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INTRODUCTION

The shortfin mako Isurus oxyrinchus (Rafinesque,
1810) is a highly migratory shark of the family Lam-
nidae that is widespread in temperate and tropical
waters of all oceans from about 50° N to 50° S; it is
rarely found in waters below 16°C (Compagno 2001).
As is typical of lamnids, the shortfin mako is a fast
epipelagic species that acts as an apex predator in

oceanic trophic webs (López et al. 2009). The diet of
shortfin makos is generalist and mostly includes
teleosts, cephalopods and crustaceans, although
cetaceans, chelonians and other elasmobranchs may
also be consumed (Maia et al. 2006, Preti et al. 2012,
Porsmoguer et al. 2014). The shortfin mako is cur-
rently included in the International Union for Conser-
vation of Nature (IUCN) Red List of Threatened Spe-
cies within the ‘Vulnerable’ category (Cailliet et al.
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2012), because this species suffers heavy mortality as
bycatch or as a target species of commercial longline
fisheries around the world (Mejuto et al. 2009).

Large pelagic oceanic sharks such as the shortfin
mako represent an interesting model to investigate
the role of the host’s habitat in providing structure to
its helminth communities. Previous studies on sea
turtles (Valente et al. 2009, Santoro et al. 2010), mar-
ine birds (Hoberg 1996, 2005), cetaceans (Balbuena
& Raga 1993, Mateu et al. 2014) and teleosts (Costa et
al. 2012, Santoro et al. 2014) have suggested that the
pelagic oceanic realm may exert a strong influence
on the helminth infracommunities of large marine
predators. First, infective stages of trophically trans-
mitted helminths are assumed to be physically more
‘diluted’ in the vast, isotropic pelagic environment
than in demersal or benthic habitats. As noted by
several authors (Collard 1970, Campbell et al. 1980,
Randhawa & Poulin 2010), helminth transmission in
the pelagic habitat is defined in a 3-dimensional
space, whereas in benthic demersal habitats it occurs
in a roughly 2-dimensional layer. Second, oceanic
organisms, including both intermediate and definitive
hosts of helminth parasites, exhibit lower population
density, and are usually more vagile, than neritic
organisms. Thus, pelagic oceanic helminths arguably
face the challenge of finding hosts (Fraija-Fernández
et al. 2015) and their transmission rates are expected
to be low. Consequently, helminth infracommunities
of large oceanic predators are predicted to be species
poor, with low diversity and abundance of helminths.
Also, infracommunities should harbour random sub-
sets of the locally available helminths that are able to
contact these hosts (Mateu et al. 2014).

The helminth fauna of the shortfin mako has been
surveyed in numerous studies (e.g. Linton 1922,
Euzet 1956, Robinson 1959, Cabrera 1991, Ruhnke
1993, Caira & Bardos 1996, Knoff et al. 2002, 2007,
Lyons et al. 2015). Most of these studies, which are
based on small host sample sizes (<5 hosts), have
been carried out in the eastern Atlantic or Pacific
oceans, and provide mainly taxonomic data. There is,
however, a shortage of quantitative information from
a helminth community perspective. This problem is
common to parasitological studies of other large
sharks because opportunistic sampling usually pre-
cludes obtaining large, homogenous host samples to
analyse.

Shortfin makos are regularly caught in longline
fisheries operating in the northeastern Atlantic. This
situation provided a unique opportunity to describe
the intestinal helminth fauna of the shortfin mako in
a poorly surveyed region, and to obtain parameters at

both infracommunity and component community lev-
els. In particular, we investigated the extent to which
oceanic conditions influence the structure of hel -
minth infracommunities in this large oceanic shark
by comparing our results with those obtained in other
parasitological studies on elasmobranchs.

MATERIALS AND METHODS

Sample collection

The shortfin mako is not protected under Spanish
Law and catches have an economical interest. A total
of 39 shortfin makos obtained in the port of Vigo
(Galicia, Spain) were analysed for intestinal hel -
minths. Sharks were caught by longline fisheries
operating in the northeast Atlantic Ocean, between
40° N, 20° W and 35° N, 10° W (Fig. 1). Thirty-five
sharks were caught in October 2012 and 4 in March
2013. Sharks were measured and sexed, collecting
the stomach and the intestine (spiral valve), before
the fish auction. The sample was composed of 19
males and 20 females, with total lengths ranging
from 99 to 254 cm (mean ± SD: 143.9 ± 37.7 cm).

