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Abstract

Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined ‘‘suction-based’’ mechanism,
and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia’s pathogenesis and
colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella,
has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc.
We aimed to test this prevailing ‘‘hydrodynamic model’’ of attachment mediated by flagellar motility. We defined four
distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using
TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a
cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered
defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for
the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating
and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM
and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as
well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant
negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate
attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for
attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required
for attachment, flagellar motility is important for positioning and orienting trophozoites prior to attachment. Drugs
affecting flagellar motility may result in lower levels of attachment by indirectly limiting the number of parasites that can
position the ventral disc properly against a surface and against peristaltic flow.
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Introduction

Giardiasis is caused by acute or chronic infection with the

single-celled, zoonotic parasite Giardia intestinalis [1]. Giardiasis is

one of the most prevalent intestinal protozoal parasitic infections

worldwide [2], resulting in several hundred million acute cases of

malabsorptive diarrhea each year. The parasite persists in the

environment as a dormant, infectious cyst [3,4]. Infection of

humans or other mammals is initiated by the ingestion of cysts

from contaminated water or food [5]. Following ingestion, giardial

cysts travel to the small intestine of the animal host, excyst and

transform into the flagellated trophozoite. To avoid peristalsis and

colonize the small intestine, trophozoites attach to the intestinal

villi via a specialized microtubule structure, the ventral disc. The

mechanism of attachment has been proposed to involve suction

generated either by the ventral disc itself or by the regular beating

of the ventral flagella [6,7]. Both the molecular mechanism of

attachment and the precise role of flagellar motility in attachment

remain controversial.

Trophozoites are bilaterally symmetrical with a flattened

teardrop shape (,15 mm long by 5 mm wide and 5 mm thick)

and possess a complex microtubule cytoskeleton that includes eight

flagella [8]. Giardia’s flagella generate complex movements

essential for motility, cell division, and access to suitable sites for

attachment on the intestinal villi [9,10]. The eight flagella are

organized as four pairs: the anterior, the caudal, the posteriolateral

and the ventral flagella (Figure 1A). Giardia axonemes possess long

cytoplasmic regions that exit the cell body as membrane-bound

flagella. All eight flagella have a canonical motile structure

consisting of nine outer doublet microtubules surrounding the

central microtubule pair, radial spokes and dynein arms [11].

While the role of flagellar motility in attachment remains

speculative [9], the coordinated and differential beating of Giardia’s

eight motile flagella are known to be critical to cellular motility and

division, and are possibly involved in encystation/excystation or

chemotactic sensing [12].

The most widely held model of giardial attachment, the

‘‘hydrodynamic model’’ [7,13], contends that flagellar motility is

necessary for the initiation and maintenance of giardial attach-

ment to surfaces. Specifically, the ventral flagella were proposed to

produce a hydrodynamic current generating a suction pressure

under the adjacent ventral disc. The model postulates that

surrounding fluid is drawn through presumptive channels that

initiate at the ventrolateral flange, flows under the marginal groove
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and lateral crest at the perimeter of the disc, and eventually exits at

a channel in the posterior lip of the disc into the ventral groove,

where the ventral flagella were thought to exit from the cell body

(see Figure 1B). Cytological evidence has not corroborated the

existence of these channels; thus, support for the ‘‘hydrodynamic

model’’ has remained strictly observational or theoretical [7,13].

Prior investigations have not distinguished between ventral

flagellar beating that causes attachment and flagellar beating that

merely coincides with attachment.

We were interested in attachment mechanics and the precise

contribution of flagellar beating to attachment, either directly via

hydrodynamic suction [7,13], or indirectly via cellular positioning

prior to attachment. We examined the role of ventral flagellar

beating during the early stages (positioning) and later stages

(maintenance) of attachment in live trophozoites. Using Total

Internal Reflection Microscopy (TIRFM) of trophozoites labeled

with a fluorescent plasma membrane dye, we defined distinct stages

of attachment based on cellular and ventral disc contacts with the

substrate surface (Figure 1). To test whether flagellar motility is

required for giardial attachment, we used a morpholino-based

knockdown [14] of the axonemal central pair protein PF16 to

generate a strain with defects in flagellar beating. Knockdown of

giardial PF16 resulted in various defects in all flagella, including

defects in the rate of flagellar beat and/or flagellar length (Figure 2).

Secondly, we constructed a strain with defects specific to the ventral

flagellar waveform by overexpressing a dominant negative [15,16]

ventral flagella-specific alpha2-annexin (Figure 3). By assessing

attachment in both types of trophozoites with defective flagellar

motility, we demonstrate that defects in flagellar beating and

coordination do not significantly affect attachment, with respect to

disc contacts with the substrate surface or the ability to withstand

normal forces and shear forces (Figure 4). Deficiencies in flagellar

motility do, however, result in slower attachment during earlier

stages when motility is required for positioning the ventral disc

against the substrate surface (Figure 5). Thus, we propose that

flagella contribute indirectly to attachment by positioning the cell,

but ventral flagellar beating, specifically, is not directly involved in

generating suction forces underneath the ventral disc.

Results

The existence of channels for fluid flow is essential to the

postulated hydrodynamic model of attachment [7]. Thus, to

evaluate the hydrodynamic model of attachment, we first defined

specific contacts of the trophozoite with the substrate surface. We

then examined the role of flagellar motility during both the early

(positioning) and maintenance stages of attachment by assaying the

ability of giardial strains with defects in flagellar beating to initiate

and maintain attachment as defined by these contacts. Because

giardial attachment to surfaces is rapid and dynamic [17,18,19], the

assays we use to quantify attachment are based upon live imaging.

TIRFM characterizes surface contacts during distinct
stages of attachment and detachment in live
trophozoites

To investigate the direct or indirect contributions of flagellar

beating to attachment, we defined the general stages of attachment

and detachment based on cell body and ventral disc surface

contacts using TIRFM of trophozoites stained with a plasma

membrane dye (Figure 1, panels C-F). TIRFM uses an evanescent

wave that penetrates only 100 nm into the sample medium,

enabling selective visualization of surface regions of cells.

Trophozoites first skim and contact the surface with the anterior

section of the ventrolateral flange (Figure 1). Secondly, the

perimeter of the ventral disc touches the surface, forming a

continuous contact, or ‘‘seal’’ at the area of the lateral crest. The

lateral shield then presses against the substrate, followed by the

bare area region within the ventral disc. We noted bare area

contact in 76% of attached cells (n = 97 cells). During maintained

attachment, we observed a continual surface contact via the lateral

crest seal, around the entire ventral disc. Giardial attachment to

biological or inert surfaces is reversible and occurs within seconds

[17,18,19]; here attachment to a glass substrate occurred in less

than one to several seconds. In prior work using transmitted light

contrast techniques this seal was postulated to be a channel [6,7].

The lateral crest seal is the first indicator that the hydrodynamic

model as described is invalid [6,7].

Detachment begins with release of the bare area from the

surface, followed by release of the lateral shield (Figure 1). The disc

seal becomes discontinuous, specifically at the posterior lip, and

finally the cell detaches to swim in the medium. When the cell

skims (Video S1) the disc seal and ventrolateral flange remain in

close contact with the substrate while the bare area region lifts.

