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Abstract

Alegre and Marin [C. Alegre, J. Marin, Topol. Appl., 203 (2016), 32–41] introduced the concept of modified ω-distance
mappings on a complete quasi metric space in which they studied some fixed point results. In this manuscript, we prove some
fixed point results of nonlinear contraction conditions through modified ω-distance mapping on a complete quasi metric space
in sense of Alegre and Marin. c©2017 All rights reserved.
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1. Introduction

The Banach contraction principle is one of the main results in fixed point theory, which asserts that
every contraction in a complete metric space has a unique fixed point. Subsequently, a large number of
generalizations of Banach’s contraction theorem is obtained by many authors. For more details we refer
the readers to [1–4, 7–11, 16–19, 21].

A self-mapping T on a metric space (X,d) is called Kannan contraction if there is a k ∈ [0, 1
2) such that

d(Tx, Ty) 6 k[d(x, Tx) + d(y, Ty)] , ∀x,y ∈ X.

Kannan [14] proved that every Kannan contraction in a complete metric space has a unique fixed point.
It is worth mentioning that Kannans theorem is an important result since it characterizes the metric
completeness (see [20]).

The concept of quasi metric spaces was introduced by Wilson [22].

∗Corresponding author
Email addresses: imnuseir@just.edu.jo (Inam Nuseir), wshatanawi@psu.edu.sa (Wasfi Shatanawi), swasfi@hu.edu.jo

(Wasfi Shatanawi), imabuirwaq@just.edu.jo (Issam Abu-Irwaq), anwerbataihah@gmail.com (Anwar Bataihah)

doi:10.22436/jnsa.010.10.20

Received 2017-03-22

http://dx.doi.org/10.22436/jnsa.010.10.20


I. Nuseir, W. Shatanawi, I. Abu-Irwaq, A. Bataihah, J. Nonlinear Sci. Appl., 10 (2017), 5342–5350 5343

Definition 1.1 ([22]). Let X be a nonempty set and d : X×X→ [0,∞) be a given function which satisfies

(1) d(x,y) = 0 if and only if x = y;

(2) d(x,y) 6 d(x, z) + d(z,y) for any points x,y, z ∈ X.

Then d is called a quasi metric on X and the pair (X,d) is called a quasi metric space.

It is clear that every metric space is a quasi metric space, but the reverse is not necessarily true.
A quasi metric d induces a metric dm as follows:

dm(x,y) = max{d(x,y),d(y, x)}.

The convergence and completeness in a quasi-metric space are defined as follows.

Definition 1.2 ([13]). Let (X,d) be a quasi-metric space, (xn) be a sequence in X, and x ∈ X. Then the
sequence (xn) converges to x if lim

n→∞d(xn, x) = lim
n→∞d(x, xn) = 0.

Definition 1.3 ([13]). Let (X,d) be a quasi-metric space and (xn) be a sequence in X. Then

(1) We say that the sequence (xn) is left-Cauchy if for every ε > 0, there is a positive integer N = N(ε)
such that d(xn, xm) 6 ε for all n > m > N.

(2) We say that the sequence (xn) is right-Cauchy if for every ε > 0 there is a positive integer N = N(ε)
such that d(xn, xm) 6 ε for all m > n > N.

Definition 1.4 ([13]). Let (X,d) be a quasi-metric space and (xn) be a sequence in X. We say that the
sequence (xn) is Cauchy if for every ε > 0 there is positive integer N = N(ε) such that d(xn, xm) 6 ε for
all m,n > N; that is (xn) is a Cauchy sequence if and only if it is left and right Cauchy.

Definition 1.5 ([13]). Let (X,d) be a quasi-metric space. We say that

(1) (X,d) is left-complete if every left-Cauchy sequence in X is convergent;

(2) (X,d) is right-complete if every right-Cauchy sequence in X is convergent;

(3) (X,d) is complete if every Cauchy sequence in X is convergent.

