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ANALYSIS OF TWO-DIMENSIONAL FETI-DP PRECONDITIONERS
BY THE STANDARD ADDITIVE SCHWARZ FRAMEWORK

�

SUSANNE C. BRENNER
�

Abstract. FETI-DP preconditioners for two-dimensional elliptic boundary value problems with heterogeneous
coefficients are analyzed by the standard additive Schwarz framework. It is shown that the condition number of the
preconditioned system for both second order and fourth order problems is bounded by �������
	���
������������ , where
� is the maximum of the diameters of the subdomains, � is the mesh size of a quasiuniform triangulation, and the
positive constant � is independent of � , � , the number of subdomains and the coefficients of the boundary value
problems on the subdomains. The sharpness of the bound for second order problems is also established.
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1. Introduction. The Finite Element Tearing and Interconnecting (FETI)
method [14, 20, 21, 19, 32, 18, 15, 34, 35, 1] is a nonoverlapping domain decomposi-
tion method that has been implemented for large scale engineering applications. In the FETI
approach the system of finite element equations for the nodal variables (primal variables) is
enlarged to a system where the nodal variables on any subdomain are independent of the
nodal variables on the other subdomains, and the continuity of the finite element functions
across the interface of the subdomains is enforced by Lagrange multipliers (dual variables).
By eliminating the primal variables, a system of equations for the dual variables is obtained,
which can then be solved by the conjugate gradient method. In the case of many subdomains,
preconditioning is necessary for fast convergence and FETI preconditioners have been
studied in [29, 31, 23, 24, 5, 4].

Recently, a new FETI approach for two-dimensional problems was introduced in [16, 17,
33], where the continuity of the finite element functions at the cross points is retained in the
enlarged system and Lagrange multipliers are introduced only to enforce the continuity at the
other nodes on the interface of the subdomains. After the primal variables associated with
these other nodes and the nodes off the interface have been eliminated, a system involving
both primal variables (nodal variables associated with the cross points) and dual variables
(Lagrange multipliers associated with the nodes on the interface that are not cross points)
is obtained. Two notable features of the FETI-DP approach are: (i) the evaluation of the
operator associated with the dual-primal system no longer involves the solutions of singular
problems on floating subdomains, and (ii) a coarse problem is built into the evaluation of the
reduced operator associated with the dual variables.

Dirichlet preconditioners for the FETI-DP approach were studied in [30] where poly-
logarithmic bounds for the condition numbers of the preconditioned systems were obtained
for second and fourth order problems on two-dimensional domains. The goal of this pa-
per is to give an alternative derivation of the results in [30] and demonstrate that the
bound for second order problems is sharp, using the standard additive Schwarz framework
[11, 2, 39, 38, 12, 22, 37, 6]. This paper is therefore a continuation of the earlier work
[5, 4, 8]. Note that this approach can also be applied to three-dimensional FETI-DP methods
[17, 33, 25] and such an analysis of 3D FETI-DP methods will be carried out in a separate
paper.
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The rest of the paper is organized as follows. The description of the FETI-DP algorithm
for two-dimensional second and fourth order elliptic boundary value problems is given in
Section 2, followed by the definition of FETI-DP preconditioners and some preliminary es-
timates in Section 3. Condition number estimates for the FETI-DP preconditioners are then
given in Section 4. The sharpness of the condition number estimate for second order problems
is established in Section 5.

2. Two-Dimensional FETI-DP Methods. Let ������� be a bounded polygonal domain
subdivided into nonoverlapping (open) polygonal subdomains ���
	��
����	���� (cf. Figure 2.1),
with diameters ���
	����
��	���� . The maximum of ���
	����
��	���� will be denoted by � .
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FIG. 2.1. A nonoverlapping subdivision with an underlying triangulation

For concreteness we will consider two model problems. We take

(2.1) ����������	 �!��"�#%$&� ')(+*-, ����. , �!�&/�0 12���3	4�!�657� � �8�9��"
for the second order model problem, and

(2.2) ����������	 �9�
"�#%$&� ' ( *;:
�=<?>�@ AB< �

C �����C 0?> C 0DA C ���!�C 0E> C 0FA /�0 12����	4�!�G57� � �8�9�
"
for the fourth order model problem, where the $ � are positive constants.

Let H be a quasiuniform triangulation of � with mesh size I such that each � � is a union
of the triangles in H (cf. Figure 2.1), and J��8��"��K�MLN �8��" be the OP� finite element space
associated with H when QR#TS and the Hsieh-Clough-Tocher macro finite element space (cf.
[9]) when QR#%U . The discrete problem that we want to solve is:

Find VW5XJ��8��" such that

(2.3) �?��VY	4�Z"�# ' (6[ �!/�0 12�\5]J��8��"�	
where

[ 5]^ � �8��" and

(2.4) �?��VY	4�Z"�# �:
� _ � � � �`V � 	 � � "=	

with VD�2#aVcbb
(D*

and ���2#a�Ybb
(+*

.
REMARK 2.1. The results of this paper also hold for other elements for second and

fourth order problems, such as the bilinear finite element and the reduced Hsieh-Clough-
Tocher macro element [10].

The description of the FETI-DP approach requires some terminology from domain de-
composition: The set of all the vertices of the polygonal subdomains � � 	��
���
	�� � will be
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denoted by � . For example, there are 16 such vertices in � for the domain decomposition
depicted in Figure 2.1. The subset of � consisting of vertices not on

C � will be denoted by �
(the set of cross points). For example, there are 5 cross points on the boundary of the subdo-
main ��� in Figure 2.1. An open line segment on the boundary of a subdomain between two
consecutive vertices in � will be referred to as an edge of the boundary of the subdomain. For
example, there are 5 edges on the boundary of the subdomain � � in Figure 2.1. The interface
of the subdomains is the set � #�� �� _ � � � , where �?��# C �9��� C � is the part of

C �!� disjoint

from
C � . The set � �	�
� will be denoted by ���� and ��� is the set �
�
�X# � �� _ � ���� .

We will also use ��� to denote the set of the nodes of the finite element space belonging
to the geometric object � and � ��� to denote the number of elements in a set � .

