(Vi—tp)Y {x>0;0<x% <1} =)

<k(3) mo) %k(o _ 2>u58(1).

{x>0;0<xd <1} Ut-se (%)
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If there exists a positive constant K > k(o) such that (42) is valid when replacing k(o)

to K, then in particular, we have el > eK |[}~“|| pos ldll, s, namely,

q

k<a _ i)u‘”(l) >K- uif(l)(é + sO(l)> :
q el

It follows that k(o) > K (¢ — 0*). Hence, K = k(o) is the best possible constant factor of
(42).

The constant factor k(o) in (43) ((44)) is still the best possible. Otherwise, we would
reach a contradiction by (45) ((46)) that the constant factor in (42) is not the best possi-
ble. O

Theorem 4 As regards the assumptions of Theorem 2,if0 <p <1,0 < |[flpe5, lall,5 < o0,

then we have the following equivalent inequalities with the best possible constant factor

ko) = L5
1= Z dx> 2D 1yl @)
e“U‘SV x) Vn Tn) e )/0[‘7/1’ P:®s a v’
> Vn ©  f(x)dx ? T(oly)
= ) 48
h ;(Vn_fn)l—pa [/0 eauﬁv(x)(vnrn)y] > yacly ”f||p<1>a (48)
9] q 1
[e’e} 1_9 , 1-q q
] / ( s(lo 26)) n(x) PR i
0 ut-1 "(x) P exld V(%) (Vie=tn)¥
C(o/y)
> ool lall,s- (49)

Proof By the reverse Holder inequality with weight (cf [41]), since 0 < p <1, in a similar
way to obtaining (24) and (25), we have

* f®) i
[/(; eozL[‘SV(x)(Vn—r,,)V dx

(ws(o,n))Pt /'Oo 1 U3)e-D (x)y,
T (V- ly, 0 U @) (Va—tn)¥

A =T

In view of (18) and the Lebesgue term by term integration theorem, we find

1 ul 5(7)(pl(xvn %
k(O') q{Z/‘ UV (x)(Vyg—1p)Y (V—Tn)l Ull/p 1( fp( )dx:|

0o 11P01-50)1 () 5
|:/0 wg(a,x)Wfp(x)dx] .

Q-

- (ko)

Then by (19), we have (48).
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By the reverse Hélder inequality (cf. [41]), we have

1o
f—i v, R (ORI | KU AL
- o el @ (Va—ta)? x PP
n

1_
n=1 L (Vi — 1) 7

> Jillall,5- (50)

Then by (48), we have (47). On the other hand, assuming that (47) is valid, we set a,, as in
Theorem 1. Then we find J¥ = ||a||Z@. If J; = 0o, then (48) is trivially valid; if /; = 0, then
(48) remains impossible. Suppose that 0 < J; < 0o. By (47), it follows that

-1
lalllg = =1> Kol lallye,  laliy =h> ko)l s,

and then (4.8) follows, which is equivalent to (47).
Still by the reverse Holder inequality with weight (cf. [41]), since g < 0, we have

0 q
Ay
[Z e"luay ) (V=) ]

n=1

(@s(0,2) 7 & 1 (Vi =) V()
Z eauﬁy(x a

T UPT ) plx) = )(Vi—tn)? -0 (x)pd ™ "

Then by (19) and the Lebesgue term by term integration theorem, it follows that

s L (Ve-w)" 4w, |
p q
J> (k(a)) |:/0 Zl e U (x)(Vi=14)7 L1150 (x)yd ! a, dx

NN

q-1
n=1 Vn

1] 2 _ (1-0)- %
= (k(a))? [Zm(g,n)wa ] )

Then by (18), we have (49).
By the reverse Holder inequality (cf, [41]), we have

o0 1 %_5“
1:/ [(l—eg(o,x))P Uli(x)f(x)}
0

W (x)
11 00
> (1—95(0',.?6))1’ /,L‘I(x) Z ay dx
L5 () et U () V=)
> fll,,3,/- (51)

Then by (49), we have (47). On the other hand, assuming that (47) is valid, we set f(x) as
in Theorem 1. Then we find J7 = |[f||1’; By If ] = 0o, then (49) is trivially valid; if / = 0, then
(49) keeps impossible. Suppose that 0 < J < co. By (47), it follows that

125, =) =1> k@ f s lalya 105, =T >ko)lal,g,

and then (49) follows, which is equivalent to (47).
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Therefore, inequalities (47), (48), and (49) are equivalent.
For e € (0,po), wesetd =0 + s and f = f(x), x € Ry, @ = {@,}>°,,

UM x)ulx), 0<a’ <1,

X) =
/@ 0, x>0,

Zin = (Vn - Tn)g_a_lvn = (Vn - fn)o_%_lvm neN.
By (19), (20), and (32), we obtain

1,3, 4ll,,5

B ~ sy () dx 17 [ & Vp g
- |:/{x>0;0<x5§1}(1 O((U(x)) )) Ul_gg(x):| |:Z (Vn - Tn)1+€]

n=1

= %(U‘SS(I) —801(1))%7 (i +e0(1 ))q,

v

o0 00 1
i 21:/0 @ U @) (Vu—)? anf (x) dx
n=
/ 1 (Vn - Tn)aﬂ(x) dx Vn
(£50,0<x% <1} eau Y (x)(Vy—10)Y Ul“sg(x) (Vn _ Tn)1+8
o 1 (Vn - Tn)gl'b(x) d Vn
e"‘U Y (%) (Vu—t0)? ul-aa(x) x (Vn _ﬂ)l+£