A modified ω-distance (shortly mω-distance) mapping on quasi metric space is given by Alegre and
Marin [5] as follows.

Definition 1.6 ([5]). A mω-distance on a quasi metric space (X,d) is a function q : X × X → [0,∞)
satisfying the following conditions:

(W1) q(x,y) 6 q(x, z) + q(z,y) for all x,y, z ∈ X;

(W2) q(x, .) : X→ [0,∞) is lower semi-continuous for all x ∈ X;

(mW3) for each ε > 0 there is δ > 0 such that if q(y, x) 6 δ and q(x, z) 6 δ then d(y, z) 6 ε.

Definition 1.7 ([5]). A strong mω-distance on a quasi metric space (X,d) is a mω-distance q : X× X →
[0,∞) satisfying the following condition:

(mW2) q(., x) : X→ [0,∞) is lower semi-continuous for all x ∈ X.

Remark 1.8 ([5]).

1. Every quasi metric d on X is an mω-distance on the quasi metric space (X,d).
2. In general, a quasi metric d on X need not to be a strong mω-distance on the quasi metric space

(X,d).

For more details on mω-distance, we refer the readers to [5] and references therein.
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Definition 1.9 ([15]). The function ϕ : [0,∞)→ [0,∞) is called an altering distance function if the follow-
ing properties are satisfied:

(1) ϕ is continuous and nondecreasing function;

(2) ϕ(t) = 0 if and only if t = 0.

Henceforth, we denote the class of all altering distance functions by Ψ.

Definition 1.10 ([12]). Let S be the class of all functions α : IR+ → [0, 1) that satisfies the following
implication

α(tn)→ 1 =⇒ tn → 0.

Geraghty in [12] proved the following fixed point result.

Theorem 1.11. Let (X,d) be a complete metric space and T : X→ X. Let α ∈ S such that

d(Tx, Ty) 6 α(d(x,y)) d(x,y), ∀x,y ∈ X.

Then T has a unique fixed point.

Recently Amini-Harandi and Emami characterized Geraghty’s theorem in the setting of partially or-
dered metric spaces as follows.

Theorem 1.12 ([6]). Let (X,d,�) be a partially ordered complete metric space. Let T : X → X be an increasing
mapping such that there is x0 ∈ X with x0 � Tx0. Suppose that there is α ∈ S such that

d(Tx, Ty) 6 α(d(x,y)) d(x,y)

for all x,y ∈ X with x � y. Assume that either T is continuous or X is such that if an increasing sequence (xn)
converges to x, then xn � x for each n > 1. Besides if for all x,y ∈ X, there exists z ∈ X which is comparable to x
and y, then T has a unique fixed point.

2. Main result

In this section, we present and prove some lemmas that will be used in the sequel.

Lemma 2.1. Let (X,d) be a quasi metric space equipped with an mω-distance p. Let (xn) be a sequence in X and
(αn), (βn) be sequences in [0,∞) converging to zero and let (xn) be a sequence in X. Then we have the following:

(1) If p(xn, xm) 6 αn for any m,n ∈ IN with m > n, then (xn) is a right Cauchy sequence in (X,d).

(2) If p(xn, xm) 6 βm for any m,n ∈ IN with n > m, then (xn) is a left Cauchy sequence in (X,d).

Proof.

(1) Assume that p(xn, xm) 6 αn, m > n. Then for each ε > 0 we can find N ∈ IN such that p(xn, xn+1) 6
αn 6 ε

2 and p(xn+1, xm) 6 αn+1 6 ε
2 , for all m > n > N. Thus by the definition of mω-distance we have

d(xn, xm) 6 ε for all m > n > N. Hence (xn) is right Cauchy sequence.

(2) Assume that p(xn, xm) 6 βm, n > m. Then for each ε > 0, we can find N ∈ IN such that p(xn, xn−1) 6
βn−1 6 ε

2 and p(xn−1, xm) 6 βm 6 ε
2 , for all n > m > N. Thus by the definition of mω-distance, we

have d(xn, xm) 6 ε, for all n > m > N. Hence (xn) is left Cauchy sequence.

