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Abstract

We represent hyperholomorphic functions on octonionic function theory and
octonionic differential operators. We research the properties of hyperholomorphic
functions, hyper-conjugate harmonic functions and the integral calculus of
hyperholomorphic functions by octonion forms.
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1 Introduction

The octonions in Clifford algebra are a normed division algebra with eight dimensions over
the real numbers larger than the quaternions. The octonions are non-commutative and
non-associative but satisfy a weaker form of associativity. The octonions were discovered
in 1843 by John T. Graves and constructed in 1845 by A. Cayley. They are referred to as
Cayley numbers or the Cayley algebra. The octonions have been applied in fields such as
string theory, special theory of relativity and quantum theory. Dentoni and Sce [1] gave
a definition of octonionic regular functions and several properties of octonionic regular
functions in 1973.

In 2004 and 2006, Kajiwara, Li and Shon [2, 3] obtained some results for the regener-
ation in complex, quaternion and Clifford analysis, and for the inhomogeneous Cauchy-
Riemann system of quaternion and Clifford analysis in ellipsoid.

In 2011, Koriyama and No6no [4] gave three regularities (HK-holomorphy, HF-
holomorphy, H,-holomorphy) of octonionic functions based on holomorphic mappings
in a domain in C*. Naser [5] and Néno [6, 7] gave some properties of quaternionic hyper-
holomorphic functions. For any complex harmonic function f; in a domain of holomorphy
D in C?, we can find a function f; such that f; + f,j will be a function hyperholomorphic
in D and the Cauchy theorem of hyperholomorphic functions in quaternion analysis. The
aim of this paper is to define hyperholomorphic functions with octonion variables in C*
and investigate the properties of the hyperholomorphic functions of octonion variables.
We give the condition of harmonicity in C*. Then for any complex-valued functions gi(z)
and g (z) satisfying the condition of harmonicity in a pseudoconvex domain € in C*, we
can find hyper-conjugate harmonic functions gs(z) and g4 (z), respectively, on Q2 such that
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2(2) = @1(2) + @2(2)ex + g3(z)es + ga(2)es is a hyperholomorphic function on Q. Also, we
investigate the Cauchy theorem of hyperholomorphic functions in octonion analysis.

2 Preliminaries
The field © = C* of octonions

7
z=xo+Ze,~xi, x:(i=0,...,7)€R (1)
i=0

is an eight-dimensional non-commutative and non-associative R-field generated by eight
base elements ey, 1, €2, €3, €4, €5, e and e; with the following non-commutative multipli-

cation rules:

e =1, eiej = —eje;, eieiex =eieer) (#j#ki#0,j#0,k#0),
ejey =e3, €e3€5 = €g, ece7 = €y, €164 = €5,

€567 = €y, €266 = €4, €q67 = €3.

The element e, is the identities of O and e, identifies the imaginary unit /1 in the C-
field of complex numbers. An octonion z given by (1) is regarded as z = z; + zpey + z3€4 +
z4es € O, where z; := xg + e1x1, 23 := X + €1X3, 23 := X4 + e1x5 and z4 := X¢ + €1x7 are complex
numbers in C. Thus, we identify O with C*.

For the equation z° + 8 = 0 in the complex plane C, the three solutions are —2, 1 + +/3i,
1-+/3iinC.

In the octonion O, the equation has solutions whose forms are as follows:

z=a+be, + cey + des + eey + fes + geg + he;  (a,b,c,d,e,f,g,h €R).