The intestine was stored at −20°C for later analysis
in the laboratory. After thawing, each intestine was
rinsed with tap water over a 0.02 mm mesh and the
solid contents were collected. The intestine wall was
also thoroughly examined for attached helminths.
Parasites were collected under a stereomicroscope,
washed in 0.9% saline, counted, and fixed and
 preserved in 70% ethanol. Cestodes were stained
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Fig. 1. Area where shortfin makos Isurus oxyrinchus were
captured by longline fisheries. The oval dot indicates the
area where the fishing boats were operating during the cap-
tures. The square dot indicates the port of Vigo, where the
sharks were eviscerated. Modified from Porsmoguer et al. 

(2014)
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with iron acetocarmine (Georgiev et al. 1986) and
mounted on Canada balsam. Specimens were identi-
fied based on Khalil et al. (1994) and specific refer-
ences (Ruhnke 1993, 2011, Palm 1999, Knoff et al.
2007). Larval nematodes were cleared in glycerine
and examined as temporary mounts. Voucher speci-
mens are deposited at the Natural History Museum
of London with the following accession numbers:
Clistobothrium montaukensis, NHMUK 2016.9.29.1-3;
Gymnorhynchus isuri, NHMUK 2016.9.29.4-5; Cera-
tobothrium xanthocephalum, NHMUK 2016. 9. 29. 6-8;
Dinobothrium septaria, NHMUK 2016.9.29.9-11;
Nybelinia lingualis, NHMUK 2016.9.29.12-14; Phyl-
lobothrium cf. lactuca, NHMUK 2016.9.29.15-17; and
L3 larvae of Anisakis sp. type I, NHMUK 2016. 9. 29.
18-20. Additional material can be found at the Col-
lection of the Marine Zoology Unit, Cavanilles Insti-
tute of Biodiversity and Evolutionary Biology, Univer-
sity of Valencia, Spain.

Statistical analyses

We recorded prevalence (percentage of hosts in
the sample infected by a helminth species), mean
intensity (average number of individuals of a helminth
species per host in the sample of hosts infected with
this species) and mean abundance (average number
of individuals of a helminth species per host in the
total sample of hosts) for each helminth taxon follow-
ing Bush et al. (1997). Total helminth abundance,
species richness and Brillouin’s index of diversity
were used as descriptors of infracommunities (i.e.
helminth communities of individual hosts). Total hel -
minth abundance is here considered as the number
of individuals of all helminth species, and species
richness as the number of helminth species per indi-
vidual shark. The 95% CI for prevalence was calcu-
lated with Sterne’s exact method (Reiczigel 2003).
The 95% CI for mean abundance and mean intensity
of each helminth taxon, as well as for mean total
helminth abundance, mean species richness and
mean Brillouin’s index, were obtained with the bias-
corrected and accelerated bootstrap method using
20 000 replications (Rózsa et al. 2000).

A Spearman’s correlation test was performed to in-
vestigate whether the abundance of each helminth
species and infracommunity parameters varied signif-
icantly with host length, and Mann-Whitney U tests
were performed to explore significant differences in
parasitological parameters between male and female
sharks. The overall association between helminth
species was investigated using a variance ratio test

(Schluter 1984). The aim of this test is to compare the
observed variance in helminth species richness per
shark with the variance expected assuming that the
occurrence of each species is independent from that
of the others (see Schluter 1984 for details). To create
the null distribution under an  independent coloniza-
tion hypothesis, we fixed the observed value of spe-
cies’ occurrences per shark but randomized the occur-
rence of each species among sharks, assuming that
the likelihood of infection of all individual hosts was
equiprobable. This process was repeated 20 000 times.

