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The objective of this work is to study the adsorption behavior of celebrex as non-steroidal anti-
inflammation on single-walled carbon nanotubes (SWCNTs). As the function of temperature and initial 
concentration of adsorbate were observed through adsorption isotherms, the amount of celebrex 
adsorbed on carbon nanotube surface increased with the concentration at constant temperature, and 
decreased with the increase of temperature at constant concentration. The experimental results 
obtained at the temperatures of 295, 300 and 305 K showed that the experimental data were properly 
represented by the Langmuir, Freundlich and Temkin isotherm models. 
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INTRODUCTION 
 
The use of low cost absorbents, such as carbonic 
substances, agricultural product and wastes of product 
has been investigated (Nguyen and Do, 2001). In recent 
years, agricultural production of the separating metals 
from water is widely studied. These include peat soil 
(Hoys and McKay, 2000), wood (Poots et al., 1978), shell 
of pine tree (Al-Asheh and Duvnjak 1997),  banana skin 
(Low et al., 2000), rice bran (Marshall and Johns 1996), 
soy and skins of cottonseed (Wafwoyo et al., 1999), 
peanut skin (Cimino et al., 2000), orange skin, vegetable 
fertilizer (Azab and Peterson, 1989) and leaves. Most of 
these works showed that natural products can be a good 
absorbent for organic acids. Since their discovery by 
Iijima in 1991, carbon nanotubes (multi-walled carbon 
nanotubes (MWCNTs)) compounds are highly developed 
in chemical and physical dimension (Iijima et al., 2001). 
The ways of synthesis of this compound, developed 
quickly (Rao et al., 2001). MWCNTs can adsorb so many 
atoms and molecules on their surface, such as 
adsorption of metallic elements like lithium (Bendiab et 
al., 2001), potassium (Clay et al., 2002), rubidium (Rao et 
al., 1997), cesium (Wadhawan et al., 2001) and non 
metallic, such as hydrogen (Cao et al., 2001), oxygen 
(Yang et al., 2001), nitrogen (Zhu et al., 2000) and 
methanol (Talapatra and Migone, 2002). Adsorption 
characteristic of MWCNTs is breather for adsorption of 
gases, such as hydrogen and other gases (Dillon and 
Heben,  2001).   All   the  compounds  on  the  surface  of 

MWCNTs, adsorbed two main covalent bonds and non 
covalent bonds (Bahr and Tour 1952; Basiuk et al., 
2004). Adsorption takes places on the surface and on the 
carbon walls, while non covalent adsorption which is the 
kind of physically adsorption takes place on the MWCNTs 
walls. One of the characteristics of non covalent bonds 
adsorption on MWCNTs is that the structure of MWCNTs 
does not change after this adsorption and separation of 
the adsorption (Chen et al., 2001; Lehmann et al., 2004). 
All compounds on the surface of MWCNTs are adsorbed 
by covalence and non covalence bonds. Basically, 
essential fatty acid exists in liquid oil, and it has many 
double bonds, which one of the most important is omega-
6 that is found in corn oil and canola oil, and it gives them 
specific characteristic. Indeed, fat in these oils are the 
best type of fat, because essential fatty acid do not only 
increase the blood cholesterol, but cause the decrease of 
blood cholesterol (Cunnane et al., 1993). Features of 
celebrex can slow down the formation of cancer clone 
(Denis et al., 1999), prevent breast cancer (Thompson et 
al., 1996), blood pressure regulation (Berry and Hirsch, 
1986) reduced resistance to insulin in diabetic patients 
(Cunnane et al., 1993) and the body immunological 
resistance to antigens. NSAIDs reduce inflammation and 
relieve fever and pain by blocking enzymes and protein 
made by the body. NSAIDs, such as ibuprofen and 
naproxen   block   a   protein  (called  prostaglandin)  that 
makes heavy menstrual bleeding worse. Aspirin does not 
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Figure 1. Chemical structure of celebrex. 