Remark 2.2. The above lemma implies that if lim
n,m→∞p(xn, xm) = 0, then (xn) is a Cauchy sequence in

(X,d).
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Lemma 2.3. Let (X,d) be a quasi metric space equipped with an mω-distance p. Let (xn) be a sequence in X such
that

lim
n→∞p(xn, xn+1) = lim

n→∞p(xn+1, xn) = 0. (2.1)

If (xn) is not a Cauchy sequence, then there exist ε > 0 and two sequences (nk) and (mk) of natural numbers such
that

lim
k→∞p(xnk , xmk

) = lim
k→∞p(xnk+1, xmk+1) = ε.

Proof. Suppose that (xn) is not a Cauchy sequence. Without loss of generality, we assume that (xn) is
not a right Cauchy sequence. Then there exist ε > 0 and two subsequences (nk) and (mk) of the natural
numbers such that

p(xnk , xmk
) > ε, mk > nk, (2.2)

where mk is chosen as the smallest index satisfying (2.2). This means that

p(xnk , xmk−1) < ε.

From (2.2), we have

ε 6 p(xnk , xmk
) 6 p(xnk , xmk−1) + p(xmk−1, xmk

) < ε+ p(xmk−1, xmk
).

Taking the limit as k→∞ and using (2.1), we get

lim
k→∞p(xnk , xmk

) = ε. (2.3)

Also,

p(xnk , xmk
) − p(xnk , xnk+1) − p(xmk+1, xmk

) 6 p(xnk+1, xmk+1)

6 p(xnk+1, xnk) + p(xnk , xmk
) + p(xmk

, xmk+1).

Let k go to infinity and using (2.1) and (2.3), we reach

lim
k→∞p(xnk+1, xmk+1) = ε.

In order to facilitate our work, we introduce the following definition.

Definition 2.4. Let (X,d) be a quasi metric space equipped withmω-distance p. A self-mapping T : X→ X

is called (ϕ,α)-Geraghty contraction if there exist ϕ ∈ Ψ and α ∈ S such that

ϕp(Tx, Ty) 6 α(p(x,y)) ϕp(x,y), ∀x,y ∈ X.

In the next theorem, we prove a fixed point result of Geraghty’s type contraction condition in a
complete quasi metric space through modified ω-distance mappings.

Theorem 2.5. Let (X,d) be a complete quasi metric space and p be an mω-distance on X and T : X → X be a
(ϕ,α)-Geraghty mapping. Assume that one of the following conditions holds true:

(1) If u 6= Tu, then inf{p(x,u) + p(Tx,u) : x ∈ X} > 0.

(2) T is continuous.

Then T has a unique fixed point.

Proof. Let x0 ∈ X. Define a sequence xn = Txn−1, n ∈ IN. Consider n ∈ IN. From the contractive
condition, we have

ϕp(xn, xn+1) = ϕp(Txn−1, Txn)
6 α(p(xn−1, xn)) ϕp(xn−1, xn).

(2.4)

Since α(t) < 1 for all t > 0, then ϕp(xn, xn+1) < ϕp(xn−1, xn). As ϕ is nondecreasing, we have
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p(xn, xn+1) < p(xn−1, xn). Thus the sequence (p(xn, xn+1) : n ∈ IN) is a nonnegative decreasing se-
quence. Hence there is r > 0 such that lim

n→∞p(xn, xn+1) = r. Suppose that r > 0. By (2.4), we have

ϕp(xn, xn+1)

ϕp(xn−1, xn)
6 α(p(xn−1, xn)).

By taking the limit as n→∞ we get lim
n→∞α(p(xn−1, xn)) = 1. Since α ∈ S, then r = 0 a contradiction. So,

lim
n→∞p(xn, xn+1) = 0.