Bare area contact reappears when the cell pauses or reattaches.

Ventral flagellar beating is close to the surface and thus readily

imaged in TIRFM. The beating of other flagella can only be

observed when those flagella are motile and come within 100 nm

of the substrate.

In contrast to previous reports [7], we did not observe an arched

groove between the disc perimeter and the ventrolateral flange

(Figure 1). The ventrolateral flange does not have an arched profile

and remains flat against the substrate, as does the lateral shield.

Most notably, we did not observe a ‘‘Y’’-shaped ventral channel

present between the posterior lip of the ventral disc that continues

into a ventral-caudal stem, postulated to conduct a hydrodynamic

current [6,7]. In contrast, we observed a complete and continuous

disc seal (Figure 1). The surface contacts observed using TIRFM are

consistent with ultrastructural SEM and TEM images of attached

cells as well as interference-reflection microscopy [20].

We measured a wild type ventral flagellar mean beat frequency

of 9 Hz with a synchronous waveform beat from base to tip along

the longitudinal axis of the cell, similar to previous reports [10]. In

contrast to prior work that used trophozoites scraped from mouse

intestine [6,7], we determined the mean amplitude of the ventral

flagellar waveform to be 2.04 mm. Synchronous ventral flagellar

beating was observed once the trophozoite made a seal with the

lateral crest (Figure 1 and Video S1). Notably, a change in

frequency and amplitude during skimming and swimming

correlated with changes in the directional motility of the cell, as

previously reported [6,7].

Author Summary

Giardia is a widespread, single-celled, intestinal parasite
that infects millions of people and animals each year.
Colonization of the small intestine is a critical part of
Giardia’s life cycle in any host. This colonization is initiated
when cells attach to the intestinal wall via a specialized
suction cup-like structure, the ventral disc. In the host,
Giardia moves by beating four pairs of flagella; movement
of the ventral pair has been implicated in attachment. This
study shows that the beating of the flagella is not
important for attachment, but rather for positioning
Giardia close to the intestinal wall prior to attachment,
and thus disproves the commonly held model of giardial
attachment. This work implies that drugs targeting Giardia
motility could prevent or slow attachment, leading to
lower rates of infection.

Flagellar Motility in Giardial Attachment
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Morpholino knockdown of the central pair protein PF16
results in defects in flagellar beating

PF16 was first characterized in the green alga Chlamydomonas

reinhardtii as a highly conserved armadillo-repeat protein localizing

to the C1 microtubule of motile flagella [21,22], and required for

proper flagellar waveforms and motility [23,24,25]. We expected

the Giardia PF16 homolog to have a similar function in generating

proper waveforms and motility in the eight giardial flagella. To test

whether ventral flagellar beating is necessary to create hydrody-

namic flow for attachment, we used a PF16-specific morpholino

(see Methods and [14]) to block translation of the protein. The

anti-PF16 morpholino knockdown was confirmed via Western blot

and immunostaining (see Figure S1) using an integrated PF16::HA

strain [26].

Figure 1. Sequence of the steps in surface contact during giardial attachment and detachment. The ventral surface of a trophozoite is
shown in the panel (A) schematic, which highlights the four flagellar pairs (ventral flagella (vfl), caudal flagella (cfl), posteriolateral flagella (pfl), and
the anterior flagella (afl) as well as critical cytological features including: the ventrolateral flange (vlf), the marginal groove (mg), the lateral crest (lc),
the lateral shield (ls), and the ventral groove (vg). A schematic of the ‘‘hydrodynamic model’’ of attachment [7] including the currents of fluid (arrows)
proposed to result from ventral flagellar beating, is shown in panel (B). According to this model, a negative pressure differential develops from fluid
drawn under the ventrolateral flange, around the ventral disc (curved arrows), and into the ventral groove generating suction. Panel (C) shows the
sequence of events that occur during the contact of the ventral disc and cell body within 100 nm of the coverslip surface. Panel (D) shows 2D
intensity projections of the same images, indicating stronger contacts in ‘‘warmer’’ colors (red, yellow, green) and weaker contacts with ‘‘cooler’’
colors (indigo, blue). Note the contact of the ventrolateral flange (vlf) and the discontinuous contact of the disc periphery (lateral crest; lc) with the
surface during skimming. Attachment is defined by the continuous disc seal (lateral crest), lateral shield (ls) pressure and lastly, bare area (ba)
appearance. The posterior ‘‘tail’’ end of the trophozoite does not make contact with the substrate during attachment. Throughout attachment, the
ventral flagella (vf) beat with the typical semi-sigmoidal beat pattern (see Video S1). Note the lack of visible anterior portals in the disc seal (for inflow)
or breaks in this ventral disc perimeter seal during attachment (for proposed hydrodynamic outflow). In panels (E) and (F )detachment was
monitored for the same cell, and the steps of trophozoite contact with the surface occur in reverse order (n = 97).
doi:10.1371/journal.ppat.1002167.g001
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Figure 2. Morpholino knockdown of PF16 significantly reduces flagellar beat frequency but only mildly affects the ability to
maintain attachment. Flagellar motility and morphology are shown using DIC for (A) wild type, (B) PF16 mispair morpholino and (C) the anti-PF16
morpholino. Both the wild type and the PF16 mispair control possess sigmoidal flagellar waveforms with similar frequencies (9 Hz), amplitudes and

Flagellar Motility in Giardial Attachment
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As with other flagellates [21,22,27], the knockdown of PF16

resulted in significant flagellar motility defects. Twenty-four hours

after morpholino electroporation, the anti-PF16 treated tropho-

zoites exhibited erratic behavior in all flagella. Both the wild type

and the PF16 mispair control had ventral flagella of similar lengths

(14.4 mm for the membrane-bound portion, measured from the

flagellar exit point at cell body to the flagellar tip), a sigmoidal

ventral flagellar beat pattern, and similar beat frequencies (9 Hz)

and amplitudes (2.04 mm) (Figure 2 and Video S2). The anti-PF16

morpholino-treated cells sustained amplitudes similar to wild type

but displayed an erratic flagellar beat. Twenty-four hours after

anti-PF16 morpholino introduction, 71% of cells exhibited a

significantly decreased ventral flagellar beat (mean = 4 Hz) with

200 millisecond pauses (Figure 2).

Flagellar motility is also thought to be required for later stages of

cytokinesis in Giardia [28]. Forty-eight hours after anti-PF16

knockdown, many cells in the population lagged in their ability to

complete cytokinesis so that many daughter cells remained

connected via their posterior cell bodies. Total paralysis was not

observed, but ventral flagellar beating slowed to 2.3 Hz, a

significant reduction from 9 Hz found in wild type (n = 50). We

also observed that the membrane-bound regions of the ventral and

caudal flagella were one quarter and one third, shorter,

respectively (Figure 2, Video S2). A significant number of cells

also exhibited dorsal flexion paralysis which could result in

detachment, thus this time point was not included in the cell

attachment assays.