Then the equation satisfies z> = (a® — 3ab* - 3ac? — 3ad* - 3ae® — 3af? — 3ag® — 3ah?) +
(3a%b — b® — bc? — bd* — be? — bf? — bg* — bh?)e; + (3a’c — b*c — ¢ — cd* — ce® — ¢f? -
cg? — ch®)ey + (3a’d — b*d — c*d — d® — de? — df* — dg* — dh*)e; + (3a’e — b*e — c*e — d*e -
e —ef? —eg? — eh)ey + (3a>f — b*f — *f — d*f — Xf —f3 — fg® — fh2)es + (3a’g — bPg -
clg —d*g - g — frg — g — gh)es + (3a’h — b*h — *h — d*h — &2l — f*h — g%h — h3)es.
That is, a® — 3ab® — 3ac® — 3ad® — 3ae* — 3af? — 3ag® — 3ah* = -8, 3a’b — b® — bc* — bd? —
be* — bf? — bg?> —bh* = 0, 3a’c — b*c — ¢ — cd? — ce* — ¢f? — cg® — ch® = 0, 3ad — b*d -
cld — d® — de* — df? — dg® — dh? = 0, 3a’e — b’e — c’e — d*e — &® — ef? — eg? — eh? = 0,
3af - U°f —Cf ~d’f —&f —f° —fg’ - fn* = 0,3a’g ~ Vg - g -d’g — g~ fPg - & -
gh* = 0, 3a’h — b*h — 2h — d*h — e*h — f?h — g*h — h® = 0. This means that the equation

has infinitely many solutions
z=1+ be; + ce; + des + eeq + fes + geg + he;
withb? + > +d> + & +f2 +g> +h?> =3in O.

For two octonions z = ZLO ex; and w = ZLO e;y;, the inner product (z, w) is defined as

follows:

7
(Z; W) = inyi'
i=0
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Also, the octonionic conjugation z*, the absolute value |z| of z and an inverse z™! of z in
O are defined, respectively, by

7 %
. z
* -1
Z=xo- ) exi,  ld=vIal+|nl+ s+ lal? oz =g @70
i=1

Thus, the octonion z € O and the octonion conjugation z* € O have the following forms:
Z=X0 te1X1 + €xXy + e3X3 + €4X4 + €5X5 + €cXg + €7X7 =21 + 2262 + 2364 + Z4€¢
and
. _
Z =X — €1X1 — €2X) — €3X3 — €4X4 — €5X5 — €6Xe — €7X7 = Z1 — 22€) — Z3€4 — Z4€6;

where z; = xg + e1x1, 22 = X3 + €1%3, 23 = X4 + e1x5 and z4 = xg + €1%7.
We use the following differential operators:

a a . 0 d
Dy=—-e2—, D,=—+e—,
0z 0z, 0z; 0z3
a 0 0 0
Dg=—-er—, Dﬂ:—_+€2—_,
0z3 0Za 0z3 0z

where 9/0z;, 3/97; (j = 1,2, 3,4) are usual differential operators used in complex analysis.
And we use the following octonionic differential operators:

D:=Dy—esDy,  D*:=D, +eyDy.
The operator

02 02 92 02
= — + — + — + —
321321 822322 823 323 824324
1 ( 02 02 02 02 02 02 02 02
=l sttt sttt + —
4\ 0x%  Ox?  OxF Ox3  Oxf  OxZ  Ox  Ox2

DD*

is the usual complex Laplacian A.

3 Some properties of hyperholomorphic functions on O
Let 2 be an open set in C*. The function g(z) is defined by the following form in Q with
value in O:

2(2) = @1(2) + @(2)es + g3(2)es + ga(2)es = {g1(2) + g3(2)es} + {@2(2) + ga(2)es }es,
where z = (21,23, 23,24) and g1(z), g2(2), g3(z) and g4(z) are complex-valued functions.

Definition 3.1 Let 2 be an open set in C*. A function g(z) is said to be L(R)-
hyperholomorphic in 2 if the following two conditions are satisfied:

(a) gk(z) (k=1,2,3,4) are continuously differential functions in 2, and
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D'g=0 (gD*=0) inQ. (2)

When we deal with an L-hyperholomorphic function g(z) in  C C*, for simplicity, we
often say that g(z) is a hyperholomorphic function in Q C C*.

Equation (2) is applied to g(z) as follows:

*

D*g = (D, +esDy)(¢1(2) + @2(2)es + gs(2)es + gal2)ec)
= (

D,g1 - Dsgs) + (D, — Dpga)es

+(D,g3 + Dpgi)ea + (Dyga + Dpgs)es.
If the following equations:
D,&1=Dpgs,  D,&=Dygi,  D,gs=-Dpgi,  D,gu=-Ds& 3)

are satisfied, the function g(z) is a hyperholomorphic function in 2. The equations in (3)
are the corresponding o-Cauchy-Riemann equations in C*.