Similarly, we can show that
lim
n→∞p(xn+1, xn) = 0.

Now, our claim is to show that (xn) is a Cauchy sequence in (X,d). Assume to the contrary that (xn)
is not a Cauchy sequence. Due to Lemma 2.3, there exist ε > 0 and two sequences (nk) and (mk) of
natural numbers such that

lim
k→∞p(xnk , xmk

) = lim
k→∞p(xnk+1, xmk+1) = ε.

Substitute x = xnk and y = xmk
in the contractive condition, we obtain that

ϕp(xnk+1, xmk+1) = ϕp(Txnk , Txmk
)

6 α(p(xnk , xmk
)) ϕp(xnk , xmk

).

Therefore,
ϕp(xnk+1, xmk+1)

ϕp(xnk , xmk
)

6 α(p(xnk , xmk
)).

Taking the limit as k → ∞, we deduce lim
k→∞α(p(xnk , xmk

)) = 1 and so lim
k→∞p(xnk , xmk

) = 0 a contra-

diction since ε > 0. Hence (xn) is a Cauchy sequence. Thus there is u ∈ X such that (xn) converges to
u. Since lim

n,m→∞p(xn, xm) = 0, then for a given ε > 0 there is k ∈ IN such that p(xn, xm) 6 ε
2 , for all

n,m > k. By the lower semi continuity of p we have

p(xn,u) 6 lim
l→∞ infp(xn, xl) 6

ε

2
, ∀n > k.

Now, assume that (1) holds true if u 6= Tu, then

inf{p(x,u) + p(Tx,u) : x ∈ X} 6 inf{p(xn,u) + p(Txn,u) : n ∈ IN}

= inf{p(xn,u) + p(xn+1,u) : n ∈ IN}

6 ε

for all ε > 0 a contradiction. Hence Tu = u.
If (2) holds, then the continuity of T implies that Tu = u.
To prove the uniqueness, assume that there is v ∈ X such that Tv = v. By the contractive condition, we

have

ϕp(u, v) = ϕp(Tu, Tv)
6 α(p(u, v)) ϕp(u, v).

As α ∈ S, we have ϕp(u, v) = 0 and so p(u, v) = 0.
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Also,

ϕp(u,u) = ϕp(Tu, Tu)
6 α(p(u,u)) ϕp(u,u).

Following the same argument, we obtain p(u,u) = 0. Therefore by (mW3) of the definition of mω-
distance, we get u = v.

Theorem 2.6. Let (X,d) be a complete quasi metric space and p be a strong mω-distance on X and T : X → X be
a (ϕ,α)-Geraghty mapping. Then T has a unique fixed point.

Proof. Following the proof of Theorem 2.5 step by step, we can show that lim
n,m→∞p(xn, xm) = 0. So (xn) is

a Cauchy sequence in the complete quasi metric space (X,d). Thus there is u ∈ X such that (xn) converges
to u.

Given ε > 0. Since lim
n,m→∞p(xn, xm) = 0, then there is N ∈ IN such that p(xn, xm) 6 ε, for all

n,m > N. So, by the lower semi continuity of p (W2) and (mW2), we have

p(xn,u) 6 lim
j→∞ infp(xn, xj) 6 ε, ∀n > N,

p(u, xn) 6 lim
l→∞ infp(xl, xn) 6 ε, ∀n > N.

Now, the contraction condition yields:

ϕp(Tu, xn+1) = ϕp(Tu, Txn)
6 α(p(u, xn)) ϕp(u, xn).

Since α(t) < 1 for all t > 0 and ϕ is nondecreasing, then p(Tu, xn+1) < p(u, xn). Hence, p(Tu, xn+1) < ε,
for all n > N. Thus, by (mW3) of the definition of mω-distance, we have d(Tu,u) = 0 and so Tu = u. The
proof of the uniqueness is the same as of the proof of Theorem 2.5.