Let J\� �9�	��� ��" be the subdomain finite element space associated with the triangulation
on �9� induced by H whose members vanish up to the derivatives of order Q���S on

C � ��� C � .
Let J be the subspace of the product space J��8� � ��� � "�� .�.�.��XJ��8� � ��� � " defined byJ #�� ��� � 	��
����	 � � "��P���65XJ��8�9�	���?��" for S! #"� %$ and � > #a�'& up to the(2.5)

derivatives of order Q(� S at all the cross points on
C � > � C �	&*) �

Note that the definition of �?� . 	�. " in (2.4) can be extended to the space J . Furthermore,�?���E	4�Z"2#,+ implies that � � is a polynomial of degree  Q-�aS on �!� for S� %". /$ . The
continuity at the cross points then implies that � is a global polynomial of degree  Q-�aS
on � and hence �\#0+ , because of the homogeneous Dirichlet boundary condition(s) on

C � .
Therefore, the bilinear form �?� . 	�. " remains symmetric positive definite (SPD) on J .

REMARK 2.2. Sometimes a cross point is defined to be a point in � belonging to the
boundaries of at least three subdomains. Let 1� be the set of cross points according to this
definition. In the case where all the subdomains are convex we have 1�M#2� . But in general 1�
is a proper subset of � . Note that in the case where a subdomain is surrounded by another,
the absence of cross points according to the stricter definition creates a singular problem on
the inner subdomain in the FETI-DP approach. This would not happen if the larger set � is
used.

We can identify the global finite element space J��8��" with the subspace of J whose
members (or more precisely their components) are continuous up to the derivatives of orderQ(� S along the interface � . Moreover, the continuity of the derivatives of the finite element
functions on ��� up to order Q3��S can be enforced by Lagrange multipliers.

For each 4�55��687 we introduce the Lagrange multiplier space 9#: as follows. Let 4 5
� >;�.� & . In the second order case 4 is a vertex and 9 : is spanned by the linear functional< : @ >�@ & 5MJ=� defined by

(2.6) > < : @ >�@ & 	 �@?BA #%� & �C4?"D� ��>Z�C4?" 1�� # �����3	�.
.�.&	 ���+" 5]J�	
where > . 	�.E? A represents the canonical bilinear form defined on JF�D� J . In the fourth order
case 4 is either a vertex or a midpoint. If 4 is a midpoint, then 9G: is spanned by <IH: @ > @ & 5WJ �
defined by

(2.7) > < H: @ >�@ & 	4��? A # C � &CKJ & �C4?"IL C ��>CMJ > �N4E" 12� # ��� � 	�.�.
.&	4� � " 5XJ9	
where

J & (respectively
J > ) is the outer unit normal of ��& (respectively � > ). If 4 is a vertex,

then 9O: is spanned by < : @ >�@ & , < H: @ >�@ & , <QP: @ >�@ & 5MJ=� . The linear functionals < : @ >�@ & and < H: @ >�@ & are
defined as in (2.6) and (2.7), and <QP: @ >�@ & is defined by

(2.8) > < P: @ >�@ & 	4��? A # C �'&CKR & �C4?"IL C � >CMR > �C4E" 12� # ��� � 	�.
.�. 	4� � "c5MJ�	
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where
R & (respectively

R > ) is the unit tangent along
C � > � C � & obtained by rotating the unit

normal
J & (respectively

J > ) counterclockwise through a right angle.
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FIG. 2.2. Lagrange multipliers along the interface of two subdomains

The three types of Lagrange multipliers are depicted graphically in Figure 2.2. The
Lagrange multiplier space 9 is taken to be

9 # �
:������ 7

9O: �aJ � �
Using 9 we can characterize the subspace of J corresponding to J�� ��" as �
� 5 J �
> < 	 �@?BA # + for all < 5�9,) .

The first step in the FETI-DP approach is to replace (2.3) by the following problem:
Find � 1V 		�?" 5XJ � 9 such that�:

� _ � � � � 1V � 	 � � " L%>
� 	4��? A # �:
� _ �

')( * [ � � /�0 12��5XJ9	(2.9)

> < 	 1VQ? A # + 1 < 5 9 	
where 1V # � 1V � 	��
����	 1V � " and � # ��� � 	
������	4� � " . It is easy to check that (2.9) is non-
singular and the solution of (2.3) is related to the solution of (2.9) through the relation

1V7# ��Vcbb
(
� 	��
����	 V!bb

(
� " .

We can also rewrite (2.9) more concisely as

(2.10) 
���� 1V 		�?"=	
�`�F	 < "���# �:
� _ �

')( * [ � � /�0 1����E	 < "c5]J/��9 	
where


 � ��� 	��E"=	
�`�F	 < " � # �:
� _ � �������!��	 ����"IL%>
�&	 �@? A L > < 	 �;? A 1 �`�6	��E"=	����E	 < " 5]J/� 9 �

Let J���� # �
��# ��� � 	����
��	 � � "X5 J � the nodal variables of � � , S# "% $ , vanish
at all the nodes in ��� C �!� ) (i.e., ��� vanishes at the cross points on

C �c� for the O � finite
element and ��� vanishes up to the first order derivatives at the cross points on

C � � for the
Hsieh-Clough-Tocher macro element). The space J � 9 admits the decompositionJ ��9 #���������	
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where � # J �	� ��� + ) and � � # � ���E	 < " 5 J � 9 � 
�� �`�F	 < "=	
�`�6	 + "���# + for all� 5XJ �	� ) . Indeed, since the bilinear form 
 � . 	�. " is nonsingular, we have

dim � J/� 9 "�# dim � L dim �����
Moreover, if ���E	 + " 5 � � � � , then

+6# 
 �4�`�F	B+�"=	����E	 + "4"9#��?���E	4�Z"=	
which implies � # + , because �?�4. 	
. " is SPD on J .

We can therefore write

(2.11) � 1VY	��?"�# � 1V ��� 	 + " L%� 1V ��	��?"�	
where 1V ��� 5]J��	� and � 1V � 	��?" 5 � � .

The second step in the FETI-DP approach is to reduce (2.10) to the following dual-primal
problem:

Find � 1V � 	��?" 5 � � such that

(2.12) 
 � � 1V �3		�E"�	
�`� � 	 < " � # �:
� _ �

' (+*-[ � �� /�0 1 �`� ��	 < "c5 �����
REMARK 2.3. Since 1V ��� in � 2.11 " is determined by�:

� _ � � � � 1V ���� 	4� ���� "�# �:
� _ �

' ( *-[ � ���� /�0 12� ��� 5]J �	�
and the components of V ��� are independent of one another, the reduction in the second step
of the FETI-DP approach involves solving SPD problems on the subdomains in parallel.