Trophozoites treated with anti-PF16 morpholino can
maintain attachment despite flagellar beating defects

Using TIRFM with live imaging, we investigated the ability of

the anti-PF16 morpholino transformant with flagellar beating

defects to form proper surface contacts on glass coverslips (see

Figure 2). Despite the significant defects in flagellar beat rate

(Figure 2 and Video S2), trophozoite surface contacts in anti-PF16

morpholino-treated cells were similar to wild type (Figure 1). We

observed no defects in the lateral body contacts, bare area contacts

or the continuity of the disc perimeter seal.

To assay the ability of the PF16-knockdown trophozoites with

defective flagellar beating to maintain attachment, we next

challenged live morpholino-treated trophozoites with two bio-

physical assays. First, using a centrifuge assay of increasing normal

forces, we noted that the anti-PF16 knockdown population

maintains attachment against normal centrifugal forces up to 2.1

nN (Figure 4) similar to wild type trophozoites [21]. To assay the

ability to withstand shear forces, we used a flow cell assay [20].

The anti-PF16 morpholino knockdown trophozoites were able to

maintain attachment when challenged with 1.5 nN of shear force,

equal to the mispair morpholino control (Figure 4). The prediction

of the hydrodynamic model is that trophozoites would detach once

the flagellar beat decreased, and thus would be incapable of

maintaining steady state attachment when challenged with force.

Despite the fact that the ventral flagella beat erratically and were

noticeably shortened in length (see above), the PF16 knockdown

trophozoites retained the ability to initiate and maintain

attachment comparable to wild type trophozoites.

Overexpression of a dominant negative alpha2-annexin
(D122A, D275A) results in defects in the ventral flagellar
waveform

Annexins are membrane-scaffold proteins that generally link the

cytoskeleton to the periphery of negatively charged, acidic

phospholipid membranes in a Ca+2-regulated manner [29].

Several annexin homologs have been shown to localize specifically

to various pairs of flagella [30]. Alpha2-annexin was previously

shown to localize to the ventral flagella [30]; thus, dominant

negative annexins could specifically inactivate the waveform of the

ventral flagella. We confirmed the localization of alpha2-annexin

to the ventral flagella (Figure 3) in both live and fixed cells using a

GFP tag [30]. Alpha2-annexin::GFP localizes to 87% of the cell

population, strongly to the ventral flagella (signal intensity

mean = 1650), and to a lesser degree, the plasma membrane of

the ventral disc (signal intensity mean = 700) and the cell. We

observed that the ventral flagellar waveform, synchrony, beat rate

and frequency in the alpha2-annexin::GFP strain equaled that of

the WBC6 wild type strain. We measured a negligible decrease in

amplitude at 1.71 mm, as compared to 2.04 mm in wild type, yet

we observed no growth or attachment defects in the alpha2-

annexin::GFP strain.

To test the particular role of ventral flagellar beating in

attachment, we created a strain with defects in the ventral flagellar

waveform caused by overexpression of a tetracycline-inducible

dominant-negative alpha-2 annexin. Specifically, we modified

amino acid residues in two of four high-affinity calcium-binding

domains in the giardial alpha-2 annexin from asparagine to alanine

(D175A, D275A), which has previously been shown to generate

dominant negative annexins [31] (Figure S1). We observed and

quantified significant defects in 82% of the alpha2-annexin (D175A,

D275A)::GFP population, specifically in the amplitude of the

ventral flagella waveform (as compared to wild type (reviewed

recently in [9]) at both 24 and 48 hours after induction of the

alpha2-annexin dominant negative construct. Specifically, the

amplitude of the ventral flagellar waveform was significantly

decreased from 2.04 mm in wild type to 0.85 mm in the dominant

negative strain. A C-terminal GFP tag allowed visualization of the

dominant negative alpha2-annexin::GFP, which localized to the

ventral flagella plasma membrane (Figure 3) and somewhat to the

ventral disc, albeit with a weaker signal than the alpha2-

annexin::GFP strain. Two of the four active calcium-dependent

binding sites were mutated, leaving only two with the ability to bind

the membrane, likely resulting in lower signal intensity.

The dominant negative alpha2-annexin (D122A, D275A)
strain has a decreased ventral flagellar waveform but
minimal defects in attachment

Because overexpression of the dominant negative alpha2-

annexin resulted in defects of the ventral flagellar waveform, we

assessed the ability of this strain to attach using both TIRFM and

live biophysical assays of normal [19] and shear forces. Because

prolonged exposure to fluorescence microscopy can induce

changes in flagellar beating, we limited our observations to less

than 30 minutes in temperature-controlled, closed environments.

Flagellar beat measurements were captured with TIRFM at very

lengths (see also Video S2). In contrast, 24 hours after the electroporation of an anti-PF16 morpholino, ventral flagellar beating is slow and erratic
with consistent pauses (n = 50, see also Video S4). At 48 hours, both the caudal and ventral flagella are shorter than in the wild type or the mispair
morpholino control. Panel (D) shows trophozoite-surface contacts using cell membrane stained trophozoites with TIRFM (as in Figure 1). Note the
continuous disc seal (lc), lateral shield (ls) and bare area (ba) contacts with the surface of the PF16 morpholino knockdown, despite erratic and
transiently paralyzed ventral flagella (Video S4).
doi:10.1371/journal.ppat.1002167.g002
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low (10 ms) exposures for two seconds, and then confirmed with

phase contrast microscopy. Trophozoites overexpressing the

dominant negative alpha2-annexin could still form a seal at the

ventral disc perimeter (Figure 3), and could resist increased normal

and shear forces despite the observed defects in ventral flagellar

waveform (Figure 4). We did observe a decrease in the ability of

Figure 3. Overexpression of a dominant negative alpha2-annexin::GFP (D122A, D275A) decreases ventral flagellar waveform
amplitude with only slight decreases in attachment. The role of the ventral flagella in attachment was determined using overexpression of a
dominant negative form of the ventral flagella-associated alpha2-annexin (see Methods). DIC microscopy was used to measure the amplitude (A) of
the ventral flagellar waveform (vf). Fluorescence microscopy was used to determine the localization of the GFP-tagged alpha2-annexin. Panel (A)
shows that alpha2-annexin localizes primarily to the ventral flagella and diffusely to the plasma membrane of the ventral disc, yet GFP-tagging does
not affect flagellar beat frequency or amplitude. (B) Overexpression of the dominant negative alpha2-annexin (D122A, D275A), or alpha2-annexin dn,
results in a ventral flagellar (vf) beat with significantly decreased amplitude (n = 25; see also Video S3). Panel (C) shows trophozoite surface contacts
using cell membrane stained trophozoites using TIRFM. As compared to the standard in Figure 1, proper substrate surface contacts are made,
including a continuous disc seal (lc), lateral shield (ls) and bare area (ba). The same trophozoite surface contacts and disc perimeter seal are visible
despite a diminished flagellar waveform amplitude and asynchrony between the flagella (see also Video S4).
doi:10.1371/journal.ppat.1002167.g003

Flagellar Motility in Giardial Attachment
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the dominant negative alpha2-annexin strain to withstand normal

forces in the centrifuge assay as compared to wild type that could

be attributed to an increased rigidity in the plasma membrane of

the ventral disc as well as the ventral flagella.