General linear mixed models (GLMMs) were used
to explore whether mean species richness and mean
total abundance of intestinal cestodes were signifi-
cantly smaller in shortfin makos and other oceanic
elasmobranchs than in other elasmobranchs. We
focused on cestodes because they are, by far, the most
diverse helminth group infecting elasmobranchs
(Caira & Jensen 2014), and many surveys only pro-
vide infection data on cestodes. Data from other host
species were obtained from parasitological surveys
with host sample sizes ≥10 (see the Supplement at
www.int-res. com/ articles/ suppl/ d123p045 _ supp. xlsx).
Most studies do not provide data on mean species
richness or mean total abundance. In these cases, we
calculated species richness by summing up pre -
valences (expressed as decimals) of all intestinal
helminth taxa, and mean total abundance based on
mean abundances of individual taxa.

In the comparison of species richness, we used the
ratio between infracommunity richness and compo-
nent community richness as the dependent variable.
In this way, we controlled for differences of local ces-
tode availability (for brevity we will refer to this vari-
able as ‘corrected infracommunity richness’). Host
sample size (as a measure of sampling effort) and
habitat (oceanic pelagic elasmobranchs vs. other
elasmobranchs) were used as predictors. In some
species, there was more than one survey available
(see the Supplement), thus ‘individual survey’ was
included as a random variable in the model. Type I
sum of squares was used to control for sampling
effort before making the contrast for habitat. In the
comparison of mean total abundance, data were
log10-transformed to achieve linearity, and the same
set of predictors was used. In all models, we treated
species as independent observations, i.e. we did not
apply independent contrasts (see e.g. Poulin 1997)
because quantitative data of helminth communities
from elasmobranchs are still limited. Thus, the com-
parisons should be considered as preliminary, await-
ing more complete analyses with data from further
surveys when available.
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The free software Quantitative Parasitology v.3
(www. zoologia.hu/qp/qp.html) was used to calculate
infracommunity parameters and to set the 95% CIs of
parameters. The free software EcoSim (www. uvm.
edu/ ~ngotelli/ Eco Sim/ Eco Sim. html) was used to per-
form Schluter’s test and the statistical package SPSS
v.22 was used for the remaining analyses (SPSS). Sta-
tistical significance was set at p < 0.05.

RESULTS

A total of 2117 helminth specimens were collected,
and all sharks except 4 were infected with at least 1
helminth taxa. Nematodes identified as L3 larvae of
Anisakis sp. type I were found throughout the intes-
tine of 17 sharks (Table 1), some specimens being
partially digested. Six species of cestode from the
orders Tetraphyllidea, Trypanorhyncha and Phyllo -
bothriidea were also found in the intestine (Table 1).
At least some individuals with gravid proglottids
were detected in 3 species, including Clistobothrium
montaukensis Ruhnke, 1993, Gymnorhynchus isuri
Robinson, 1959 and Ceratobothrium xanthocepha -
lum Monticelli, 1892. C. montaukensis was the most
prevalent taxon, infecting 32 sharks; it also numeri-
cally dominated infracommunities since in 27 sharks
it made up over 50% of the total helminth abun-
dance. A total of 21 individuals of G. isuri were found
in 3 hosts, whereas individuals of C. xanthocephalum
specimens were found in 8 sharks. One infection in a
female shark reached 942 individuals of this cestode
species (Table 1). In some sharks, the scolex was
embedded in the intestinal wall and was typically
surrounded by a fibrotic capsule.

In 3 cestode species, no individuals with gravid
proglottids were found: Nybelinia lingualis (Cuvier,
1817), Dinobothrium septaria (Van Beneden, 1889)
and Phyllobothrium cf. lactuca (Van Beneden, 1850)
(Table 1). Thirty-nine N. lingualis were found in the
intestine of 7 sharks, whereas only 14 specimens of
D. septaria were found in a single shark. P. lactuca
was found in 4 sharks. In this species, the poor state
of preservation of specimens made it difficult to find
the anterior accessory sucker of bothridia and, in
some cases, only 2 out of the 4 suckers could be
observed.