Remark 3.2 We redefine equations (3) as follows:

o6 _9g  d& 0 O & g 0%

071 0z3 0z 074 071 0z3 0z, 0z4 @

0 & & & 0 0m 4 &

0z 0z3 0z,  0z4 0z 0dzs 0z, 07z
We call that equations (4) are the condition of harmonicity.
Remark 3.3 We redefine equations (4) in R® as follows:

8140 8141 8M4 8u5 8u1 Buo 8u5 8M4

— - — - —+ — =0, — t+t—+— +—=0,

8x0 8.761 8x4 8x5 3960 8.761 3964 8x5

8110 Bul 8u4 8%5 8u1 8110 8u5 8M4

— - —+ —+ — =0, — + — - —+ — =0,

0xy 0x3 0xX¢ 0X7 0xy Ox3 Oxg  0x7

duy, ouz OJdug Ouy dus 0up Jdu; Oug

— - — —— + — =0, — +—+ —+ —=0,

896() 8961 8964 3965 8360 3961 8964, 8965

ouy, Ouz Oug Ouy ous Jouy Ju; Jug

— - —+ —+ —=0, — +t— - —+ — =0,

SXQ 8963 3966 8x7 3962 ax;g 3.766 8967

8144 8u5 8140 aul 8145 8144, 8141 8140

— - —+ —-—=0, — t——-— - —=0,

axo 8x1 3964 8965 ax() 8961 8x4 8x5

8M4 8u5 8M0 8u1 8u5 81/{4 8u1 au()

_— - — - —=0, — +—+ — - —=0,

8x2 8963 8x6 8.767 3962 8.763 8x6 8x7

8116 8M7 abtz 8u3 8M7 8M6 3L£3 8112

— - — +——-—=0, — t— ———-—=0,

dxg 0x1 0xg 0Xs dxg 0dx1  0xg 0xs

dueg Ouy; Oouy Jdus ou; Oug ouz Ouy

—_—— - — - — =0, — t—+ — - —=0,

8962 8963 8366 8x7 8x2 8963 3966 8967
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where ¢ = ug + ejus, go = Uy + e1us3, g3 = us + e1us and gy = ug + ey for real-valued func-
tions u; (i=0,...,7).

Lemma 3.4
(i) If the function g(z) is hyperholomorphic in an open set 2 in C*, then the functions
81(2), ©2(2), g3(2) and gu(z) are of class C* in Q.
(ii) If the function g(z) satisfies the condition of harmonicity in an open set Q in C*, then
the functions g1(z), g2(2), g3(z) and g4(z) are harmonic in Q.

Proof We have

3’ 3°g 3’ ’a
+ + +
le 32_1 822 85 823 85 3Z4 35

9 Bg_3+8 a§+a 8g_3+8 ogs
" 9z \ 0z3 9z \ 0za) 0z3\ 0z 9z2 \ 92y

:0,

DD*gl =

and the functions g», g5 and g4 are proved by a similar method as in the proof of the case
of g1. And, by (i), gi(2) (j = 1,2,3, 4) are of class C* functions in . O

Definition 3.5 Let 2 C C”" be an open set with a C2 boundary. Let = {z; p(z) < 0}, where
p is in C? in a neighborhood of © and grad p # 0 on b2. Then 2 is pseudoconvex if

n
32
Z %(z)ij_k >0,
= Zj 02k

for all z € bQ and w € C" satisfying } ' % (2)w; = 0.

=1;;_z],

Consider an automorphism y:

(21,22, 23, 84) = ¥ (21,22, 23, 24) := (21,22, 23, Z4)

of C*. A domain  in C* =~ O is said to be pseudoconvex with respect to the complex
variables zi, 2y, 23,Za, if ¥(R2) is a pseudoconvex domain of the space C* of four complex

variables z1, 23, z3, s4 in the sense of complex analysis.

Theorem 3.6 Let Q2 be a domain in C* = O, which is a pseudoconvex domain with respect
to the complex variables z1,z,,2z3,z4 and let gi(z) and g,(z) be complex-valued functions of
class C* on Q satisfying the condition of harmonicity (4). Then there exist hyper-conjugate
harmonic functions g3(z) and g,(z), respectively, of class C* on Q such that g(z) is a hyper-
holomorphic function on Q.