Zwls m = Z (V _ -L-n)1+£

n=1

= lk(o + E) <i€ + sO(l)).
£ p/)\vi

If there exists a positive constant K > k(o), such that (42) is valid when replacing k(o)

aNgt

n=1

E%g

to K, then, in particular, we have el > eK |[7|| s P oD namely,

k<a + f) (lg + eO(l))
p/\V

1
171 q
>K(U*(1) - e01(1))? (F + gO(l)) .
1
It follows that k(o) > K (¢ — 0*). Hence, K = k(o) is the best possible constant factor of
(47).
The constant factor k(o) in (48) ((49)) is still the best possible. Otherwise, we would
reach the contradiction by (50) ((51)) that the constant factor in (47) is not the best possi-
ble. O

5 Some corollaries and a remark
For § =1 in Theorems 2-4, we have the following inequalities with the non-homogeneous

kernel.
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Corollary1 Asregards the assumptions of Theorem2, (i) for p > 1,0 < ||f |0, lall 5 < o0,
we have the following equivalent inequalities:

anf (x) I(o/y)
Z/ U (0)(Viy—1)? dx < yaolr ”f”p,(Dl”ﬂ“q,@; (52)
S Vn * f) ' T(o
d , 53
; (V, = 7,)17° |:/0 call? ) (V)7 x] U/y |lf||p o (53)
0 q %
© ul(w) a, T(a/y) A
{./o Tt)) |:Z1 eaUV(x)(Vn—rn)V:| dx} < alr lall,a; (54)

(i) for p < 0, 0 < [[f lp,0,» ll@ll & < 00, we have the following equivalent inequalities:

af (x) I'(o/y)
Z/ ool () nfvn Y2 dx> vaolr I llp.or lally g (55)
U © @ ? Toly)
; (V= 1,)p0 |:'/0‘ 22U @) (Vi—1n)7 dx] > A 1 llp,0,5 (56)
[ee] q L
R C)) an " TOly), .
{/0 U190 (x) Z U () (V=147 dx¢ > —ya"/y lall,es (57)

(iii) for 0 < p <1, 0 < |[fll 0, llall ;& < 00, we have the following equivalent inequalities:

anf(x) I'(o/y)
Z/ a7 () (Vn—tn)? dx > Yol W llp,3, lall 5 (58)
S Vn A €)) ]” T(o/y)
dx| > ——=|fll,3, (59)
VIX:l: (Vn - Tn)l_pa [_/(; eauy(x)(vn_fn)y y o'/y V p@l
1 q :
% (1-0,(0,x)\1 %0 )
/ ( 1(? %)) p(x) Z _ av |
0 U1 (x) i @) (V=)
C(o/y)
Sty 14a3- (60)
The above inequalities are with the best possible constant factor y("g/}’y)

For § = -1 in Theorems 2-4, we have the following inequalities with the homogeneous

kernel of degree 0:

Corollary 2 As regards the assumptions of Theorem 2, (i) for p > 1, 0 < |[fllp0_y, llall,g <

00, we have the following equivalent inequalities:

af (x) C(o/y)
Z f (’éfm)y x< o o Wl 61)

00 Vy o0 f(x) p F(G/y
; (Vn - ‘L'n)l—PG |:/0~ ea( V-t ) dx} va G/V ”_f”pCD 12 (62)

U(x)
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00 q 1
* ux) ay T Tly), .
{/o U+ (x) {Z (Y W} dx} <W”“”’”” (63)

(i) for p < 0, 0 < [ lp,0_y, llall,& < 00, we have the following equivalent inequalities:

anf (x) [(o/y)
2/ n rn )y x> ]/Olg/y |Lf||p,<l>_1 ||6l||q’®, (64)
AC)) T (o/y)
d , 65
; (VVI — ‘L'n)l_po' [/0 ea( Vl”](;:)” ) % o-/y ”.f”p':b 1 ( )
*uw) | a 7 i T(o/y)
: o U1+qa(x) |:Zl (Y Vn rn )yi| dx} > )/Ola/y ”a”q,\fl; (66)

(i) for 0 < p <1, 0 < |[fllp,0_y llall 4,3 < 00, we have the following equivalent inequalities:

r

Z/ dnf(fi))y dx > V(GU//):/) “f“pd) 1||6l||q\p, (67)
S Vn * f®) 7 T(oly)
; (V- ":n)l_p(7 |:,/(; ea(vz‘[(’;)”)l’ dxi| > ya aly Hf”P‘D 1’ (68)

100, ) [ e |7
{./(; U1+ (x) |:MXI: ga(vﬁ(_;)n » :| dx}

r

. y("a’,y) lal,g- .

The above inequalities are with the best possible constant factor 1;(0‘;;};)

Remark 2 (i) For 7, = 0 (n € N) in (21), setting W (n) := V”q(;j)_l (n € N), we have the
following inequality: ’
anf (%) T(a/y)
Z/ ey < gty U lnss el (70)

Hence, (21) is a more accurate inequality of (70) for 0 < 7, < 2.

(ii) For p(x) = v, =11in (21), setting 0 <7 < %, we have the following inequality with the
best possible constant factor (”{,/,7;)

anf (x)
Z/ eoz[x‘S n-t ]V

I;/(Z'G//); |:/ KPU-00)- fp(x)dxi| |:Z(n_.[)ql o) :|q‘ (71)
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In particular, for § = 1, we have the following inequality with the non-homogeneous

kernel:

Z/ ea[x(n t)]y dx

F("/V)[ / 0012 () dx] -1 lag | 72)

yaa/y

for § = —1, we have the following inequality with the homogeneous kernel of degree 0:
Z T af)
( Vl T )y

F(a/y)[/ D )dx]p i(n_t)qu_o)_lﬂz ‘f' (73)

oly
ra n=1
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