

Vol. 9(10), pp. 452-457, 30 May, 2014
DOI: 10.5897/SRE2013.5790
Article Number: 0590E3044941
ISSN 1992-2248
Copyright ©2014
Author(s) retain the copyright of this article
http://www.academicjournals.org/SRE

 Scientific Research and Essays

Full Length Research Paper

Generation and simulation of new transmission control
protocol (TCP) agent over network simulator 2 (NS-2)

platforms

Bayan M. Sabbar

College of Information Engineering, Al-Nahrain University, Baghdad, Iraq.

Received 31 December, 2013; Accepted 2 April, 2014

Transmission Control Protocol (TCP) is the most popular protocol used over the wired and wireless
networks, and it still has a practical problem where the congestion control mechanism does not permit
the data stream to get complete bandwidth over the existing network links. To solve this problem, many
TCP protocols have been introduced with high speed performance. The work provided in this article is
based on using the Network Simulator 2 (NS-2) to implement a new proposed TCP called “Sumer” TCP.
The proposed TCP is based on the same characterizations of Reno TCP, such as congestion control,
sliding window and other Reno mechanisms and features.The process of creating new TCP agent over
the platforms of NS-2 requires a lot of modifications, files generation, and agent identification to make
the new agent recognizable by NS-2 resources. The proposed TCP is developed for scientist and
researchers to be easy for them to add the new mechanisms such as slow-start and congestion
avoidance with other extra features.

Key words: Transmission Control Protocol (TCP), Sumer TCP, Reno, congestion control, congestion window,
NS-2

INTRODUCTION

Transmission Control Protocol (TCP) is a basic
communication language, and a connection oriented
protocol tied with transport layer that consists of collection
of rules and procedures to control communication
between links (Abed et al., 2011a). There are many TCP
variants that modified and developed respectively with the
communications needs. Most TCP present forms include
set of algorithms built to control the congestion in critical
links of network while maintaining the network throughput.
In current years, TCP has been faced with the fast growth
in internet in parallel with the increasing demand to

transfer the media on high speed links supported TCP. In
the last years, computer networks and mobile cellular
systems have qualified incredible evolution and a lot of
computers and other user equipment’s become linked
together with most mutual protocol stack used being TCP.
Currently, it is hard to recognize the congestion control
mechanisms that are applied by different engines in
Internet. One more imperative problem is the manner that
these mechanisms are employed in diverse operating
systems (Abed et al., 2011b). The greatest universal
transport protocol involved is the TCP and in the original

Email: iraqi_man73@yahoo.com
Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attributio
License 4.0 International License

accomplishment of TCP, a very small number of variants
were done to minimalize the congestion in network path.
Additionally, TCP employment uses accumulative
confident acknowledgements and the expiration of a
retransmission timer to afford reliability based on a
modest go-back-n model. TCP implements various
techniques that use proficiently the network resources by
approximating the conditions and the characteristics of
network. Also, TCP is built on the concept of self-clocking
technique where this concept based on several
characteristics. TCP has become the key factor in
manipulating the behavior and performance of the
networks. The TCP congestion control plays a vital role in
controlling the applications that request the services over
various networks. Furthermore, the congestion control
provides the amount of traffics that can be inserted into
the network, where it overrides the behavior and the
performance of the communications processes.

TCP MODELING IN NS-2

The network simulator NS-2 is a free-access and object-
oriented with discrete-event network simulator (NS-2,
1989). NS-2 provides a structure for constructing a
network prototype and identifies data as input
parameters, analyzing data output and giving outcomes
and results. Two main reasons for the wide impact of NS-
2 are as follows, the first is because it is free, where that
fits researchers in laboratories and universities, and the
second reason is the huge range of network modules and
objects that can be implemented by NS-2 (Olsén, 2003).
This article is used to provide user interfacing that permits
the specified input of the model (Tcl scripts) to be
executed. Mostly, the elements of any network topology
in NS-2 are established as classes in object oriented
style. For TCP modeling, NS-2 offers significant support
for TCP simulating, modeling, queuing algorithms, routing
algorithms, and multicast protocols. Modeling of TCP in
NS-2 was initially based on the source code of the BSD
kernel (Berkeley Software Distribution) in the 1990s (Wei
and Cao, 2006). Later, the TCP modules in NS-2 have
extremely assisted the research teams and groups to
evaluate and investigate the behavior of TCP where that
led to the expansion in developing many congestion
control techniques. Two categories of TCP are available
in NS-2. The first category is a one way TCP, where it
uses objects with several classes on sides, sender and
receiver. On the TCP sender side, some available
classes are provided for TCP Tahoe, Newreno, Reno,
Vegas Sack, and Fack. While in the side of receiver, the
classes available for TCP are both without delayed and
with selective acknowledgements. Furthermore, other
subclasses can be derived from these provided classes to
apply the required modifications to the standard
congestion control mechanisms. The second category
includes two ways TCP, where the TCP uses objects with