The rate of attachment slows after treatment with anti-
PF16 morpholino

Rather than being directly involved in generating a hydrody-

namic current, flagellar motility could be important for positioning

trophozoites so that the ventral disc is oriented parallel to the

substrate. Defects in cellular positioning would not necessarily

affect the overall number of cells attached but could slow the initial

rate at which trophozoites attach to surfaces. Using live imaging

we observed that the anti-PF16 morpholino-treated trophozoites

often settled near the substrate, yet were oriented incorrectly with

the disc side facing away from the surface. We then used time-

lapse imaging of live trophozoites attaching to the bottom of a 96-

well plastic cell culture plate and quantified the number of cells

able to attach at specific intervals over a thirty-minute period

(Figure 5). As compared to wild type and mispair morpholino

controls, the anti-PF16 morpholino cells took longer to attach to

the substrate (Figure 5) and had a decreased skimming motility as

compared to wild type. Moreover, the rate of attachment was

significantly decreased at each time point over a thirty-minute

period in the trophozoites with defective flagellar beating.

Discussion

In the highly variable environment of the small intestine, Giardia

trophozoites need to remain attached to the intestinal villi to prolife-

rate and to avoid peristalsis. Proposed models of giardial attachment to

surfaces can be broadly categorized as: ligand-independent interac-

tions (electrostatic or van der Waals) [19], ligand-specific interactions

[32,33,34,35,36], ‘‘clutching mechanisms’’ [6,17,32,37,38], or ‘‘suc-

tion’’-mediated mechanisms [6,7,17,18,19,37,38], (reviewed in [37]).

The majority of the proposed models, particularly those involving

flagellar motility, are primarily based on microscopic observations

[7,38,39,40,41,42,43,44,45]. Understanding the active or passive

contribution of the flagella to attachment dynamics is of funda-

mental importance toward developing new classes of anti-giardial

compounds.

Surface contacts of the ventral disc and cell body define
distinct stages in attachment and detachment

Trophozoites attach to both biological substrates such as the

intestinal microvilli (in vivo attachment) and inert substrates such as

Figure 4. Trophozoites are able to maintain attachment when challenged with normal and shear forces, despite reduced flagellar
beat frequency or diminished flagellar amplitude. The ability of cells to resist detachment was measured using both a centrifuge assay to
calculate normal force and a flow cell assay to calculate shear force. Panel (A) shows the number of cells (n = 300, in triplicate) with reduced flagellar
beat frequency that resist detachment after challenge, normalized to the number of non-centrifuged control cells (1x gravity) for each of two
conditions (518 pN and 2.1 nN). Graph (C) shows the number of cells (n = 125, in triplicate) that resist detachment in a flow chamber when challenged
with laminar flow (1.5 nN of force) normalized to control cells (no flow). Greater than 70% of the population was able to resist detachment under both
types of force. The dominant negative alpha2-annexin (alpha2-annexin dn) strain was challenged under the same conditions of normal (B) (n = 4,000
in triplicate) and shear force (D) (n = 400 in triplicate). Despite diminished flagellar waveform amplitude and overexpression of a plasma membrane
protein, 50% or more of the dominant negative alpha2-annexin::GFP (D122A, D275A) population was able to resist detachment.
doi:10.1371/journal.ppat.1002167.g004

Flagellar Motility in Giardial Attachment
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plastic or glass (in vitro attachment); however, the precise contacts

of the ventral disc or the trophozoite cell body with the surface

have not been defined. Giardial attachment has been broadly

defined as the number of cells that remain adhered to a given

surface after an experimental treatment [33,36,41,46,47,48].

Based on these definitions, attachment has been quantified using

three types of experimental approaches: 1) direct/indirect counts

of attached and unattached cells [33,36,41,46,47,48]; 2) live

imaging [7,17,18,38,49,50]; and more recently 3) a novel

centrifuge assay of normal attachment force [19]. Most attach-

ment assays have counted the number of adherent trophozoites at

the population level after long incubation periods (,2-24 hours),

as opposed to quantifying the attachment dynamics of individual

trophozoites under physiological conditions comparable to the

host. Attachment generally has not been correlated with cell

viability despite the common understanding that Giardia detaches

when dividing [28,45], when non-viable, or when exposed to

oxygen or low temperature [46].

Using TIRFM to capture attaching trophozoites (Figure 1), we

demonstrate that a binary (on/off) conception of attachment is

misleading and overly simplistic. Giardial attachment occurs as a

stepwise process proceeding in degrees of cellular contact with the

surface (Figure 1). Four stages of attachment include skimming, disc

seal formation (via the lateral crest), lateral shield contact and bare

area contact (Figure 1). In each stage the disc remains concave, with

only the disc edges and later the bare area contacting the surface.

While the timing of these stages can vary from less than one second

to several seconds, the stages of surface contacts during attachment

and detachment (Figure 1) always occur in this stepwise fashion.

Quantifying cell surface contacts also permits the assessment of

attachment defects resulting from drugs or potential molecular

genetic disruptions of the attachment mechanism.

During detachment, the disruption of surface contacts of the cell

body and ventral disc occur in reverse order to the stages of

attachment (Figure 1). Movements of the caudal pair of flagella are

thought to generate the flexing of the posterior trophozoite ‘‘tail’’

region, indirectly resulting in detachment [10]. Our TIRFM

analysis indicates that the tail region does not flex toward the

surface prior to detachment and thus do not support this notion.

Nonetheless, whether lateral tail flexion or dorsal tail abduction

causes detachment still needs to be directly tested.

Our analysis of surface contacts also has specific implications for

giardial attachment models (summarized recently in [8]). Soloviev

and Holberton [7] proposed that a hydrodynamic force generated

by ventral flagellar beating created a negative pressure differential

under the adjacent disc to cause suction (also see Figure 1). The

ventral flagella would theoretically create a fluid flow transmitted

through a ventral disc channel toward a posterior disc cavity

(Figure 1B). Thus, hydrodynamic-based suction would be

contingent upon the presence of an ‘‘arched profile’’ of the

ventrolateral flange, a ventrolateral channel around the perimeter

of the disc and a hypothetical ‘‘disc portal at the posterior rim of

the disc’’ [51]. Trophozoite surface contacts using TIRFM

(Figure 1C-F) demonstrate that the disc perimeter forms a

continuous seal with the surface. Further, we do not observe

either an anterior or a posterior channel when cells are attached.

What was previously considered to be a putative channel is, in fact,

the lateral crest of the disc pressed against the substrate to form the

seal. The anterior portion of the cell, including the ventrolateral

flange, may be a flexible region.

Overall defects in flagellar motility or specific defects in
ventral flagellar beating do not adversely affect
attachment

We used two molecular genetic approaches to generate

trophozoites with flagellar motility defects to test further whether

the ventral (or any) flagellar beating is necessary for giardial

attachment.