Let J����aJ be the orthogonal complement of J �	� with respect to �?�4. 	
. " . Note that

(2.13) J #�J��	� � J � 	
J � �.�'+�) � � � and � � has the decomposition

��� # � J � �O� + ) � � � J �O� + ) � � 	
where � J-�2� +�) � � # � ��� 	��E"X5TJ �G9 ��
 � �`�6	��E"=	����E	 + " � # + for all �a5 J ) . Note
also that ��� 	��E" 5 � J ��� + ) � � is completely determined by � and therefore can be written as� � �-	��E" , where

�
is the linear map from 9 to J defined by

(2.14) 
 � � � �-	��E"=	����E	 +�" � # + 12�\5]J9�
Hence, we can write

(2.15) � 1V �3		�E"!# � 1V	�
	 + " L%� � � 	��?"=	
where 1V � 5]J � .

In the final step of the FETI-DP approach the dual-primal problem (2.12) is further re-
duced to the following problem:
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Find �W5 9 such that

(2.16) 
 � � � � 	��?"=	�� � < 	 < " � # �:
� _ �

')( *-[ � � < " �&/�0 1 < 5 9 �
The role of a FETI-DP preconditioner is to improve the conditioning of the system (2.16) so
that it can be solved efficiently by a preconditioned conjugate gradient method.

REMARK 2.4. Since 1V � in � 2.15 " is determined by�:
� _ � �E� 1V �� 	 � �� "�# �:

� _ �
' ( *&[ � �� /�0 1�� � 5MJ��F	

the reduction in the final step of the FETI-DP approach involves solving a SPD coarse prob-
lem whose dimension is

dim J � # dim J � dim J��	� # �
� �
� for the O � finite element,� � �
� for the Hsieh-Clough-Tocher macro element.

The description above of the FETI-DP approach follows the actual solution process given
in [16, 17]. It shows that the evaluation of the operator defined by (2.16) on a given < 5 9
involves solving SPD problems on the subdomains in parallel and also solving a SPD coarse
problem that provides global communication among the subdomains. But the analysis of
FETI-DP preconditioners (cf. [30]) is best carried out through an alternative formulation of
(2.16) that is based on a decomposition of J different from (2.13).

Let J � # ��� # �`� � 	
���
��	4� � "c5]J ����� , S  #"� %$ , vanishes up to the derivatives of order��Q � S " on
C �9� ) . The space J admits the decomposition

J # J � � J 6 	
where J�6 is the orthogonal complement of J � with respect to �?�4. 	
. " , i.e.,

(2.17) J 6 # ����5]J ���E�`�F	 �2"9# + 12�T5XJ � )��
Note that J�6#�#9 # � J���� � +�) � � # � �`�6	��E" 5 J-�G9 � 
 � ��� 	��E"=	
�`�F	B+�" � #-+ for all��5MJ�� ) .

REMARK 2.5. For � � 5 J 6 , the nodal variables of � �� can take arbitrary values along
� 6 7 and share common � but arbitrary " values at the cross points. The rest of the nodal
variables � at the nodes in �

(
��������� �

(
� " are then determined by the �?� . 	�. " orthogonality of J 6

to J � . In particular, � �� is a discrete harmonic function on � � in the second order case and a
discrete biharmonic function in the fourth order case.

REMARK 2.6. Since > < 	4��? A # + for all �a5TJ�� and < 5 9 , we will treat 9 as a
subspace of J �6 .

We can write

1V # 1V���L 1V � 	
where 1V � 5XJ�� and 1V � 5XJ�6 , and reduce (2.9) to the following problem:
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Find � 1V � 	��?" 5]J 6 ��9 such that�:
� _ � � � � 1V �� 	 � �� "IL > � 	 � � ? 6 # �:

� _ �
' (+* [ � �� /�0 1�� � 5]J 6 	(2.18)

> < 	 1V � ? 6 #%+ 1 < 5 9 	
where > . 	�.E? 6 is the canonical bilinear form defined on J �6 �]J 6 .

Let � ��J 6 ��� J=�6 be defined by

(2.19) > �P� � 	 � � ? 6�#%�?�`� � 	4� � "�# �:
� _ � ������� �� 	 � �� "

for all � � # ��� �� 	
���
��	4� �� "=	4� � # ��� � � 	
������	4� �� "c5MJ�6 , and ��� 5]J �6 be defined by

(2.20) >����Z	4� � ? 6\# �:
� _ �

' (+*&[ � �� /�0 12� � # �`� �� 	��
���
	4� �� "c5MJ�6 �
We can now rewrite (2.18) as

> � 1V � 	 � � ? 6 L > � 	4� � ? 6 # >����Z	4� � ? 6 12� � 5MJ 6 	(2.21)

> < 	 1V � ? 6 #%+ 1 < 559 �
Note that the operator � is SPD, i.e.,

> � � � 	 � � ? 6�#�> � � � 	 � � ? 6 12� � 	4� � 5]J 6&	(2.22)

> �P� � 	4� � ? 6	� + 12� � 5XJ�6 � � +�) �
From (2.21) we obtain the following problem for � :
Find �M5 9 such that

(2.23) > < 	B��
 � � ? 6�#�> < 	B��
 � � � ? 6 1 < 5 9 �
The two problems (2.16) and (2.23) are identical since they both come from (2.9) by

eliminating 1V . Indeed, we have, by (2.14), (2.17), (2.19), (2.20) and (2.22),
� < #�� � 
 � < 1 < 5 9 	


 ��� � � 		�E"�	
� � < 	 < " � #��=> < 	B� 
 � � ? 6 1 < 5 9 	�:
� _ �

' (D* [ � � < " � /�0 #��=> < 	B� 
 � ��
 ? 6 1 < 5 9 �
Our analysis of FETI-DP preconditioners will be based on the formulation (2.23).

3. FETI-DP Preconditioners and Preliminary Estimates. Let
�� � 9 ��� 9 � be

defined by

(3.1) > < � 	 �� < � ?�� # > < � 	B��
 � < � ? 6 1 < � 	 < � 5 9 	
where > . 	�.E?�� is the canonical bilinear form defined on � 9 � " ���.9 �Y# 9 �.9 � . It follows
from (2.22) that

��
is SPD, i.e.,

> < � 	 �� < � ?��R#�> < � 	 �� < � ?�� 1 < � 	 < � 559 	
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> < 	 �� < ? � � + 1 < 5 9 � �'+�)��
We see from (2.23) that

��
is the operator that needs to be preconditioned in the FETI-DP

approach. The preconditioner for
��

will be constructed using Schur complement operators
associated with the subdomains.