No significant relationship between host body
length and the abundance of any helminth species or
infracommunity parameters was found (range of
Spearman r = −0.139−0.345, p > 0.05). In addition, no
significant differences were detected in the abun-
dance of any helminth species or infracommunity
descriptors between sexes (range of Mann-Whitney
U = 90−102, p > 0.25). Schluter’s variance test indi-
cated no significant departure from the null hypothe-
sis of random colonization of helminth taxa. The ob -
served value was not significantly lower (p = 0.958)
or higher (p = 0.058) than those obtained in the null
distribution.

Species richness at the infracommunity level ranged
from 0 to 4 (mean [95% CI]: 1.85 [1.49−2.18]), and
was low compared with species number at the com-
ponent community level (7 spp.). However, the differ-
ence was not higher than that observed in other elas-
mobranchs, regardless of their habitat (Fig. 2a,b). In
fact, other pelagic oceanic sharks, i.e. the blue shark
Prionace glauca and the porbeagle Lamna nasus, do
not depart from the common pattern of difference
observed in non-oceanic elasmobranchs (Fig. 2a,b;
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Species Prevalence (%) Intensity Abundance
Overall (95% CI) Mean (95% CI) [range] Mean (95% CI)

Order Tetraphyllidea
Ceratobothrium xanthocephalum 20.5 (9.7−35.7) 180.8 (47.9−536.3) [1−942] 37.1 (8.6−141)
Dinobothrium septaria 2.6 (0.2−13.6) 14 (a) [b] 0.4 (0−1.1)
Order Trypanorhyncha
Gymnorhynchus isuri 7.7 (2.1−20.3) 7 (1−12) [1−16] 0.5 (0−2.3)
Nybelinia lingualis 17.9 (8.6−33.2) 5.6 (1.6−16.6) [1−27] 1 (0.2−3.9)
Order Phyllobothriidea
Clistobothrium montaukensis 82.1 (66.8−91.4) 17.6 (13.8−24.5) [1−78] 14.4 (10.8−20.4)
Phyllobothrium cf. lactuca 10.3 (3.6−24.1) 8.5 (2.5−18.3) [2−22] 0.9 (0.2−3.2)
Order Rhabditida
Anisakis sp. L3 larvae type I 43.6 (27.8−60.3) 8.76 (2.1−33.9) [1−110] 3.8 (0.9−15.3)
aSample is too small to calculate the value
bCannot be calculated with only one infection

Table 1. Infection parameters of intestinal helminths found in 39 shortfin makos Isurus oxyrinchus from the Northeast Atlantic 
Ocean
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see also the Supplement). This conclusion was sup-
ported by the GLMM results. Contrary to what was
expected, the corrected infracommunity richness in
pelagic oceanic sharks was higher than that from
other elasmobranchs; the associated probability was
close to significance (Table 2). Brillouin’s index
(0.264 [0.176−0.370], range: 0−0.972) and mean total
helminth abundance (58.1 [28.0−161.7], range: 0−964)
were low in shortfin makos of our sample. However,
values of mean total abundance tended to be higher
than those observed in most elasmobranchs (Fig. 2c).
Furthermore, the GLMM results indicated that mean
total abundance of helminths in pelagic oceanic sharks
was higher than that from other elasmo branchs and
close to significance (Table 2). No significant effect of
host sample size was detected in any model (Table 2).

DISCUSSION

The parasite fauna of shortfin mako in our sample
was composed of 7 species, all of which except
Dinobothrium septaria had already been reported in
this host (see below). However, up to 9 additional
species, all belonging to the order Trypanorhyncha,
have been found in the intestine of makos globally
(Palm 2004, Randhawa & Poulin 2010, and references
therein). Three species, i.e. Nybelinia schmidti, N.
pintneri and Myxonybelinia californica, occur in
South Africa and Tasmania (Palm 1999, Palm & Bev-
eridge 2002), the Pacific Ocean (Yamaguti 1934,
Heinz & Dailey 1974) and off the coast of California
(Palm, 2004), respectively. Also, Hepatoxylon mega-
cephalum appear to be restricted to large sharks in
the Southern Hemisphere (Bates 1990, Waterman &
Sin 1991, Beveridge & Campbell 1996), although there
is an additional record in the nursehound Scylio -
rhinus stellaris from the Mediterranean (Hartwich &
 Kilias 1992).
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Fig. 2. Comparison of richness and mean abundance of par-
asite infections in elasmobranch species from different habi-
tats. For clarity, in species with more than one survey, an av-
erage of helminth species richness and total abundance are
used. Complete data can be found in the Supplement at
www. int-res. com/ articles/ suppl/ d123 p045 _ supp. xlsx. Habi-
tat of each species: bathydemersal (red triangles); bentho -
pelagic (green cross); demersal (orange squares); pelagic
oceanic (blue circles). Values related to our survey (shortfin
mako) are circled. (a) Relationship between infracommunity
cestode richness and the total number of cestode species in-
fecting the host. (b) Relationship between corrected infra-
community richness and mean host size. (c) Relationship be-
tween total abundance of parasites with mean host size