Sabbar 453

the same class on sender and receiver sides. The NS-2 is
written using C++ as a programming language, with an
OTcl interpreter shell (Tcl is a script language with
Object-Oriented extensions Tcl: Tool Command
Language). Figure 1 show the code structure of TCP
Linux in NS-2 where TCP Linux is an experimented TCP
created by Wieand Cao (2006).

The whole modules include four parts, corresponding to
the four white blocks in Figure 1. The yellow blocks are
from outside source codes such as NS-2 or Linux (Wie
and Cao, 2006). TCPLinuxAgent (in tcp-linux.h and tcp-
linux.cc): this is the main component which loosely
follows the Linux implementation in packet receiving, ack
processing and congestion control. ScoreBoard1 (in
scoreboard1.h and scoreboard1.cc): this is a new packet
SACK/Loss/Retransmission control module which
combines Scoreboard-rq in NS-2 and Linux's ACK/SACK
processes. It loosely follows the steps in
tcp_clean_rtx_queue and tcp_sacktag_write_queue in
tcp_input.c in Linux. The interface between NS-2 and
Linux (in linux/ns-linux-util.h and .cc): this part redefines
the data structure in Linux TCP and provides interfaces
between the NS-2's C++ code and Linux's C code.
Shortcuts for other Linux system calls (in linux/ns-linux-
c.h and .c): this part redefines many system calls in Linux
(to void) and allows Linux source code to be compiled
with very minor changes.

In Figure 2 we can see that the NS-2 design uses a
model named shared object design where this means that
the NS-2 system is based on programming in two
languages and with these two languages there is a
corresponding hierarchy of the network objects, but the
object in one are open to the other and also there is an
object accessible to one portion of the system where this
is basically for an efficiency purpose. NS-2 uses C++ to
write and compile the network components in the data
path to reduce the packet and the required time for
processing. The objects compiled by the NS-2 system are
made to exist to an OTcl interpreter over an article
linkage.

This linkage generates an equivalent OTcl object for
each C++ object and creates the configurable variables
identified by C++ objects to affect as an associated
variable and function to the corresponding article objects.
In this manner, the controlling of C++ objects agrees to
OTcl which enables changing the linked variables of C++
from a script of Tcl. Also, it is possible to add variables
and functions as C++ linked of OTcl object. Certainly,
some of C++ objects that do not need control during the
simulation are internally used by other objects that do not
require to be connected to OTcl. Figure 3 illustrates the
linkage between C++ and OTcl (Wang, 2004).

The user (not necessarily the developer of NS) can be
assumed to be standing in left bottom corner, designing
and executing the simulations in Tcl by using the
simulated objects in the library of OTcl. Then movement
from this point to the right top corner which gives more

454 Sci. Res. Essay

Figure 1. Code structure of TCP Linux in NS-2.

Figure 2. Simplified user's view of NS-2.

Figure 3. TclCl provides the linkage between C++ and OTcl.

understanding and knowledge of NS-2 as a whole is
wanted. The event scheduler and a lot of network

components are executed using C++ language existing
as OTcl over a linked article, and is applied using Tcl with
classes (tclcl) as a Tcl/C++ interface.

SPECIFICATIONS OF SUMER TCP

The state diagram shown in Figure 4 consists of many
phases; however, all these phases represent an
integrated and enhanced congestion control algorithm to
control the size of congestion window (cwnd) in
professional approach with high throughput. As
explained, Sumer TCP is an improved Reno with high
performance congestion control. Every time when three
DUPACK’s receive ACK’s that means the segment is
already lost and the algorithm retransmit this segment
again and enter fast recovery mode.

Also, it sets the slow-start threshold (ssthresh) to the
half of the current size of cwnd and set cwnd to become
cwnd-cwnd*(2/(3k+1)) where k has already been
estimated. On one side, for every DUPACK received,
cwnd increases by k/cwnd and when the increasing of
cwnd has exceeded the amount of segments in the
network pipe there will be transmission of new segment
delays. In slow-start phase, the new congestion control
uses the duplicated increment with quadratic interpolation
to achieve faster increase. The effect of this technique
should be used in initial starting up (when the connection

Figure 4. State transition diagram of proposed congestion control
mechanism.