Let JZ� �%J�� �9�
��� ��" be the space of discrete harmonic functions ( Q # S ) or the space
of discrete biharmonic functions ( Q #TU ) that vanish up to the derivatives of order Q � S at
the cross points on

C �!� . In order words, � � 5]J)� is characterized by the following conditions:

����������	 �9��"!#�+ 12�!��5MJ\� �9�	��� ��" � � LN � �9��"=	(3.2) ��� vanishes up to the derivatives of order Q(��S at every 4]5
� � ��6
*
�(3.3)

Note that

(3.4) J � � .
.�. �]J � �aJ�6 �
The Schur complement operator �?�!� J)� ��� J �� is defined by

(3.5) > � � � � 	4� � ? � #�� � �`� � 	4� � " 12� � 	4� � 5MJ � 	
where >4. 	
. ? � is the canonical bilinear form on J �� �XJZ� . It is clear that �F� is SPD.

In order to define the FETI-DP preconditioner we need connection maps

� �=��J �� ��� 9 �
We will treat the second order case and fourth order case separately.

Let 4 5�� 6 7 . Then 4 belongs to the common boundary of two subdomains �2> and � & .
We define the function � : �����?	�� ) � � ���?	�� ) by

(3.6) � :Z���+"9#�� and �Q:+���
"�#	�?�
For the second order model problem we define, for arbitrary 
P�G5]J �� ,

(3.7)
� ��
 �2# :

:���� � 7
* $
����� ���$ �	L $
� � � ��� >�
 ��	�� : @ �*? � < : @ ����� ��� @ � 	

where the $&� ’s are the coefficients appearing in (2.1) and � : @ �G5XJZ� satisfies

(3.8) � : @ �����3"�# � S � # 4-	
+ � 5 � 6 7* � � 4I)��

REMARK 3.1. The scaling $
����� ����� �`$&� L�$������ ��� " in � 3.7 " and � 3.9 " below enables us

to obtain an estimate for �������+�� �� " that is independent of the $ � ’s. This technique is well-
known in the literature � cf. [36, 28, 13, 35, 34, 24, 25, 4, 5] " . In fact, the results in this paper
remain valid if $ � � respectively $
� � � ��� " in � 3.7 " and � 3.9 " is replaced by $ P� � respectively$ P ����� ��� " for any

R"! S � U . We choose
R # S in � 3.7 " and � 3.9 " for simplicity.

The definition of
� � for the fourth order model problem follows the same principle. First

we introduce the discrete biharmonic functions �*: @ � , � H: @ � , � P: @ � and � HL @ � . Note that a function
in J)� is determined by its values and the values of its normal and tangential derivatives at
the vertices of H on ��� , and also the values of its normal derivatives at the midpoints of the
edges of H on ��� . For a vertex 4 5���6 7 , we define (i) � : @ � 5 JZ� to be the function that
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takes the value S at 4 and takes the value zero for all other nodal variables, (ii) � H: @ � 5 J � to
be the function whose normal derivative at 4 is S and takes the value zero for all other nodal
variables, and (iii) � P: @ � 5MJZ� to be the function whose tangential derivative at 4 is S and takes
the value zero for all other nodal variables. For a midpoint Q 5 �D�� , we define � HL @ � 5 J)� to
be the function whose normal derivative at Q is S and takes the value zero for all other nodal
variables.

We can now define, for arbitrary 
 �G5]J=�� ,

� ��
 ��# :
:���� � 7�� � $������ ���$ �	L $
����� ��� � >�
 ��	�� : @ �*? � < : @ ����� ��� @ � L >�
 ��	�� H: @ � ? � < H: @ � � � ��� @ �

L >�
 � 	�� P: @ � ? � < P: @ � � � ��� @ ���(3.9)

L
:

L ��� � 7 � �
$
� � � ���$ � L $
� � � ��� >�
 ��	�� HL @ � ? � < HL @ � � � ��� @ � 	

where � 6 7
* @ � is the set of the vertices of the triangulation H on � �� and � 6 7

* @ � is the set of the
midpoints of the edges of H on � �� .

Let �c�=��JZ�!��� J � � .
.�. �MJ � �aJ�6 be the embedding map defined by

(3.10) ��� � ��"4>6# �	 
 � �\# "
+ ���# " 12� 5MJ � 	

and 
 �!� 9 ��� J �� be the restriction map defined by

(3.11) >�
 � < 	4�;? � # > < 	�� � �;? 6 12�T5]J � �
Then the maps 
 � and

� � form a partition of unity on 9 :

(3.12)

�:
� _ � � ��
 � < # < 1 < 5 9 	

which can be easily verified using (2.6)–(2.8), (3.7) and (3.9).
The FETI-DP preconditioner  � 9 �Q��� 9 is given by the formula

(3.13)  # �:
� _ � � � � � � P� 	

where
� P� � 9 �Q��� J � is the transpose of

� � with respect to >4. 	
. ? � and > . 	�.E? � .

Our analysis of the operator  
�� � 9 ��� 9 is based on the following well-known

characterizations of ����� �D�� �� " and � �����+�� �� " from the additive Schwarz theory [11, 2, 39,
38, 12, 22, 6]:

� ��� � �� �� "�# �����N��_�� � � > < 	 �� < ?��
������
_�� �* � � � *"! *! *
� A 7

* �:
� _ � >�
 ��	B� 
 �� 
 � ? � 	(3.14)

� ����� �� �� "�# �$#�%N��_�� � � > < 	 �� < ? �
������
_�� �* � � � * ! *!�*
� A 7

* �:
� _ � >�
 � 	B� 
 �� 
 � ? � �(3.15)
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In the rest of this section we provide characterizations of > < 	 �� < ? � and >�
 � 	 � 
 �� 
 � ? � ,

and derive a lower bound for � ��� � �� �� " .
LEMMA 3.2. Given any < 5 9 , we have

(3.16) �=> < 	 �� < ? � # ������ � � A �
� �?��� � 	4� � "IL U�> < 	 � � ? 6�� �

Proof. We can, by (2.19), rewrite the right-hand side of (3.16) as

������ � A � � > � � � 	4� � ? 6 L U�> < 	4� � ? 6 � �
Therefore the minimum occurs at � � # � � 
 � < and the value of the minimum is, by (3.1),

> � ��
 � < 	 ��
 � < ? 6 � U > < 	 ��
 � < ? 6�# �=> < 	B��
 � < ? 6�#��=> < 	 �� < ? � �
The proof of the following lemma is similar.
LEMMA 3.3. Given any 
 � 5MJ �� , we have

(3.17) �=>�
 � 	 � 
 �� 
 � ? � # ��� ��
*
� A

* � � � �`� � 	4� � "IL U >�
 � 	4� � ? � � �
A lower bound for � ��� � �� �� " can be derived as a corollary of Lemma 3.2 and Lemma 3.3.