Definition 2.7. Let Φ be the set of all continuous functions φ : [0,∞) → [0,∞) such that the following
properties are satisfied:

(1) φ(t) < t, ∀t ∈ (0,∞);
(2) φ(t) = 0 if and only if t = 0.

Definition 2.8. Let (X,d) be a quasi metric space equipped withmω-distance p. A self-mapping T : X→ X

is called (λ,φ)-Kannan contraction if there are λ ∈ [0, 1
2) and φ ∈ Φ such that

p(Tx, Ty) 6 λ [φp(x, Tx) +φp(y, Ty)], ∀x,y ∈ X.

Next, we move on to study some fixed point results of (λ,φ)-Kannan type contractions.

Theorem 2.9. Let (X,d) be a complete quasi metric space and p be an mω-distance on X and T : X → X be
(λ,φ)-Kannan contraction. Assume that one of the following conditions holds true:

(1) If u 6= Tu, then inf{p(x,u) + p(Tx,u) : x ∈ X} > 0.
(2) T is continuous.

Then T has a unique fixed point.

Proof. Let x0 ∈ X and define a sequence xn = Txn−1, n ∈ IN.
Let n ∈ IN. From the contractive condition, we have

p(xn, xn+1) = p(Txn−1, Txn)
6 λ [φp(xn−1, xn) +φp(xn, xn+1)]

< λ[p(xn−1, xn) + p(xn, xn+1)].
(2.5)

Thus,
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p(xn, xn+1) <
λ

1 − λ
p(xn−1, xn).

Since λ
1−λ < 1, the sequence (p(xn, xn+1) : n ∈ IN) is a nonnegative decreasing sequence. Hence there is

r > 0 such that lim
n→∞p(xn, xn+1) = r. From (2.5), we have

p(xn, xn+1) 6 λ [φp(xn−1, xn) +φp(xn, xn+1)].

By taking the limit as n→∞ we get r 6 λ[φ(r) +φ(r)] = 2λφ(r) < φ(r). Thus φ(r) = 0. Therefore,

lim
n→∞p(xn, xn+1) = 0.

Also, we obtain
lim
n→∞p(xn+1, xn) = 0.

Due to Lemma 2.3, if (xn) is not a Cauchy sequence, then there exist ε > 0 and two sequences (nk)
and (mk) of natural numbers such that

lim
k→∞p(xnk , xmk

) = lim
k→∞p(xnk+1, xmk+1) = ε.

By substituting x = xnk and y = xmk
in the contractive condition, we obtain that

p(xnk+1, xmk+1) = p(Txnk , Txmk
)

6 λ [φp(xnk , xnk+1) +φp(xmk
, xmk+1)].

Taking the limit as k → ∞, we get ε 6 λ[0 + 0] = 0 a contradiction, because ε > 0. Hence (xn) is a
Cauchy sequence. Therefore, there is z ∈ X such that (xn) converges to z.

Since lim
n,m→∞p(xn, xm) = 0, then for each ε > 0 there is N ∈ IN such that

p(xn, xm) 6 ε, ∀n,m > N.

By the lower semi continuity of p, we have

p(xn, z) 6 lim
l→∞ infp(xn, xl) 6 ε, ∀n > N.

Now, assume that (1) holds true if z 6= Tz, then

inf{p(x, z) + p(Tx, z) : x ∈ X} 6 inf{p(xn, z) + p(Txn, z) : n ∈ IN}

= inf{p(xn, z) + p(xn+1, z) : n ∈ IN}

6 2ε

for each ε > 0 a contradiction. Hence Tz = z.
Also, if (2) holds, then the continuity of T implies that Tz = z.
To prove the uniqueness, first we show that for x ∈ X if Tx = x, then p(x, x) = 0.
Assume p(x, x) > 0. The contractive condition yields

p(x, x) = p(Tx, Tx) 6 λ[φp(x, x) +φp(x, x)]
< λ[p(x, x) + p(x, x)]
< p(x, x),

a contradiction. Thus p(x, x) = 0.
Now, assume that there is v ∈ X such that Tv = v. By the contractive condition, we have

p(v, z) = p(Tv, Tz) 6 λ[φp(v, Tv) +φp(z, Tz)]
= λ[φp(v, v) +φp(z, z)]
= 0.