http://www.int-res.com/articles/suppl/d123p045_supp.xlsx
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However, 5 species have previously been reported
in the North Atlantic but were not detected in our
survey. Two species of the Sphyriocephalidae, i.e.
Sphyriocephalus viridis and Heterosphyriocephalus
tergestinus, are parasites typical from pelagic and
deep-sea sharks (Dallarés et al. 2016). Although ple-
rocercoid larvae have been detected in our study
area, there is only a single record of each species in
shortfin makos (Dallarés et al. 2017), suggesting that
infections in makos could be infrequent. In contrast,
of the other 3 non-detected species, Gymnorhynchus
gigas and Molicola horridus are typical from shortfin
makos (Bates 1990, Palm 2004), and Hepatoxylon
trichiuri also occurs in other pelagic sharks (Bates
1990, Waterman & Sin 1991, Beveridge & Campbell
1996). Furthermore, there are records of these 3 spe-
cies in intermediate hosts in the NE Atlantic (Heinz &
Dailey 1974, Casado et al. 1999, Vázquez-López et al.
2000, Gibson et al. 2005); thus, their absence from
our survey could be due to low sample numbers, par-
ticularly if prevalences are low (see also below).

The L3 larvae of Anisakis sp. type I are ubiquitous
in the oceanic realm and may correspond to any of the
6 species of Anisakis that have odontocete ceta ceans
as main definitive hosts (Mattiucci & Nascetti 2008).
Two of these species, A. simplex (sensu stricto) and A.
pegreffii, have been reported in the study area (Bev-
erley-Burton et al. 1977, Paggi et al. 1998, Kuhn et al.
2011). The diet of the shark individuals analysed in
our sample was described by Porsmoguer (2015) and
includes fish and squid prey, i.e. Histioteuthis sp.,
Xiphias gladius, Euthynnus alletteratus, Scomberesox
saurus, and Scomber scombrus, that are susceptible to
infection with these anisakid species (Bussiéras &
Baudin-Laurencin 1973, Abaunza et al. 1995, McDon-
ald & Margolis 1995, Mattiucci et al. 1997, Culurgioni
et al. 2010). It is interesting that larvae were found
free in the intestine lumen of makos and not encysted
in the stomach wall as commonly occurs in typical in-

termediate or paratenic fish hosts (Mat-
tiucci & Nascetti 2008). This could sug-
gest that shortfin makos likely are acci-
dental hosts for these larvae.

Species of Clistobothrium seem to
be specific to lamnid sharks (Dailey &
Vogelbein 1990, Ruhnke 1993, Rand-
hawa & Brickle 2011). C. montaukensis
had only been reported in the shortfin
mako in the northwestern Atlantic
(Ruhnke 1993), although a closely re -
lated, unidentified species of Clisto-
bothrium was reported from porbea-
gle sharks Lamna nasus in the

Falkland Islands (Randhawa & Brickle 2011). Molec-
ular evidence indicates that porbeagle sharks are
infected with C. cf. montaukensis through the squid
Doryteuthis gahi (Randhawa & Brickle 2011). How-
ever, there is also morphological, molecular and eco-
logical evidence that cetaceans act as intermediate
hosts for species of Clistobothrium (Aznar et al.
2007). In fact, adults of C. carcharodoni, collected
from great white sharks Carcharodon carcharias in
New Zealand, were closely related to plerocercoid
larvae collected in squid-feeding cetaceans from the
western Mediterranean (Randhawa 2011). The diet
of the shortfin makos analysed in this study included
at least 7 species of oceanic squid (Porsmoguer et al.
2014), but remains of cetaceans were also found in
the stomach of several individuals (Porsmoguer et al.
2015). Thus, there is the possibility that C. mon-
taukensis use squids and/or cetaceans as intermedi-
ate hosts to infect shortfin makos.