First, we generated general flagellar beating defects by knocking

down the giardial homolog of PF16 (Figure 2), a component of the

central pair apparatus of axonemes [27] that localizes to the C1

microtubule of motile (‘‘9+2’’) flagella. In Chlamydomonas, mutations

in pf16 result in paralyzed flagella [22], and in trypanosomes

RNAi of pf16 results in erratic flagellar twitching [21,25]. PF16

knockdown can result in axonemal ultrastructural defects,

paralyzed flagella, or poorly beating flagella and can ultimately

result in axonemes lacking the C1 microtubule [21]. Knockdown

of PF16 in Giardia caused a significant decrease in flagellar beat

frequency (Figure 2) yet did not cause complete paralysis of

flagellar motility. Transient paralysis or pausing did occur every

six to eight beat cycles. We also observed shortened ventral and

caudal flagella, with one caudal flagellum consistently shorter than

the other (Figure 2). This may be a preliminary indication that one

caudal flagellum is older than the other caudal flagellum.

Alternatively this observation supports findings in Chlamydomonas

that indicate that when a new flagellar axoneme is under

construction, length regulation is not limited to the new flagellum,

but affects the pair as a whole [52].

To generate ventral flagellar beating defects specifically, we

created and overexpressed a dominant negative version of the

alpha2-annexin in trophozoites (Figure 3 and Figure S1). Based on

the observed ventral flagellar defects, alpha2-annexin is a

presumptive component of the ventral flagellar membrane scaffold.

Annexins mediate interactions between the cytoskeleton and the

plasma membrane [31,53], and in Giardia, the flagella-specific

annexins may regulate the stabilization of flagellar membranes by

linking axonemal microtubules to the plasma membrane [54]. We

show that parasites are still able to maintain proper surface contacts,

despite a ventral flagella waveform of less than half that of wild type

due to the overexpression of the dominant negative alpha2-annexin.

The fraction of cells able to maintain attachment under normal and

Figure 5. Defective flagellar beating hinders the initiation of
attachment but does not affect the ability to maintain
attachment. Attachment was imaged and quantified over thirty
minutes in wild type, in the PF16 morpholino knockdown and in cells
treated with mispair morpholino (see also Video S5). Cell counts of
attached trophozoites were normalized to the total number of cells
attached at thirty minutes. Error bars indicate standard error of the
mean; n.100 in triplicate.
doi:10.1371/journal.ppat.1002167.g005
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shear forces was slightly reduced but because the alpha2-annexin

protein localizes to the plasma membrane of the ventral disc as well

as the flagella, we surmise that increased ventral disc membrane

rigidity may affect the disc attachment dynamics. Eighty-two

percent of the trophozoites exhibit the defective flagellar motility

phenotype. If ventral flagellar motility were essential for attachment

as predicted by the hydrodynamic model [7], only 18% of the cells

would be expected to remain attached due to the lack of penetrance

of the phenotype. We observed that over two-thirds of parasites

remained attached when compared to the uninduced construct

(Figure 4); there is not a statistical difference between these

percentages. Despite this slight reduction, the formation of proper

surface contacts (as visualized by TIRFM of individual cells with

impaired motility (Figure 3)) supports the argument that ventral

flagellar beating is not directly responsible for attachment.

Thus, both the PF16 knockdown and the overexpressed

dominant negative, ventral flagella-specific annexin strain could

initiate and maintain attachment, as measured by the degree of

surface contact (Figures 2 and 3) or in live imaging-based

biophysical assays (Figure 4). The ability of attached cells to resist

shear and normal forces, despite a decreased waveform amplitude

or flagellar beat rate indicates that maintenance of attachment is

independent of fluctuations in flagellar motility [7], and does not

support the hydrodynamic model. While ventral flagellar beating

is coincident with attachment, ventral flagellar beating neither

directly causes nor directly results from the process of attachment.

Flagellar beating is critical for cellular orientation and
positioning prior to attachment

Trophozoites colonize the small intestine after excystation, and

flagellar motility is likely required for orientation and positioning

the trophozoite against the intestinal villi and for resisting

peristaltic currents. Therefore, independent of creating a hydro-

dynamic current, flagellar motility could have an indirect role in

positioning and orienting trophozoites with the ventral disc

parallel to in vivo or in vitro surfaces prior to attachment.

Overall deficits in flagellar motility should affect both rotational

motility (via the anterior flagella) and skimming motility (via the

ventral flagella). Over time, trophozoites with aberrant motility

may settle and attach to surfaces, but the time required for

orientation and positioning prior to attachment could be

significantly longer. In support of this idea, the anti-PF16

morpholino knockdown, with universal defects in flagellar motility

and/or length (Figure 2), did take significantly longer to attach at

each time point over thirty minutes during time-lapse imaging

(Figure 5), and often settled to the substrate with the ventral disc

up or remained swimming near the substrate (Video S4).

Anterior flagellar motility is proposed to be responsible for

rotational movements [10], thus anterior flagellar defects resulting

from the PF16 knockdown would affect trophozoite orientation.

Beating of the ventral flagella has been proposed to generate

forward movement [10], and thus the disruption of ventral

flagellar function (Figure 3) contributed to the inability of

trophozoites to efficiently skim. Skimming motility allows the

trophozoite to remain close to the substrate while searching for a

desirable attachment location. Temporal lags in attachment due to

flagellar motility defects might even result in more significant

decreases in attachment in vivo due to consistent peristaltic flow.

Flagellar motility indirectly contributes to giardial
attachment

Models of giardial attachment are not mutually exclusive, and it

is clear that site recognition, flagellar motility, and disc-mediated

suction each contribute to in vivo attachment. With respect to site

recognition, ligand-specific interactions could be involved in the

parasite’s selective colonization of the small intestine

[32,33,34,35,36] in conjunction with flagellar motility. Despite a

suggested role for sugars or lectins in mediating specific

interactions of Giardia with host cells in vivo (reviewed in [55]),

lectin-mediated site recognition is not necessary for attachment in

vitro.

Once a site is recognized in the host, and flagellar motility

positions the trophozoite, attachment may occur directly via a

suction-based mechanism; suction is reported to be sufficient for in

vitro attachment [19]. In the absence of a hydrodynamic current

created by ventral flagellar beating to generate a negative pressure

differential or suction underneath the disc, we propose that suction

could be generated directly via a conformational change of the

ventral disc. In this model, the lateral crest would first initiate the

disc ‘‘seal’’ as observed in TIRFM (Figure 1). Next, a negative

pressure differential would occur under the ventral disc via

conformational changes of principal disc structures (MTs,

microribbons, crossbridges and/or motor proteins). These struc-

tures would then relax back to their original conformation,

producing a pressure differential between the arched disc and the

substrate, consistent with TEM studies [11]. Alternatively, the

ventral disc of the trophozoite could undergo a conformation

change via protrusion of the bare area (as seen in the TIRFM,

Figure 1). This change in the ventral disc volume would result in

decreased fluid pressure due to the displaced fluid. The low

pressure under the disc, compared to the surrounding high

pressure of the environment would result in a pressure differential

that may explain Giardia’s mode of suction-based attachment.

Flagellar motility prior to attachment is a key factor in Giardia’s

pathogenesis and colonization of the host small intestine. The

work presented here underscores that flagellar motility is

important for positioning and orienting trophozoites prior to

attachment. The consequence of inhibition of flagellar motility is a

decrease in number of attached cells in vivo as is apparent in vitro

(Figure 5). Thus, drugs affecting flagellar motility could indirectly

result in lower levels of attachment by limiting the number of cells

that can position the ventral disc properly against a surface and

against peristaltic flow.