LEMMA 3.4. For both the second order model problem and the fourth order model
problem, it holds that

(3.18) � ��� � �� �� " ! S��
Proof. Let < 559 be arbitrary and 
 � # 
 � < 5MJ �� . It follows from (3.12) that

(3.19) < # �:
� _ � � ��
 ���

Let � � 5MJ � be arbitrary. Then � � # �����3	��
����	 ���D"9#�� �� _ � � � � � 5WJ 6 (cf. (3.4) and (3.10)),
and in view of (3.11),

> < 	 � � ? 6 # > < 	 �:
� _ � � � � � ? 6 # �:

� _ � >�
 � < 	 � � ? � # �:
� _ � >�
 � 	4� � ? � 	

�:
� _ � � �����`����	4����"IL U >�
-��	 ��� ? � � #%�?�`� � 	4� � "IL U�> < 	 � � ? 6 �

It follows that

(3.20)

�:
� _ � ��� ��

*
� A

* � � � �`� � 	4� � "IL U >�
 � 	4� � ? � � ! ������ � � A �
� �?�`� � 	4� � "IL U�> < 	 � � ? 6 � �
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We deduce from (3.16), (3.17) and (3.20) that

(3.21) �
�:

� _ � >�
 ��	B� 
 �� 
 � ? � ! �=> < 	 �� < ?�� �
The estimate (3.18) follows from (3.14), (3.19) and (3.21).

The estimates for � ����� �� �� " in the next section requires another characterization of

> < 	 �� < ? ��� �� and >�
 ��	 � 
 �� 
 � ? ��� �� as dual norms.
LEMMA 3.5. Given any < 559 , we have

(3.22) > < 	 �� < ? ��� �� # �$#�%� � � A �� � �_ N >
< 	 � � ? 6
� � � � � 	

where

(3.23) � � � � � #��?��� � 	4� � " ��� � # � �:
� _ � � � ��� �� 	4� �� "�� ��� � �

Proof. Let � �� #-� 
 � < . From (2.19), (3.1), (3.23) and a standard duality formula we
have

> < 	 �� < ? ��� �� # > < 	 ��
 � < ? ��� �6 #�> �P� �� 	4� �� ? ��� �6 # ��# %� � � A �� � �_ N > � � �� 	4� � ? 6
> � � � 	 � � ? ��� �6 # �$#�%� � � A �� � �_ N >

< 	 � � ? 6
� � � � � �

The proof of the following lemma is similar.
LEMMA 3.6. Given any 
Y� 5MJ=�� , we have

(3.24) >�
 � 	B� 
 �� 
 � ? ��� �� # �$#�%�
*
� A

*
�
* �_ N >�
 � 	 � � ? �� ��� � �

* 	
where

(3.25) � � � � �
*
#�����������	4����" ��� � �

4. Condition Number Estimates. We first derive an upper bound for � �����+�� �� " for the
second order model problem.

In order to avoid the proliferation of constants, from here on we use �	��
 (or 

��� )
to represent the inequality �  constant ��
 , where the constant is positive and independent
of I , � and $ . The statement ����
 is equivalent to �	��
 and ����
 .

Let < # � �� _ � 
 � , where 
Y��5 J=�� for S  "  ,$ . In order to apply (3.15) we need to

bound > < 	 �� < ? � in terms of � �� _ � >�
 ��	 � 
 �� 
-� ? � . This will be accomplished by exploiting
the characterizations (3.22), (3.24) and well-known estimates for discrete harmonic functions.

Let � � # �`� �� 	
�����
	4� �� " 5KJ 6 be arbitrary and ��� # ������ 	
�����
	4���� " , where ���� is the
discrete harmonic function on �c� with the following properties:

� �� �C4?"9#%� �� �C4?" 1	4X5 C �9�
��� and � � is piecewise linear on
C �!� ,
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i.e., ���� agrees with � �� at all the vertices in
C � � �.� and is linear on the edge between any

two consecutive vertices.
Our first observation is that

(4.1) ���2#a� �� � � �� 5MJ)��	
and

(4.2) > < 	 � � ? 6�#�> < 	 � � � � � ? 6�# > < 	 �:
> _ � � > � > ? 6�# �:

� @ > _ � > � � 
 ��	 � > � > ? 6&	
where we have used the fact that the components of � � are continuous across the interface of
the subdomains and therefore > < 	4� ��? 6�# + .

REMARK 4.1. The relation > < 	4� � ? 6 # > < 	4� � �%����? 6 allows us to use well-known
estimates for the BPS preconditioner [3] in the study of the FETI-DP preconditioner. In
this sense the FETI-DP algorithm is dual to the iterative substructuring algorithm while the
original FETI algorithm is dual to the balancing domain decomposition algorithm [27].

Our second observation is that

(4.3) > � � 
 ��	�� > � > ? 6�# + unless � � and � > share a common edge.

Let � be an edge on � > . We will denote by � >�@ � the discrete harmonic function on � >
that agrees with � > on � and vanishes on

C � > � � , i.e.,

(4.4) � >�@ � # :
: �����

� > �C4?"�� : @ > �
Clearly, we have

(4.5) � > # :
� �����

� > @ � 	
where

	 > is the set of the edges on � > .
Let � 5 	 � � " , the set of edges on � . We denote by 
 � the set of the indices of the two

subdomains sharing � . From (4.2)–(4.5), we have

(4.6) > < 	4� � ? 6�# :
� ��� � 6 �

:
� @ > ����� > � � 
 ��	 � > � >�@ � ? 6-�

Note that the inner sum on the right-hand side of (4.6) is given by

> � � 
 � 	 � � � � @ � L �2>
��>�@ � ? 6 L%> � >�
�>)	 �2> ��>�@ � L � � � � @ � ? 6 	
where � "�	 �K) #

 � . Below we will focus on the term > � ��
 ��	 � ����� @ � L � > � >�@ � ? 6 , where � is
a common edge of �&� and � > (cf. Figure 4.1), since a similar result also holds for the term
> � > 
 > 	 � > � >�@ � L � �
��� @ � ? 6 .