Gymnorhynchus isuri has only been reported in
shortfin makos, and seems to be a widespread spe-
cies, with records in the north- and southwestern At-
lantic (Caira & Bardos 1996, Knoff et al. 2002) and
New Zealand waters (Robinson 1959). Ceratoboth-
rium xanthocephalum apparently infects only species
of Lamna and Isurus (Euzet 1956, 1994, Schmidt
1986). Shortfin makos accumulate the largest number
of records for this cestode species, including Japan
(Yamaguti 1934), New Zealand (Robinson 1959), the
northeastern (Euzet 1956) and northwestern Atlantic
(Olson & Caira 1999), and the Pacific coast of North
America (Lyons et al. 2015). Plerocercoid larvae of
Gymnorhynchus spp. and C. xanthocephalum have
been reported in pelagic oceanic teleosts (Gibson et
al. 2005), including some species (e.g. the swordfish
X. gladius) that were found in the stomach contents of
our mako sample (Porsmoguer 2015). Therefore, an
oceanic life cycle could be inferred, with teleosts
serving as second interme diate hosts.

50

Predictor Parameter SE t df p

Infracommunity richness
Host sample size −0.000290 0.000562 −0.516 34.3 0.609
Habitat −0.222 0.122 −1.823 18.7 0.084
Total abundance
Host sample size −0.002657 0.001564 −1.699 31.4 0.099
Habitat −0.820 0.449877 −1.822 22.6 0.082

Table 2. Results of the general linear mixed models to account for corrected
 infracommunity richness and total abundance of cestode fauna of pelagic
oceanic sharks vs. elasmobranchs from other habitats. The parameter for
pelagic oceanic sharks was set to zero and, therefore, the parameter for ‘habi-

tat’ represents the value for other elasmobranchs
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We did not find gravid worms in 3 tapeworm spe-
cies. D. septaria is typical of lamnid sharks, and have
been found in porbeagle sharks in North Atlantic
(Woodland 1927, Euzet 1956) and South Atlantic
(Randhawa & Brickle 2011), and great white sharks
from the North Atlantic (Woodland 1927). In our sur-
vey, only 14 individuals of this cestode were recov-
ered from a single shark, and none had gravid
proglottids, suggesting a recent or an accidental
infection.

Nybelinia lingualis has been reported widely in the
Atlantic and South Australia (Palm & Walter 2000)
and seems to be an ecologically ubiquitous species.
Plerocercoid larvae occur in a number of benthic,
demersal and pelagic teleosts and cephalopods
(Palm 1999, Palm & Walter 2000, Gibson et al. 2005).
Adults also exhibit low host specificity and have been
reported in pelagic and demersal sharks, as well as in
pelagic rays (Palm & Overstreet 2000, Palm & Walter
2000, Knoff et al. 2002). There are records of adult N.
lingualis in shortfin makos from the southwestern
Atlantic (Knoff et al. 2002) and the western Mediter-
ranean (Cabrera 1991, Palm & Walter 2000). How-
ever, none of the 39 specimens of N. lingualis col-
lected from 7 sharks in this study were gravid, thus
raising the question of whether or not shortfin makos
are suitable hosts for this species.

Finally, the specimens of Phyllobothrium collected
as immature specimens in 4 sharks from this study
resembled P. lactuca but their poor state of preserva-
tion precluded an unequivocal identification at spe-
cies level. P. lactuca typically infects elasmobranchs
dwelling in shelf and upper slope waters, rarely
oceanic sharks (e.g. Euzet 1956, Ruhnke 1996, Sène
et al. 1999). There is an old record of this cestode in
Oxyrhina spallanzanii (= I. oxyrhinchus) (see Williams
1968). Records of P. lactuca in shortfin makos proba-
bly represent accidental infections.