Methods

Strains and culture conditions
G. intestinalis strain WBC6 (ATCC 50803) trophozoites were

maintained in culture at 37uC in modified TYI-S-33 medium with

bovine bile [56] in sterile 13 ml screw-capped disposable tubes

(BD Falcon) and incubated upright without shaking. For imaging,

trophozoites were also grown on coverslips placed in 8-well dishes

in a sealed chamber (PlasLabs) and gassed with 100% N2 to

maintain a low oxygen atmosphere. The chamber was incubated

at 37uC prior to live cell imaging.

Construction of the C-terminal pf16-3HA integrated
strain

Integration of an HA-tagged version of the pf16 gene permitted

the assessment of morpholino knockdown in the absence of a

specific anti-PF16 antibody. The C-terminal portion of the PF16

gene was cloned in frame to a 3HA-tag and then into a pJET vector

containing a neomycin selectable marker as previously described

[26]. NruI was used to linearize the vector. Trophozoites were

transformed with linearized vector by electroporation as previously

described [26], resulting in C-terminal fusion of a 3HA tag to at

least one endogenous copy of the PF16 gene. Transformants were

Flagellar Motility in Giardial Attachment

PLoS Pathogens | www.plospathogens.org 9 August 2011 | Volume 7 | Issue 8 | e1002167



selected with 200 mg/ml neomycin G418 (Sigma). Endogenous

integration of the construct was confirmed using PCR primers

specific to the N terminus of the pf16 gene and the 3XHA epitope

tag. The localization of PF16 to all eight axonemes was verified with

immunostaining using a monoclonal anti-HA antibody (Sigma

H9658) at a 1:100 dilution and an Alexa 594 goat anti-mouse IgG

secondary antibody (Invitrogen) at a 1:200 dilution.

Morpholino-based knockdown of the central pair protein
PF16

To knock down the giardial axonemal central pair PF16

homolog (GiardiaDB GL50803_16202), anti-sense morpholino

oligonucleotides (GeneTools) were designed to the 59 flanking

region and first codons [14] with the following sequence: 59

TACGACGAAGCGATTAGTTGCCATG 39. Anti-PF16 mor-

pholino oligonucleotides (100 mM final concentration) were

electroporated into log phase trophozoites as previously described

[14]. Morpholino-transformed cells were then incubated for 24

and 48 hours before the phenotype was assessed. To control for

off-target effects of the electroporation or of the electroporated

morpholino oligonucleotides, both sterile water or a morpholino

with five mismatches (59 TATGACAAAGCGGTTAGTAGC-

CATA 39) were also electroporated. Following electroporation of

PF16 specific morpholino oligonucleotides or controls, cell

morphology, flagellar beating, and attachment were assessed in

both live and fixed trophozoites (see below).

To determine the extent of knockdown, Western blotting was

used to assay the HA-tagged PF16 levels in crude preparations of

wild type G. intestinalis WBC6 or in extract from the integrated

HA-tagged PF16 strain. Giardia PF16-3HA protein was detected

using a 1:2000 dilution of anti-HA antibody (mouse monoclonal,

Sigma H9658) and an HRP-conjugated secondary antibody (Bio-

Rad) at 1:4000 dilution. The blot was also probed with anti-actin

antibody at 1:1500 to verify equal loading. The degree of PF16

knockdown was quantified using the Alpha Innotech Gel imaging

and documentation system (Cell Biosciences).

Construction of C-terminal GFP-tagged alpha-2
annexin::GFP and dominant negative alpha2-
annexin::GFP (D122A, D275A) strains

By adapting a methodology that has been used to create

dominant negative mutant forms of kinesin or dynamin in Giardia

[15,16], we constructed dominant negative mutations in the

alpha2-annexin gene (D122A, D275A). We expected ventral

flagellar defects with overexpression of alpha-2 annexin as it was

previously shown to localize to the membrane-bound portions of

the ventral flagella [30]. The conserved asparagines (D) were

changed to alanines (A), as has been done previously for human

annexins [29]. Alpha2-annexin :GFP fusions containing dominant

negative mutations were placed under the control of a tetracycline-

inducible promoter and the mutant protein was overexpressed in

Giardia [57]. GFP tagging permitted the identification and

characterization of trophozoites with significant levels of overex-

pression. Using the plasmid pTetGFPC.pac [15], we first created

the tetracycline-inducible C-terminal alpha2-annexin::GFP fusion

vector, pTetA2::GFPC.pac. We PCR amplified the alpha2-

annexin gene (GiardiaDB GL50803_7796) using Giardia genomic

DNA as a template with the following oligonucleotide primers:

TA2giaF: 59 GATCAGGCGCGCCATGCCGAAGCTATC-

CCAGATCGTCGC 39

TA2giaR: 59 ACCGGTAGAGCGCCGGCTCCGGCTCCG-

GCCGCTGCGCCCTCCCTTAGGCGCCAGAGGGTACAG-

AG 39

The PCR amplicon yielded alpha2-annexin flanked by 59 AscI

and 39 AgeI restriction sites, permitting subcloning into

pTetGFPC.pac. G. intestinalis strain WBC6 was transformed by

electroporation with roughly 50 mg of pTetA2::GFPC.pac DNA

using the GenePulserXL (BioRad) as previously described [58]

with the following modifications: 375V, 1000 mF, 25 ohms.

Episomes in transformants were maintained by antibiotic selection

using 50 mg/ml puromycin (Sigma) [58]..

To create the pTetA2_D122A_D275A::GFP.pac dominant

negative we used site-directed mutagenesis (Stratagene Quik-

Change Site-Directed Mutagenesis Kit) with pTetA2::GFPC.pac

as a template and the following PCR primers: For D122A:

A2g122F: 59 TTCATGAAGGCTGTCGGCCG 39; A2g122R:

CGGCCGACAGCCTTCATGAA 39; and for D275A: A2g275F:

59 GGTGCTTTGCTAAGCGCA 39; A2g275R: TGCGCTT-

AGCAAAGCACC. The two point mutations (D122A and

D275A) were created within the alpha2-annexin gene contained

in the pTetA2::GFPC.pac construct; point mutations were

confirmed by DNA sequencing. Constructs were electroporated

into Giardia as described above. Induction of expression of alpha2-

annexin in inducible strains was achieved by using 15 mg/ml of

doxycycline per 12 ml culture for 24-48 hours. The maximal

induction of transgenes occurred at 6-8 hours, and continued for

over 48 hours after removal of doxycycline (see Video S1).

Induction and overexpression of alpha2-annexin (D122A,

D275A) was confirmed using RT-PCR. Total cellular RNA was

isolated from uninduced cells and from induced alpha2-annexin

(D122A, D275A) cells at 24 and 48 hours after induction using the

Cells-to-cDNA kit (Ambion). GFP overexpression was compared

using the relative method of quantification [59], and GFP

expression levels were normalized to the single copy giardial actin

gene. Overexpression was determined from comparisons of

normalized GFP expression in induced time points to uninduced

controls. Thus, for quantitative analysis of expression, 1 ml aliquots

of the cDNA synthesis reactions were used in subsequent actin

(actF 59 CCTGAGGCCCCCGTGAATGTGGTGG 39 and actR

59 GCCTCTGCGGCTCCTCCGGAGG 39) and GFP-specific

(GFPF 59 GAGCTGTTCACCGGGGTGGTGCCC 39 and GF-

PR 59 CGGGCATGGCGGACTTGAAGAAGTCGTGC 39)

PCR amplifications with DyNamo HS SYBR Green qPCR

Master Mix (Finnzymes). QPCR was performed with the Opticon

2 system (Bio-Rad). To demonstrate that RNA samples were not

contaminated with DNA, control cDNA synthesis reactions were

performed in the absence of reverse transcriptase.