We have, by (2.6), (3.7), (3.10) and (4.4),

> � � 
 � 	�� � � � @ �*? 6 # $ >$&��L $ > :
:���� �

>�
 � 	 � : @ � ? � > < : @ > @ � 	 � � � � @ � ? A
# $ >$&��L $ > >�
 � 	 :

: ��� �
� � @ �
�N4E"�� : @ � ? � # $ >$&�
L $ > >�
 � 	4� � @ � ? � 	
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j kΩΩ

FIG. 4.1. A common edge of ��� and ���

and hence it follows from (3.24) that

(4.7) > � � 
 ��	 � ����� @ � ? 6� >�
 ��	B� 
 �� 
 � ? ��� �� � ��� @ � � �
*
�

Let
� � be the mean of � �� over �!� , i.e.,

(4.8)
� � # S

� �9� � ')( * � �� /�0-�
We have by scaling

(4.9) � � �� � � � � � ��� � � � � �
	=� �� � � � 	���
 � � � 	
and it follows easily from the definition of � � that

(4.10) 	=� �� � � ��	���
 � � �  �	=� �� � � ��	���
 �
( *
� �

We can then apply the discrete Sobolev inequality, the Poincaré-Friedrichs inequality,
(4.1), (4.8)–(4.10), and well-known estimates from the theory of nonoverlapping domain
decomposition (cf. [3, 6]) to obtain

� ��� @ � � �
*
#�$ ��� �� � ��� @ � � � � � ( * �
��$ ��� �� � ��� @ � � � ��� ���� � � �
��$ ��� �� �

� ��� @ � � � ��� � � � � L � S	L����-�`� � � IF" � ��� � 	=��� @ � 	�� 
 � � � �
��$ ��� �� �

� ��� �� � � � " ���`� �� � � � "*� � ��� � � � �
L � S	L����-�8�6� � IF" � ��� � 	���� �� � � ��"D� ��� �� � � ��"�	���
 � � � �(4.11)

��$ ��� �� �
� � �� � � � �

( *
� L � S	L�� �-�8� � � IE"�� ��� � 	�� �� � � � 	���
 �

( *
� �

��$ ��� �� �
� � �� � � � �

( *
� L � S	L�� �-�8� � � IE"����8� 
 �� 	�� �� � � ��	�� � �

( *
� L0� � �� � � � �

( *
� � �

� � S	L����-�`� � � IF" � $ ��� �� � � �� � � � �
(+*
� # � S	L�� � �`� � � IE" � � � �� � �

*
�

Let 1��� @ � be the discrete harmonic function on �c� that agrees with � > @ � at the nodes in � �
and vanishes at the other nodes of

C � � . Then we have, by (3.7) and (3.10),

> � � 
 � 	 � >
��>�@ �*? 6 # $ >$ �	L $ > :
:���� �

>�
 � 	�� : @ � ? � > < : @ >�@ � 	�� > ��>�@ � ?BA
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# � $ >$ � L $Y> >�
 ��	 :
:������

� >�@ � �C4E"�� : @ � ? �2# � $ >$ � L $ > >�
-��	 1��� @ � ? ��	
and hence it follows from (3.24) that

> � � 
 ��	 � > � >�@ � ? 6� $ >$ � L $Y> >�
 ��	B� 
 �� 
 � ? ��� �� � 1��� @ � � �
*

(4.12)

 SU >�
-��	 � 
 �� 
 � ? ��� �� �`$ > $ 
 �� " ��� � � 1��� @ � � �
*
�

Moreover, the analog of (4.11) for � >�@ � implies that

�8$Y>�$ 
 �� " ��� � � 1� � @ � � �
*
��$ ��� �> � 1� � @ � � � ��� ���� � � �(4.13) #�$ ��� �> � ��>�@ �8� � ��� ���� � � � � �4S	L�� � �`�\> � IE"�� � � �> � � � �

We then obtain from (4.6), (4.7) and (4.11)–(4.13) the estimate

> < 	4� � ? 6 � � S	L�� �-�8� � IE"�� :
� ��� � 6 �

� :
� ����� >�
 � 	B� 
 �� 
 � ? � � ��� � � :

� ��� � � � �� � � �
*
� ��� �

� � S	L�� �-�8� � IE"�� � �:
� _ � >�
 � 	B� 
 �� 
 � ? � � ��� � � �:

� _ � � � �� � � �
*
� ��� �(4.14)

# � S	L�� �-�8� � IE" � � �:
� _ � >�
 ��	B� 
 �� 
 � ? � � ��� � � � � � � 12� � 5XJ�6&�

Combining (3.22) and (4.14) we find

(4.15) > < 	 �� < ? ��� �� � � S	L����-�`� � IF" � � �:
� _ � >�
 � 	 � 
 �� 
 � ? � � ��� � 	

whenever < # � �� _ � � � 
 � and 
 � 5 J �� for S. ,"2 -$ . The following lemma is then a
simple consequence of (3.15) and (4.15).

LEMMA 4.2. For the second order model problem, it holds that

(4.16) � ����� �� �� "� �� � S	L����-�8� � IE" � � 	
where the positive constant � is independent of I , � and $ .

The derivation of an upper bound for � ����� �� �� " for the fourth order model problem
follows a similar line, with the necessary modifications of some of the definitions.