Proof We consider the 1-forms and the differential operator on y (2):

oo g1 ag1 g
Yrim =B gy 28 g S8 28 g,
9z3 97s 9z 02y
gy dgy gy g2
_ﬁda_,_ i_zdz_2+ ﬁdz_—ﬁdm,
923 072 0z 02y

Yy =
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and

d d a
8=—dz_1+—_d5+—

3
dzs + —dz,.
0z 0z 0z oz

We operate the operator § from the left-hand side of the 1-forms ; and ¥, on y(2):

%g 0%g 0%g %g _
8y = dzi AN d dzi N d
4 <az—laz * 858z3> andzmt (82_1821 " az—gazg) anazs

3% %gr % 0%
+ |- _gl + & dzi Ndzg + _gl - _gl_ dzy Ndzz
8z1 322 324 3Z3 322 321 823 324

9% 8% 3% 3%
+1 - _g1 - gl_ dzo Ndzg + | - _gl - & dzs N dza,
8Z2 322 8Z4 324 3Z3 322 824 321

and

P m o m o (%@ ;)\
8y = dzi N d dzi AN d
v (az—laa * az—zaz3> andzmt (aaaz1 ¥ aaa@) anaz

g %% %% %% _
- dzi N d - dzy Nd;
¥ ( 0707 | 0z 823> andzmy (azazl azaa) “anazs

Ry ) Ry )
+( L2 s )dEAdz4+(— L2 2 >d§/\dz4.

0Z;0zy 924074 9Z3 02y 02407

By the condition of harmonicity (4), all coefficients vanish. From Hérmander [8], the §-
closed forms ¥ and v, of z1, 25, 23, 24 are §-exact forms on y(£2). Since Q2 is a pseudocon-
vex domain, there exist hyper-conjugate harmonic functions g;(z) and ga(z) of class C* on
Q with 9-closed forms y 'y = 5g3(z) and y My, = §g4(z) on § of 2,2, 23,54 are 9-exact
(0,1)-forms on 2 such that g(z) is a hyperholomorphic function on Q (see Krantz [9]).

O

Theorem 3.7 Let Q be a domain in C* = O, which is a pseudoconvex domain with re-
spect to the complex variables z1,z,23,z4 and let J1(z) = g1(2) + g3(z)es be a complex-
valued function of class C* on Q satisfying the condition of harmonicity (4). Then there
exists a hyper-conjugate harmonic function J,(z) = g(z) + ga(2)es of class C* on Q such that

g(2) = J1(2) + J2(2)ey is a hyperholomorphic function on Q.

Proof We consider the 1-form and the differential operator on y (£2):

0ga 0% 0gs 0%
V= (§—£64>dz+<—i_4+£€4)d2_2

323 BZ?, 324 Z4
0gs 0%, __ (0gs 0%
L. 1 22,)d
( 321 321 * 3t aZQ 822 e “

and

d ) ad ad
5:8—_dz_1+—_d5+ —_dZ_3+—dZ4.

21 0z, 0z3 024
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We operate the operator § from the left-hand side of the 1-form v on y(L2):
g P e m o
Sy =11- - dzind
v {( T aaazs) ! (azaa ' 32_2323>e4} ande
0%gs 0%g %g 02
. _g4 _ _g4 + _gz & e\ dz A dT
8Z1 821 323 323 321 821 823 323
82
g4 + | - _gZ dZ1 VAN dZ4
3Z1 3Z2 324 8Z3 3Z1 aZQ 824 323

+ ( g4 )+<a >e4}d2/\d5
0Z7 321 323 324 322 821 823 824

0°gs %%,
g4 + ey dzy Adzy
322 322 3Z4 824 322 322 824 324
9% 7] D)
+ _g4 + g4 +| - _g2 - £ 4 ¢ dZz A dzy.
823 322 324 321 323 822 324 321

By the same method as the proof of Theorem 3.6, our result is proved. d

Theorem 3.8 Let g(z) be a hyperholomorphic function in a domain G of O and let

T=dzsn ANdzy Ndzz ANdzy Ndzy ANdzz Adzy
+dzi Ndzy ANdzs Ndzy ANdzy Adzs N dzy
—dzy Ndzo Ndzy Ndzy AN dzy N dzs A dzge,

—dzy Ndzy Ndzz Adzy Ndzy N dzy A dzzey.