Immunostaining, light microscopy and image data
analysis

Immunostaining and paraformaldehyde fixation of the

alpha2-annexin::GFP and PF16::HA strains was performed as

previously described [28] with anti-TAT1 tubulin (a kind gift

from Keith Gull’s laboratory) or anti-HA (Sigma) antibodies at

1:100 with Alexa 594 secondary antibody at 1:400 (Invitrogen).

Images were collected with Metamorph image acquisition

software (MDS Technologies) using a Leica DMI 6000 wide-

field inverted fluorescence microscope with a PlanApo 100X,

NA 1.40 oil immersion objective and captured with a Q imaging

Rolera-MGi EMCCD. Serial sections were acquired at 0.2 mm

intervals, and deconvolved using Huygens Professional decon-

volution software (SVI). For presentation purposes, 2D maxi-

mum intensity projections were created from the 3D data sets.

Simple histogram adjustments were made to increase visualiza-

tion of the dominant negative alpha2-annexin::GFP (D122A,

D275A) strain.
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Live cell imaging of attachment and flagellar beating
using Total Interference Reflection Microscopy (TIRFM)
and Differential Interference Contrast (DIC)

TIRFM uses evanescent waves that selectively illuminate and

excite fluorophores in restricted regions of the specimen adjacent

to the glass-water interface. This evanescent field decays

exponentially away from the source, penetrating only about

100 nm into the sample [60]. For TIRFM, trophozoites were

resuspended in 1X HEPES Buffered Saline (HBS) and incubated

on ice for 10 minutes. To stain cell membranes, trophozoites were

incubated for an additional 5 minutes on ice with CellMask

Orange (final concentration of 2 mg/ml; Invitrogen). Stained cells

were concentrated by centrifugation (900 x g for 5 minutes) and

resuspended in 500 ml of warmed 37uC 1X HBS prior to imaging.

A simple imaging chamber was created by mounting a coverslip to

a standard slide with parallel lines of double-sided adhesive tape to

define an imaging chamber. Cells were loaded into the chamber

using a wide-bore pipette, and the edges were sealed with melted

VALAP (equal parts Vaseline, lanolin, and paraffin). This

chamber provided a microoxic environment sufficient for short-

term imaging experiments up to one hour. Live cell imaging was

performed in a microscope stage incubator (OkoLab) at

temperature of 35-37uC using a 515 nm laser with 10 ms

exposures at 30-60 ms intervals for less than two seconds; no

CCD gain was used. Images were collected with a QuantEM 512

SC EMCCD camera (Photometrics) on a 3i Marianas inverted

spinning disk confocal microscope system. The TIRF angle was

achieved with a 100X 1.46 NA oil immersion objective. Controls

for the axial plane showed loss of signal/resolution past 200 nm,

which was confirmed with axial confocal controls. Slidebook

software (Intelligent Imaging Innovations) was used for minor

image processing such as cropping and 2D intensity plots.

Live cell imaging and analysis of flagellar beat and
motility

To assess flagellar beating and motility in live trophozoites, we

used live imaging with DIC microscopy. Dead and/or unattached

cells were decanted from culture tubes 1 to 4 hours prior to

imaging, and fresh medium was added. The culture was then

incubated on ice for 15 minutes, and pelleted by centrifugation at

900 X g at 4uC. Cell pellets were resuspended in 500 ml 37uC
medium and transferred into a 35 mm glass bottom Petri dish

(MatTek). The Petri dish was placed in a closed chamber and

gassed with N2. The cells were allowed to attach to the dish for

1 hour before the dish was removed and the lid was sealed with

Parafilm. This chamber provided a microoxic environment

sufficient for short-term imaging of 1 to 4 hours.

Flagellar length and potential motility defects in the ventral

flagellar pair (synchrony, waveform, and frequency) were assessed

using live cell imaging. Flagellar length was measured for the

membrane-bound portions from the flagellar pocket exit point to

the distal flagellar tip. The synchrony of the ventral flagellar pair

was observed by visually confirming whether ventral flagella beat

in unison [6]. Ventral flagellar waveform was classified as

sigmoidal (wild type) or abnormal and scored by the measurement

of ventral flagellar amplitude and wavelength. Amplitude was

measured by drawing a line from the basal bodies to the tip of the

cell posterior and distance is measured from the line to the peak of

the first wave [6] using Metamorph image acquisition software

(MDS Technologies). Flagellar wavelength was measured by

drawing a line from the first wave peak (proximal to the disc) to the

next peak toward the tip. Ventral flagellar beat frequency has been

previously reported to be 18 Hz [7,10,13]. Based on these

measurements we satisfied proper Nyquist sampling by imaging

at least twice the published frequency, thus capturing 36-45

images/second with 22-30 ms exposures.

Quantification of shear forces of attachment using a
laminar flow assay

The effect of shear forces on live trophozoites attached to a glass

substrate was imaged using a syringe pump to create laminar flow

with a temperature controlled Harvard Apparatus RC-31 parallel

plate flow cell chamber (Warner Instruments) mounted onto an

inverted Nikon Eclipse TS100 microscope with a 10X/0.25NA

ADL objective and a Retiga 2000R CCD (Qimaging) as

previously described [18]. The RC-31 chamber was fitted with a

100 mm narrow slot chamber gasket. The syringe pump was

attached to the flow chamber via PE-10 and PE-90 tubing and a

three-way stopcock for introduction of cells. For each time point,

we chilled one 13 ml tube of giardial culture on ice and pelleted

cells by centrifugation at 900 x g for 5 minutes. Cells were

resuspended in 1 ml chilled medium and transferred into a 1 ml

syringe. Cells were kept on ice no longer than 15 minutes.

Shear force experiments were performed on trophozoites

24 hours after the introduction of the PF16 morpholino or 24 hours

after induction of the alpha2-annexin dominant negative construct.

Specifically, the flow chamber was pre-warmed with 37uC 1X HBS

for 5 minutes followed by warmed medium for 1 minute. A volume

of 250 ml of trophozoites was introduced via a 1 ml syringe with an

18 gauge blunt needle into the chamber via a port on a three-way

stopcock added to the media input line. Next, trophozoites were

flowed into the flow cell chamber and allowed to attach for 5

minutes. The line was rinsed of floating cells until none were seen, at

a rate of 0.5 ml/min. A pre-assay image was taken (Time = 0). Cells

were then challenged with a 3 ml/min or greater laminar flow rate

[18] for 1 to 3 minutes as images were captured via phase contrast at

10 second intervals. As a control for detachment, 5% bleach at 37uC
was introduced into the chamber, whereby all cells detached within

5 seconds. The rate (greater than 3 ml/minute) and chamber area

(208 mm) were then converted to a ‘‘shear’’ force of 1.5 nN. To

quantify the fraction of cells that maintained attachment over a

range of shear forces, cell counting was performed manually or

using Metamorph image acquisition software (MDS Technologies).