Let < # � �� _ � � � 
 � , where 
 � 5TJ �� . For an arbitrary � � # ��� �� 	��
����	 � �� "�5 J 6 , we
define ���� #R�`� �� 	��
���
	4���� " to be the discrete biharmonic function on �c� with the following
properties: � � agrees with � � up to the first order derivatives at

C � � ���2	� � is piecewise cubic on
C � � and

C � � � CKJ is piecewise linear on
C � � �

Note that the components of � � are continuous up to the first order derivatives along the
interface of the subdomains and therefore (4.1)–(4.6) remain valid, provided we take � � @ �
to be the discrete biharmonic function on �c� that is identical with � � up to the first order
derivatives on � and vanish up to the first order derivatives on

C � �
� � .
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Let � be an common edge of � � and � > . Again (4.7) holds because of (3.9) and (3.24).
Let � � #�� � 0 � L�� � 0 � be defined by the property

(4.17)
')(D* CC 0 � �`� �� � �!� "+/�0 # ')(+* CC 0 � ��� �� � �!��"Z/�07#�+D�

We can then apply the discrete Sobolev inequality, the Poincaré-Friedrichs inequality, (4.17)
and well-known estimates from the nonoverlapping domain decomposition theory for fourth
order problems (cf. [39, 26, 7]) to obtain the following analog of (4.11):

� ��� @ � � �
*
#%$ ��� �� � ��� @ � � � � � (D* �
�%$ ��� �� �

, � � @ � � � ��� ���� � � �
�%$ ��� �� �

� � �� � � � � ( * � L � S	L����-�`� � � IE" � ��� � 	 , ��� �� � � � "�	���
 � ( * � �(4.18)

�%$ ��� �� �
� � �� � � � � (+* � L � S	L����-�`� � � IE" ��� � 
 �� 	

, ��� �� � �!��"�	�� � �
(D*
� L � � �� � � � � (D* � � �

� � S	L�� �-�8� � � IE" � $ ��� �� � � �� � � � � (D* � # � S	L����-�`� � � IF" � � � �� � �
*
�

If we define 1� � @ � to be the discrete biharmonic function on �c� such that 1��� @ � agrees with� >�@ � up to the first order derivatives on � and 1�
� @ � vanishes up to the first order derivatives onC �9�
� � , then the estimates (4.12) and (4.13) remain valid. Finally (4.6), (4.7), (4.12), (4.13)
and (4.18) imply (4.14) and (4.15), and we have proved the following analog of Lemma 4.2.

LEMMA 4.3. For the fourth order model problem, it holds that

(4.19) � ����� �� �� "� � � S	L����-�`� � IE" � � 	
where the positive constant � is independent of I , � and $ .

Combining Lemma 3.4, Lemma 4.2 and Lemma 4.3, we have the following theorem for
two-dimensional FETI-DP preconditioners.

THEOREM 4.4. For both the second order model problem and the fourth order model
problem, it holds that

(4.20) �-�� �� "9# � �����+�� �� "
� ��� �D�� �� "  � �4S	L����-�`� � IF" � � 	

where the positive constant � is independent of I , � and $ .
REMARK 4.5. A closer inspection of � 4.16 " and � 4.19 " reveals that the constant �

in � 4.20 " depends on the quasi-uniformity of the triangulation, the shape regularity of the
subdomains, and the numbers and positions of the cross points on the boundaries of the
subdomains.

5. Sharpness of the Condition Number Estimate for Second Order Problems. In
this section we will show that the bound in Theorem 4.4 is sharp for second order problems.
We will take � to be the unit square and the subdomains to be nonoverlapping squares with
side � obtained by a uniform subdivision (cf. Figure 5.1). The triangulation H is then
obtained by a uniform subdivision of the subdomains into triangles. Furthermore, we take the
coefficients $-� to be 1 identically. We need to show that

� ��� �D�� �� " � S and � �����Z�� �� " � �4S	L�� � �`� � IF" � � �
Without loss of generality, we may assume �`� � IF"�� S .
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FIG. 5.1. A uniformly subdivided square

Let J�6���#-�
� � # �`� �� 	
�����
	4� �� " 5 J 62�)� �� , for S� "  ($ , vanishes at every node on
� � whose distance from the nearest cross point is less than or equal to � � � ) (cf. Figure 5.1,
where we have marked every node whose distance to the nearest cross point is � � � ). It is
clear that dim J 6 � � � ��� dim J 6 and dim 9 # S � U dim J 6 . Let J 6�� � J 6 be the orthogonal
complement of J 6 � with respect to �?� . 	�. " . Since the dimension of the subspace J��6�� of J �6
defined by J��6�� #/�
	 5 J 6 � �D>�	?	4� � ? 6 #,+ for all � � 5 J 6�� ) equals the dimension of J 6 � ,
the intersection of 9 and J��6�� is nontrivial. Let < � 5 9 � J��6�� be a nontrivial Lagrange
multiplier. Then we have, by (3.22),

(5.1) > < � 	 �� < � ? ��� �� # > < � 	4� �� ? 6
� � �� � � 	

for some � �� # �`� �� � 	��
����	 � �� � "c5MJ 6
� �aJ � � .�.
. �]J � .
Given any decomposition

(5.2) < � # �:
� _ � � � 
 � 	

where 
 � 5]J=�� , we have, in view of (4.3),

(5.3) > < � 	4� �� ? 6�#�> < 	 �:
> _ � � > � �� > ?9# :

� ��� � 6 �
:

� @ > ����� > � � 
 ��	 � > � >�@ � ? 6&	
where � >�@ � is the discrete harmonic function on � > that agrees with � �� > on � and vanishes onC � > � � . Note that

(5.4)
:

� @ > ����� > � � 
 ��	�� > � >�@ � ? 6�#�> � � 
 ��	 �c����� @ � L � > � >�@ � ? 6 L > � > 
 ��	 � > � > @ � L �c����� @ � ? 6 	
where � "�	 �K)2# 
 � , and it suffices to analyze the first term on the right-hand side of (5.4).

Let 1� � @ � be the discrete harmonic function on � � that agrees with ��> @ � (or equivalently� �� > ) on � and vanishes on
C � � � � . We can then write, by (2.6), (3.7) and (3.10),

(5.5) > � � 
 � 	 � � � � @ � L � > ��>�@ � ? 6 # SU >�
 � 	4� � @ �	� 1� � @ � ? � �
Observe that since � �� � (respectively � �� > ) vanishes at all the nodes within a distance of � � �
from the corners of � � (respectively ��> ), we have

(5.6) � ��� @ � � �
*
#,� ��� @ � � � � � (+* � �,� ��� @ � � � ��� ���� � � � � � � �� � � � ��� � � � � �,� � �� � � � � �

(+*
� # � � �� � � �

*
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and similarly

(5.7) � 1� � @ �8� �
*
�,� ��>�@ �8� � ��� ���� � � � �,� � �� > � � � �

It follows from (3.24) and (5.5)–(5.7) that

> � � 
 � 	�� � � � @ � L � >
��>�@ �*? 6 � >�
 � 	 � 
 �� 
 � ? ��� �� � � � � @ �8� �
*
L0� 1� � @ � � �

*
"(5.8)