Figure 5. Language extensions of XOTcl.

is established) and after fast recovery mode to obtain
faster growth and then delay the congestion avoidance
phase as much as possible. In first start up, the cwnd is
set to be equal to the MSS (the default value is 1460
Bytes) while the ssthresh is set to be 65535 Bytes, but
after the initialization, the cwnd begins estimating
according to improved AIMD and the ssthresh according
to the network status.

GENERATING SUMER TCP

Many TCP protocol implementations are added to NS-2

Sabbar 455

such as Agent/TCP/Reno, Agent/TCP/Newreno,
Agent/TCP/Sack1, Agent/TCP/Vegas, Agent/TCP/Fack,
and Agent/TCP where this one mentions to TCP Tahoe.
The main goal here is to create a new TCP agent for
Sumer TCP, which is to be identified by NS-2
components and also include the proposed congestion
control algorithm. The big challenge in modeling,
developing and simulating the networks models and
protocols of the researchers, students, and developers
are using NS-2 due to the low-level programing language
used in this simulator. In this research, the released NS-
2.34 is used and this version is installed over Windows
XP using Cygwin, where Cygwin provides a Linux-like
environment under Windows.

As shown in Figure. 5, the modeling of new module in
NS-2 should be constructed with sides, C++ class and
OTcl class. The class Tcl Object represents the base
class of the most of the other classes in the compiled and
interpreted hierarchies.

All objects in the class Tcl Object are generated by the
users from inside the interpreter while the equivalent
shadow object is generated in the compiled side of the
hierarchy and these two objects are narrowly
accompanied with each other. The other important class
called Tcl Class, represents a pure virtual class in the
NS-2 system.

Sumer TCP is built on the same concept of TCP Reno
with modification in congestion control, and then the
modeling and implementation of Sumer TCP will use the
source files of Reno and modify each file separately then
use the modified files to create Sumer TCP as a
separated TCP agent. For Sumer TCP, it is considered
the class becomes SumerTcp Class where it is derived
from Tcl Class and is associated with the class
SumerTcp Agent. The compiled class hierarchy of
SumerTcp Agent is derived from Tcp Agent and that in
turn derived from the Agent that in turn roughly derived
from Tcl Object.

SumerTcpClass is defined as:
static class SumerTcpClass: public TclClass {
public:
SumerTcpClass() : TclClass("Agent/TCP/Sumer") {}
TclObject* create(intargc, const char*const* argv) {
return (new SumerTcpAgent());
 }
 } class_Sumer;

NS-2 will execute the constructor of SumerTcpClass for
the static variable class_Sumer when it is first initiated
and this setup is both the appropriate approach and
interpreted class hierarchy.

In addition, the constructor states the interpreted class
clearly as Agent/TCP/Sumer and this identifies the
interpreted class hierarchy implicitly. The convention in
NS-2 is to use the slash character “/”as a separator and
for any assumed class A/B/C, the A/B/C class represents

456 Sci. Res. Essay

a subclass of A/B where that is a subclass of A, where, A
itself is a subclass of TclObject. In SumerTcpClass case,
the constructer of TclClass builds three classes,
Agent/TCP/Sumer subclass of Agent/TCP subclass of
Agent subclass of Tcl Object. The created class is
associated with the class SumerTcpAgent and it creates
new objects in the associated class. The SumerTcpClass
creates method returns TclObjects in the class
SumerTcpAgent and if the user identifies new
Agent/TCP/Sumer, the routine SumerTcpClass is
invoked.

MODIFICATIONS IN NS-2

To accept Sumer TCP as a new protocol over the NS-2
platform, many source files are required to create (or
modify) to make the RTCP recognizable and ready to
merge the new congestion control algorithm.
Unfortunately, the procedures to add RTCP in NS-2 files
is very sensitive and complex, because there is no
professional documentation for these routines and the
other risk such as the NS-2 does not include full help in
compiling operation (all required modifications done using
C++), so when the developers face an error, they should
revise all the performed steps. The modified files involved
here are based on the version 2.3x of NS; then the
proposed TCP termed Sumer is assumed to be
experimented over NS-2.3x series. The first modification
is applied on ns-compact.tcl file in the location /ns-
allinone-2.3x/ns-2.3x/tcl/lib/ as shown below:

By adding:
 $self map_ns_defaultsns_Sumertcp

Then adding:
Agent/TCP/Sumer
TclObject set varMap_(rampdown) rampdown_
TclObject set varMap_(ss-div4) ss-div4_

Then adding:
setclassMap_(tcp-Sumer)
Agent/TCP/Sumer
 set classMap_(Sumertcp)
Agent/TCP/Sumer

Then, the file Makefile.in which locates in: /ns-allinone-
2.3x/ns-2.3x/Makefile.in needs to add a single line in the
same groups with the other TCP variants:tcp/tcp-Sumer.o
Other single line to the file ns_tcl.cc which locates in: /ns-
allinone-2.3x/ns-2.3x/gen/ns_tcl.cc:
$self map_ns_defaultsns_Sumertcp\n\

Two short lines should be added to FILES in the main NS
folder ns-2.3x:

tcp/tcp-Sumer.cc
tcp/tcp-Sumer.h

In the same file, the next four lines are added as shown
below:

tcl/test/test-output-tcpVariants/fourdrops_Sumer.gz
tcl/test/test-output-tcpVariants/onedrop_Sumer.gz
tcl/test/test-output-tcpVariants/threedrops_Sumer.gz
tcl/test/test-output-tcpVariants/twodrops_Sumer.gz

The last step is to get a copy of the files tcp-Reno.cc and
tcp-Reno.h and rename these two files to become tcp-
Sumer.cc and tcp-Sumer.h respectively. The file tcp-
Sumer.h characterizes the header file where will be
defined the routing agent and all necessary timers which
performs the functionality of the Sumer TCP protocol. To
validate the generating of Sumer TCP over NS-2, we
experimented the new agent by drawing the congestion
window of packet transmission in simple network
topology. The first test was based on plotting the
congestion window without congestion event as shown in
Figure 6 where we used 60 packets as a window size
and 20 s as simulation period.

In this figure we can note the typical congestion window
of Sumer TCP and we can observe the new behavior of
Sumer TCP without congestion event in the simulation
scenario. The other test of Sumer TCP proceeded with
simple congestion event by adding packet loss to the link
and proposed topology by reducing the bandwidth of the
network bottleneck as shown in Figure 7. The last test
proceeded to validate the congestion control mechanism
behavior when the network suffers from congestion
events by adding some cross links and increasing the
packet loss. In this test the window size was 20 packets
and the simulation period was 10 s.

CONCLUSIONS

In this paper, a new TCP called Sumer was created and
is based and carried out on the general concepts and
features of TCP Reno. The improved TCP used new
congestion control mechanism in enhancing the window
behavior in slow-start and congestion avoidance phases.
This paper had also involved in creating the agent of
Sumer in NS-2 modeler and identifying and configuring
Sumer TCP over the NS-2 platform. The new TCP agent
was generated by adding many subroutines, algorithms,
and functions to make the new agent readable by the NS-
2 compiler. Furthermore, the TCP modeling is required to
add many source files and headers to build the structure
of the new TCP where the new files and headers are
programmed using C++ language. The pseudo code of
all files, routines, and subroutines are illustrated in this
article.

FUTURE WORK

Further researches on this article will emphasize modification

Sabbar 457

Figure 6. Congestion window of Sumer TCP without network congestion.

Figure 7. Congestion window of Sumer TCP with network congestion.

of the congestion control mechanism of Sumer TCP to
give the new agent some private and useful features.

Conflict of Interests

The author(s) have not declared any conflict of interests.

REFERENCES

Abed GA, Ismail M, Jumari K (2011a). Architecture And Functional

Structure Of Transmission Control Protocol Over Various Networks
Applications. J. Theor. Appl. Inf. Technol. 34(1).

Abed GA, Ismail M, Jumari K (2011b). A Comparison And Analysis Of
Congestion Window For Hs-Tcp, Full-Tcp, And Tcp-Linux In Long
Term Evolution System Model.2011 IEEE Conference on Open
System (ICOS). pp. 358-362.
http://dx.doi.org/10.1109/ICOS.2011.6079287

Olsén J (2003). Stochastic Modeling And Simulation Of The TCP
Protocol. MatematiskaInstitutionen, Univ.NS-2 (1989). Network
Simulator.

Wang J (2004). NS-2 Tutorial. Multimedia Networking Group, The
Department Of Computer Science, UVA.

Wei DX, Cao P (2006). Ns-2 Tcp-Linux: An Ns-2 Tcp Implementation
With Congestion Control Algorithms From Linux.