 
 
 
block this protein. NSAIDs relieve pain and fever. They 
also reduce swelling and inflammation caused by an 
injury or a disease, such as arthritis. Some NSAIDs, such 
as ibuprofen and naproxen, help ease cramping and 
reduce blood loss from heavy menstrual bleeding. 
NSAIDs work well to relieve pain, decrease fever and 
reduce swelling and inflammation caused by an injury or 
disease (Gøtzsche, 2007). Some NSAIDs help reduce 
heavy menstrual bleeding (Bohn, 2002; Dukitt and 
Collins, 2008). NSAIDs can help relieve the pain of 
kidney stones. 

Celebrex is chemically designated as 4-[5-(4-
methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzene 
sulfonamide and is a diaryl-substituted pyrazole. The 
empirical formula is C17H14F3N3O2S, and the molecular 
weight is 381.38; the chemical structure is as shown in 
Figure 1 (Teichman, 2004; Chan, 2007). 

In this research, we are going to study celebrex as non-
steroidal anti-inflammation on single walled carbon 
nanotube. We are going to understand how much of this 
drug can be adsorbed by carbon nanotube. We also want 
to find out if we can affect the inflammable molecules by 
putting celebrex on carbon nanotube without damaging 
the safe molecules. 
 
 
MATERIALS AND METHODS 
 
Celebrex with purity of 88% was purchased from Merck Co., 
Germany. Single-walled carbon nanotubes (SWCNTs) are 
produced by outer diameter of 10 to 20 nm, surface space of 250 of 
280 m2/g and high purity of 9%, and were purchased from Aldrich.   

 
 
Fourier transforms infrared analysis 

 
Fourier transform infrared (FTIR) were used in the analysis of the 
chemical surface groups of these adsorbents. FTIR analysis was 
performed using a Nexus 670 FTIR spectrometer (Thermo Nicolet, 
Madison) equipped with a KBr beam splitter (KBr, FTIR grade). 
Spectra were acquired in the 4000 to 400 cm−1 wave number with 4 
cm−1 resolution. The background spectrum of KBr was also 
recorded at the same conditions. 

 
 
Adsorption experiments 

 
A stock solution of  about  100  mg/L  celebrex  was  prepared.  The 

 
 
 
 
range of celebrex concentration used is from 2 to 30 mg/L. 
Equilibrium adsorption experiments were performed using 40 ml 
screw-capped glass centrifuge tubes as batch reactor systems. 
Each tube containing 0.05 g SWCNTs was filled with 25 ml celebrex 
solution of different concentrations. All tubes were immediately 
sealed with PTFE-lined caps and were then mechanically shaken 
for 24 h in a thermostated rotary shaker at temperature of 295 ± 1 
K, except for the adsorption experiments, in which temperatures of 
300 and 305 K were adjusted. After equilibration, all tubes were 
placed vertically for 4 h at the same temperature to ensure 
complete sedimentation of SWCNTs from the bulk solutions. By 
using spectrophotometer tool adsorption rate, celebrex was 
obtained. 
 
 
Modeling of the adsorption isotherms 
 
Equilibrium study on adsorption provides information on the 
capacity of the adsorbent. An adsorption isotherm is characterized 
by certain constant values, which express the surface properties 
and affinity of the adsorbent and can also be used to compare the 
adsorptive capacities of the adsorbent for different pollutants. 
Equilibrium data can be analyzed using commonly known 
adsorption systems. Several mathematical models can be used to 
describe experimental data of adsorption isotherms (Uddin et al., 
2007). The Freundlich, Langmuir and Temkin models are employed 
to analyse the adsorption that occurred in the experiment. 
 
 
Langmuir model 
 
The Langmuir model (Zeldowitsch., 1934; Langmuir., 1916) 
assumes uniform energies of adsorption onto the surface and no 
transmigration of adsorbate in the plane of the surface. The 
Langmuir equation may be written as: 
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where qe is the amount of solute adsorbed per unit weight of 
adsorbent (mg/g), Ce the equilibrium concentration (mg/L), qm is the 
monolayer adsorption capacity (mg/g) and b is the constant related 
to the free energy of adsorption. The Langmuir model considers 
several assumptions: the adsorption is localized, all the active sites 
on the surface have similar energies, none interaction between 
adsorbed molecules exists, and the limiting reaction step is the 
surface reaction as in the heterogeneous catalytic reaction (Fierro 
et al., 2008). 
 