Therefore, by (mW3) of the definition of mω-distance, we have u = v.
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If we consider a strong mω-distance instead of mω-distance in Theorem 2.9, then conditions (1), (2)
can be dropped.

Theorem 2.10. Let (X,d) be a complete quasi metric space and p be a strong mω-distance on X. Assume that
T : X→ X is a (λ,φ)-Kannan contraction. Then T has a unique fixed point.

Proof. Following the proof of Theorem 2.9 step by step, we can show that lim
n,m→∞p(xn, xm) = 0. So (xn) is

a Cauchy sequence in the complete quasi metric space (X,d). Thus there is z ∈ X such that (xn) converges
to z.

Given ε > 0. Since lim
n,m→∞p(xn, xm) = 0, then there is N1 ∈ IN such that p(xn, xm) 6 ε

2 , for all

n,m > N1. Thus,
p(xn, xn+1) 6

ε

2
, ∀n > N1. (2.6)

Also, by the lower semi continuity of p, (mW2), we have

p(z, xn) 6 lim
l→∞ infp(xl, xn) 6

ε

2
, ∀n > N1. (2.7)

By the triangle inequality, we get

p(z, Tz) 6 p(z, xn+1) + p(xn+1, Tz)
6 p(z, xn+1) + λ[φp(xn, xn+1) +φp(z, Tz)]
< p(z, xn+1) + λp(xn, xn+1) + λp(z, Tz).

Hence
p(z, Tz) <

1
1 − λ

p(z, xn+1) +
λ

1 − λ
p(xn, xn+1).

Now, the contraction condition yields:

p(xn+1, Tz) = p(Txn, Tz) 6 λ [φp(xn, xn+1) +φp(z, Tz)]
< λp(xn, xn+1) + λp(z, Tz)

< λp(xn, xn+1) +
λ

1 − λ
p(z, xn+1) +

λ2

1 − λ
p(xn, xn+1)

=
λ

1 − λ
[p(xn, xn+1) + p(z, xn+1)]

< p(xn, xn+1) + p(z, xn+1).

Hence, by (2.6) and (2.7), we have

p(xn+1, Tz) <
ε

2
+
ε

2
= ε, ∀n > N1.

Therefore, by (mW3) of the definition of mω-distance, we have d(z, Tz) = 0 and so z = Tz. The proof of
the uniqueness is the same as in the proof of Theorem 2.9.

Let φ : [0,∞)→ [0,∞) be defined by φ(t) = kt, k ∈ (0, 1) and use Theorems 2.9-2.10. Then we get the
following results.

Corollary 2.11. Let (X,d) be a complete quasi metric space and p be an mω-distance on X. Let k ∈ (0, 1
2) and

T : X→ X be a self-mapping such that

p(Tx, Ty) 6 k[p(x, Tx) + p(y, Ty)], ∀x,y ∈ X.

Also, assume that one of the following conditions holds true:



I. Nuseir, W. Shatanawi, I. Abu-Irwaq, A. Bataihah, J. Nonlinear Sci. Appl., 10 (2017), 5342–5350 5350

(1) If u 6= Tu, then inf{p(x,u) + p(Tx,u) : x ∈ X} > 0.

(2) T is continuous.

Then T has a unique fixed point.

Corollary 2.12. Let (X,d) be a complete quasi metric space and p be a strong mω-distance on X. Let k ∈ (0, 1
2)

and T : X→ X be a self-mapping satisfying the following condition

p(Tx, Ty) 6 k[p(x, Tx) + p(y, Ty)], ∀x,y ∈ X.

Then T has a unique fixed point.
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