In summary, all helminth species reported in this
study are almost exclusively found in sharks, mainly
members of the family Lamnidae inhabiting oceanic
waters. This pattern of specificity is common to other
elasmobranchs, the intestinal helminth fauna of
which is peculiar and very specific as a whole (Caira
& Pickering 2013). The helminths found in shortfin
makos, with the exception of C. montaukensis, had
low infection levels, and the variance ratio test indi-
cated independent colonization of each helminth
species. In addition, no significant correlation was
found between the length of the host and species
richness or total abundance of intestinal helminths.
In infracommunities of intestinal helminths, an
absence of structure has been related to the lack of

competitive interactions between species (see e.g.
Curran & Caira 1995 for a large shark species). How-
ever, a low recruitment rate of parasites has been
invoked as a more likely factor accounting for inde-
pendent colonization of helminths in intestinal infra-
communities of oceanic vertebrates such as sea tur-
tles (Santoro et al. 2010) or cetaceans (Mateu et al.
2014). Low recruitment would be dependent on the
‘dilution’ of infective stages in the oceanic habitat
(Randhawa & Poulin 2010, Mateu et al. 2014), but
also on a low number of infective stages transmitted
with each prey. In this respect, the size of larvae
could be an issue because there seems to be an
inverse relationship between the size of parasites
and their intensity of infection (see e.g. Randhawa &
Poulin 2009 for parasites of elasmobranchs). Interest-
ingly, the larval size for 3 of the tapeworm species
infecting shortfin makos is presumably large (i.e.
over 1 cm long) (see measurements for allied species
in Pascual et al. 1994, Williams & Bunkley-Williams
1996).

Contrary to what we expected, the cestode infra-
communities of shortfin makos and other pelagic
oceanic sharks were not particularly depauperate
compared with those from other elasmobranchs,
e.g. Prionace glauca, Squalus acanthias, Etmopterus
spinax and Leucoraja naevus (see Fig. 2); in fact they
tended to be more diverse. This observation could be
related to 3 potential factors. First, we cannot rule out
that parameters at the infracommunity level are
blurred by phylogenetic effects (i.e. the degree of
diversification and specificity of cestode taxa in each
host group) and/or differences in the local availabil-
ity of cestodes. Nevertheless, we attempted to mini-
mize these effects by dividing mean infracommunity
richness by component community richness. For
instance, bathydemersal sharks are typically infected
with very few cestode species (Caira & Pickering
2013; see Fig. 2a), but corrected infracommunity
richness was similar to that from other elasmo-
branchs (Fig. 2b).

Second, shortfin makos and other pelagic sharks
are apex predators with the largest body size of all
elasmobranch species in the sample (Fig. 2b,c). In
addition, makos and other lamnid sharks are capable
of increasing their temperature by up to 20°C (Bernal
et al. 2005). Accordingly, they should have higher
metabolic demands and higher rates of prey con-
sumption, thus increasing the likelihood of contact
with infective stages of many parasites (Aznar et al.
2004), particularly if they are generalist predators
(Joyce et al. 2002, McCord & Campana 2003, López
et al. 2009). In other words, a large body size could
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help offset the negative ‘dilution’ effect of oceanic
habitat on transmission rates. Finally, it could be that
the ‘dilution effect’ associated with oceanic condi-
tions is inconsequential if parasites are adapted to
expand the use of intermediate hosts through the
trophic web. In fact, it has been suggested that many
marine parasites have reduced host specificity as a
strategy to spread out the risk of failure to complete
their life cycles (Marcogliese 1995, 2002).

Consequently, it would seem premature to extract
solid conclusions about the influence of the oceanic
habitat on the helminth assemblage of shortfin makos
based on the available data. However, we think that
interspecific comparative approaches are necessary to
advance hypotheses about such influences. This ap -
proach would also require that proper infracommu-
nity parameters are published in surveys of elasmo-
branchs and other oceanic vertebrates.
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