Then for any domain Q C G with smooth boundary b<2,

/bgrgzo, (5)

where tg is the octonion product of the form t on the function g(z).

Proof Let

Ty = dzy Adzy N dzs A dza Adzy A dzs A dzs,
Ty = dzy ANdzy N dzg A dzy A dz A dzs N dza,
1) =dzy Adzy Ndzy A dz Adzy A dZs A dzg,

Ty =dz ANdzy Ndzs Ndzy ANdzi A dzy A dzs.
By the rule of octonion multiplications,

Tg = (T + T2) — T3)€a — T(a)€a)(g1 + L2€2 + g3€4 + Gues)
=T + Q1T — 417384 — &1 T(4)€4

+@T)er + L7282 — 27(3)€6 — &2T(4)€6
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+g3T)es + g3T(2)€s + Z3T(3) + £3T(4)

+8aT)€6 + ZaT()€6 + ZaT(3)€2 + ZaT(4)€-

Hence,

a a ags 0g3 a a 0gs 0gs
d(zrg) = (—i_l—i_l+§—i_3>d\/+ (_i_z_i_2+ﬁ_i_4)d‘/62
321 322 823 824, 821 322 323 824

dgy dg 0 a dg, dg, 0 a
+ _£+i_l_§_§ dVe4+ _&_'_i_z_ﬁ_ﬁ dVeé’
323 824 821 823 824 821

where dV =dz; A dzy A dzs A dzy A dzi A dzy A dzs A dzg, and by the condition of har-
monicity (4), d(tg) = 0. By Stoke’s theorem, we have

/bgrnggd(rg)zo. O

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Acknowledgements

The second author was supported by the Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0009646), and by the Research Fund
Program of Research Institute for Basic Sciences, Pusan National University, Korea, 2012, Project No. RIBS-PNU-2012-101.

Received: 6 November 2012 Accepted: 26 January 2013 Published: 1 March 2013

References

1. Dentoni, P, Sce, M: Funzioni regolari nell'algebra di Cayley. Rend. Sem. Mat. Univ. Padora 50, 251-267 (1973)

2. Kajiwara, J, Li, XD, Shon, KH: Regeneration in complex, quaternion and Clifford analysis. In: Proc. the 9th International
Conf. on Finite or Infinite Dimen, Hanoi, pp. 287-298. Complex Analysis and Appl., vol. 9. Kluwer Academic, Dordrecht
(2004)

3. Kajiwara, J, Li, XD, Shon, KH: Function spaces in complex and Clifford analysis, inhomogeneous Cauchy Riemann
system of quaternion and Clifford analysis in ellipsoid. In: Proc. the 14th International Conf. on Finite or Infinite
Dimen, Hue, pp. 127-155. Complex Analysis and Appl., vol. 14. Hue Univ., Vietnam (2006)

4. Koriyama, H, Nono, K: On regularities of octonionic functions and holomorphic mappings. Bull. Fukuoka Univ. Edu.
Part Il 60, 11-28 (2011)

5. Naser, M: Hyperholomorphic functions. Silberian Math. J. 12, 959-968 (1971)

6. Nono, K: Hyperholomorphic functions of a quaternion variable. Bull. Fukuoka Univ. Edu. 32, 21-37 (1983)

7. Nono, K: Characterization of domains of holomorphy by the existence of hyper-conjugate harmonic functions. Rev.
Roum. Math. Pures Appl. 31(2), 159-161 (1986)

8. Hormander, L: An Introduction to Complex Analysis in Several Variables. North-Holland, Amsterdam (1966)

9. Krantz, SG: Function Theory of Several Complex Variables. Am. Math. Soc., Providence (2001)

doi:10.1186/1029-242X-2013-77
Cite this article as: Lim and Shon: Hyperholomorphic functions and hyper-conjugate harmonic functions of
octonion variables. Journal of Inequalities and Applications 2013 2013:77.



http://www.journalofinequalitiesandapplications.com/content/2013/1/77

	Hyperholomorphic functions and hyper-conjugate harmonic functions of octonion variables
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Some properties of hyperholomorphic functions on O
	Competing interests
	Authors' contributions
	Acknowledgements
	References