 
Freundlich model 
 
The Freundlich model is an empirical equation based on sorption 
on heterogeneous surface through a multilayer adsorption 
mechanism (Freundlich, 1907). It is given as: 
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where qe is the amount of solute adsorbed per unit weight of 
adsorbent (mg/g), Ce is the equilibrium concentration (mol/L), kf  is 
the constant indicative of the relative adsorption capacity of the 
adsorbent (mg/g(mg/L)n) and 1/n is the constant, indicative of the 
intensity of the adsorption. The linearized form of the Freundlich 
equation is: 

 



 
 
 
 

 
 

Figure 2. Langmuir isotherm of celebrex on SWCNT: ♦, 295 K 
(R2 = 0.9885); ■, 300 K (R2 = 0.9238); ▲, 305 K (R2 = 
0.8811). 

 
 
 

 
 

Figure 3. Temkin isotherm of celebrex on SWCNT: ♦, 295 K 
(R2 = 0.9257); ■, 300 K (R2 = 0.9223); ▲, 305 K (R2 = 
0.9078). 
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The value of kf and n can be calculated by plotting lnqe versus 
lnCe. 

 
 
Temkin model 

 
Temkin (Fierro et al., 2008; Temkin and Pyzhev 1940) suggested 
that, because of the existence of adsorbent-adsorbate interactions, 
the heat of adsorption should decrease linearly with the surface 
coverage. The Temkin isotherm equation assumes that the 
adsorption is characterized by a uniform distribution of the binding 
energies, up to some maximum binding energy. The corresponding 
adsorption isotherm can thus be adjusted by the following equation: 

Vadi          1217 
 
 
 

 
 

Figure 4. Freundlich isotherm of celebrex on SWCNT: ♦, 
295 K (R2 = 0.9993); ■, 300 K   (R2 = 0.9988); ▲, 305 K (R2 
= 0.9990). 
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where B is related to the heat of adsorption (L/g) and A is the 
dimensionless Temkin isotherm constant. The Temkin parameters 
(B and A) can be determined from the linear plots of qe and lnCe. 

 
 
RESULTS AND DISCUSSION 
 
Adsorption isotherms 
 
The Langmuir, Temkin and Freundlich isotherms of the 
adsorption process of celebrex on SWCNTs are as 
shown in Figures 2 to 4. It was observed that the 
experimental data were well represented by Langmuir, 
Freundlich and Temkin models. The values of the 
constants of the isotherms of Langmuir, q and b, and of 
Freundlich, k and n, and of Temkin, B, A and b, are as 
shown in Table 1. The results of Figures 2 to 4 show  that 
in order to adsorb  celebrex on carbon  nanotube in the  
temperature range of 295  to 305 K, the  
Freundlich  model is followed because they have  more 
R

2
 (Table 1). 

 
 

Conclusion 
 
In the light of the findings of this work, the following main 
conclusions can be stressed. The amount of celebrex 
adsorbed in the SWCNTs surface increased with 
concentration at constant temperature and decreased 
with the increase of temperature at constant 
concentration. The Freundlich isotherm model describes 
the sorption data better than the Langmuir and Temkin 
models. 
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Table 1. The values of the constants of the isotherms of Langmuir, Freundlich and Temkin on CNT. 
 

T/K 
Langmuir  Freundlich  Temkin 

b q R
2
  n k (L.g

-1
) R

2
  A (L.mg

-1
) B b (j.mol

-1
) R

2
 

295 0.0153 25.172 0.9885  1.095 0.3848 0.9993  0.817 1.778 13.785 0.9256 

300 0.0136 32.658 0.9238  1.063 0.3849 0.9988  0.792 1.786 13.972 0.9223 

305   0.0074 3.010 0.8811  1.040 0.3541 0.9990  0.769 1.778 14.065 0.9078 
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