The proportion of attached morpholino-treated cells and/or

alpha2-annexin dominant negative trophozoites were normalized

to the wild type attached trophozoites.

Assessing normal forces of attachment using a centrifuge
assay

Defects in the normal forces of attachment in trophozoites were

assayed at the population level using a physical attachment assay

[19]. Briefly, PF16 morpholino or alpha2-annexin dominant

negative trophozoites were cultured and pelleted as above. Cells

were resuspended in 10 ml of chilled media, and then 3 ml were

transferred to custom sample holders capped with thick, circular

glass slides. The cells were incubated at 37uC for 1 hour in a

microoxic chamber (see above) to allow attachment to the glass

slides. Sample holders were centrifuged at 37uC in a hanging

bucket centrifuge (Sorvall RC5C HB4 rotor 07) at 5,000 and

10,000 rpm (518 pN and 2.1 nN normal force). Non-centrifuged

controls were prepared in the same manner and incubated at

37uC. Immediately after centrifugation, the glass slides were

removed from the chamber and five fields (,5000 cells) were

imaged and counted in phase contrast (see above). The proportion

of trophozoites maintaining attachment was normalized to the

non-centrifuged control within that run (the number of attached
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cells following centrifugation was divided by the number of cells

attached in the non-centrifuged sample to determine the fraction

of cells detached).

Live imaging and quantitation of pre-attachment
dynamics

The ability of cells to initiate attachment was measured by

assaying the number of cells attached in one microscopic field over a

30 minute time period. First, the medium in a 6 ml culture was

exchanged with 1X HBS at pH 7.0 and incubated on ice for 10

minutes. To stain the cell membranes for cell counting, CellMask

Orange (final concentration of 2 mg/ml; Invitrogen) was added, and

the cells were incubated on ice for an additional 5 minutes. Stained

cells were pelleted by centrifugation and resuspended in 250 ml of

chilled 1X HBS (1.16106 cells per ml suspension concentration).

For time-lapse imaging of attachment, 50 ml of stained cells were

transferred to a microwell (Corning) overlaid with mineral oil and

placed in a heated, closed stage chamber. The total number of

attached trophozoites was imaged using a 10x/0.25 NA objective

and quantified using time-lapse epifluorescence microscopy over a

range of time intervals from 1 to 30 minutes. Total cell attached

were counted using Metamorph image acquisition software.

Accession numbers
Alpha2-annexin (XP_001706958; GiardiaDB: GL50803_7796),

PF16 (XP_001705527: GiardiaDB: GF50805_16202.

Supporting Information

Figure S1 Immunostaining of integrated PF16::3HA tag
and Western confirmation of anti-PF16 morpholino
knockdown. Panel A shows a Western blot of the integrated

pf16::3HA strain, 24 hours after electroporation of: MilliQ water,

PF16 mispair morpholino or anti-PF16 morpholino. Giardia actin

was used as a loading control. The ratio under each column

represents the amount of 3HA-integrated protein still present.

These numbers indicate a block in translation of 15% due to

electroporation, 29% due to introduction of morpholino (mispair

control) and 65% due to the anti-PF16 morpholino. Panel B shows

maximum intensity projections of fixed cells immunostained with

anti-HA primary antibody and Alexa 594 secondary antibody.

Twenty-four hours after knockdown, PF16 localizes to the

cytoplasmic axonemes, as well as the membrane-bound portions

of all flagella. The PF16 knockdown cells exhibit the same

localization, in shortened flagella, with a 21% loss of fluorescence.

(TIFF)

Video S1 Attachment and detachment of a wild type
Giardia trophozoite, TIRFM movie. Attachment is captured

after a trophozoite skims along a warmed glass substrate. The

ventrolateral flange maintains contact with the substrate while the

cell is skimming and may be important in substrate recognition. In

this example, the lateral crest also maintains close affinity with the

substrate; however, the portion of lateral crest that makes contact

during the skimming stage is variable. Once the cell begins to

attach, a seal is formed with the lateral crest of the ventral disc.

The lateral shield, on either side of the cell body, then presses

against the substrate, quickly followed by a depression of the bare

area plasma membrane. During detachment, the respective steps

occur in reverse order. The bare area cell membrane disappears

from view, and the posterior cell body and lateral shield lift up.

This motion breaks the seal of the lateral crest and the cell

proceeds to skimming using the ventrolateral flange.

(MP4)

Video S2 Reduction in flagellar beat frequency result-
ing from anti-PF16 morpholino knockdown, DIC movie.
Movie A shows trophozoites 24 hours after electroporation with

the PF16 mispair control morpholino. Like wild type, the ventral

flagella have a regular, sigmoidal beat. Note that flagellar length is

also similar to wild type (Figure 2). Movie B shows an extreme

example of the PF16 phenotype, 48 hours after PF16 knockdown,

where all flagella are significantly shortened. In Movie C, observe

the shortened membrane-bound portion of the ventral flagella,

likely representative of structures existing before translation of the

PF16 protein was blocked. We also notice an increase in the

surface area of the ventral flange, often including projections.

(MP4)

Video S3 Diminished ventral flagellar beat frequency in
the dominant negative alpha2-annexin::GFP (D122A,
D275A) strain, DIC movie. Movie A is the alpha2-annex-

in::GFP trophozoite exhibiting a typical sigmoidal ventral flagellar

beat and amplitude. Movie B illustrates asynchronous beating of the

ventral flagella, a phenotype detected in 12% of the dominant

negative alpha2-annexin::GFP (D122A, D275A) trophozoites.

Movie C shows the phenotype of the majority of cells, in which

the amplitude of the ventral flagellar beat is significantly decreased.

(MP4)

Video S4 Flagellar beating and lateral crest seal (wild
type, alpha2-annexin dominant negative strain, anti-
PF16 morpholino knockdown), TIRFM movie. Movie A

shows surface contacts made by a trophozoite during attachment

to a glass substrate. Note the sigmoidal ventral flagellar beat and

the continuous seal made by the lateral crest of the ventral disc.

Movie B is an example of the dominant negative alpha2-

annexin::GFP (D122A, D275A), exhibiting a decreased ventral

flagellar beat amplitude, and Movie C is an example of the PF16

knockdown exhibiting normal cell movement but a decreased

flagellar beat frequency. Movies B and C show that cells form

surface contacts similar to wild type, including that of the lateral

crest, despite disruption of ventral flagellar function.

(MP4)

Video S5 Time-lapse movie of attachment (wild type,
anti-PF16 morpholino knockdown, mispair control),
epifluorescence movie. Equal numbers of trophozoites, stained

with CellMask Orange, were allowed to attach to a glass substrate in

a warmed, anoxic environment. Wild type, PF16 mispair control

and PF16 morpholino cells all attached with similar kinetics, but

significantly fewer PF16 knockdown cells were able to initiate

attachment at each time point (see Figure 5), indicating that the

flagella are important for positioning the cell to the substrate.

(MP4)
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