� >�
-��	 � 
 �� 
 � ? ��� �� � � � �� � � �
*
L � � �� > � ��� �3�

Combining (5.3), (5.4) and (5.8) we find

> < � 	4� �� ? 6 � � �:
� _ � >�
 � 	 � 
 �� 
 � ? � � ��� � � � �� � � 	

which together with (5.1) implies

(5.9) > < � 	 �� < � ? ��� �� � � �:
� _ � >�
-� 	B� 
 �� 
 � ? � � ��� � 	

whenever (5.2) holds. We conclude from (3.14) and (5.9) that

(5.10) � ��� � �� �� " � S��
Now we turn to the derivation of a lower bound for � ����� �� �� " , which involves the spe-

cial piecewise linear functions constructed in [8] for proving the sharpness of the condition
number estimates for the BPS and the Neumann-Neumann preconditioners.

By Corollary 3.6 and Corollary 3.9 in [8], there exists a continuous piecewise linear
function ��� on the real line with respect to the uniform subdivision with nodes ")I (" 5�� )
such that

���D�`0E"9# + for � 0D� ! � � � 	(5.11)

���D�`0E"9#����+� ��0E" 120]5X�!	(5.12)

���D� +�"�#
	���� 	�� 
 ��� � � S	L���� �8� � IE"=	(5.13)

� � � � �� ��� � �	� � � S	L�� � �`� � IF"�	(5.14)

� ���=��
 � � � � � ���K� �� ��� ���� �


� � � @ N � # � ���!��
 � � � � � ����� �� ��� ���� � N @ � � � � � � S	L����-�8� � IE" � 
 	(5.15)

where 
 � � � � � is the piecewise linear nodal interpolation operator with respect to the nodes
"E�`� ��� " for "\5�� .

LEMMA 5.1. Let ���F��0?" be the continuous piecewise linear function on � ++	���� defined by

(5.16) ���D�`0E"9#
��	 �
 ���F��0?"D�����D� +�" +  05 �� � � 	
�����D� + " � � �  �05 � � � � 	
� � ��0
� �W" ��� � � +�" � � ���  �0  �]�

Then we have

(5.17) � � � � �� ��� ���� � N @ � � � � S	L����-�8� � IE"�� 
 �
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Proof. We can write � � #R��� � � 
 � � � � � � � " L 
 � � � � � � � . Note that 
 � � � � � � � is linear
between the four nodes + , � � � ,

� � � � and � , equal to 0 at + and � , and equal to ��� � � +�" at� ��� and
� � � � . Therefore, in view of (5.13) and a scaling argument, we have

(5.18) � 
 � � � � � ���M� �� ��� ���� � N @ � � � � ���+� +�" � � � � S
L�� �Y�`� � IF" � � �
On the other hand, ���=� 
 � � � � � ��� agrees with � �=� 
 � � � � � ��� on � ++	�� � � � , vanishes on� � � � 	 � � � � � and agrees with � ��� � 
 � � � � � ��� � � . � � " on � � � � � 	���� . Therefore, it follows

from (5.15) that

� ���!��
 � � � � � ���M� �� ��� ���� � N @ � �
� � � � ��
 � � � � � � � � �� ��� ���� �



� � � @ N � L0� � � ��
 � � � � � � � � �� ��� ���� � N @ � � � �(5.19)

� � S	L����-�8� � IE"�� 
 �
The estimate (5.17) follows from (5.18) and (5.19).
Our derivation of a lower bound for � ����� �� �� " involves the 9 subdomains depicted in

Figure 5.2. First we define � � to be the discrete harmonic function on � � that is identical with
the function ��� defined by (5.16) on the common side of � � and ��� and vanishes on the other
three sides of � � . From (5.17) we have

(5.20) � � � � � � � # � � � � �� � � ( � � �,� � � � �� ��� � ��� ( � � � � � � � �� ��� ���� � � � � � S	L���� �8� � IE" � 
 �
Moreover, there exists, by (3.24) and a simple dimension argument (or the Hahn-Banach
theorem), 
 � 5XJ �� such that

(5.21) >�
 � 	 � 
 �� 
 � ? ��� �� # >�
 � 	4� � ? �
� � � � � � 	

and we define

(5.22) < � # � � 
 � �
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Next we define a special � �� 5 J 6 as follows: (i) � �� � # + except for S= "� �
; (ii) � �� � ,

for S  "� �
, is the discrete harmonic function on � � whose trace on

C � � is identical with��� around the corners indicated in Figure 5.2 and zero at all other nodes (so each of � �� � , � �� 
 ,� ���� and � ���� are nontrivial around two corners, and each of � �� � , � �� � , � ���� and � ���� are nontrivial
around only one corner); (iii) � �� � is the constant function � �+� +�" .

A more precise definition of, say � �� � , is as follows. Let � �
	�/ " be the lower left corner of� � and the four edges of
C � � be � � 	��
���
	 � � (cf. Figure 5.2). Then � �� � vanishes on � � . On the

edges � � and � � , we have

� �� � � �
L �M	 /;L 0 � "9# � �� � � �
	�/;L 0 � "9# �
+ +  0 �  � � ��� 	
� � �`0 � � �W" � � � �  �0 �  �]	

and � �� � on � 
 is defined by

� �� � � �
L 0 � 	 /;L �W"�#
��	 �
 ���+��0 � " +  0 �  � � � 	
+ � ���  0 �  � � � � 	
���+��0 � � �W" � � � �  0 �  �]�

Now we make two crucial observations. The first is that, by (3.7), (5.16), (5.22) and the
definitions of � � and � �� , we have

(5.23) > < � 	4� �� ? 6 # SU >�
 � 	 � � ? �3�
The second observation is that (5.12), (5.14) and the definition of � �� imply

(5.24) � � �� � � � # �:
� _ � � � � � � �� � �

(+*
� � S	L���� �8� � IE"=�

It follows from (3.24), (5.20), (5.21), (5.23) and (5.24) that

> < � 	4� �� ? �6 ��>�
 � 	 � 
 �� 
 � ? � � � � � � � �(5.25)

� � S	L����-�8� � IE"�� 
 >�
 � 	B� 
 �� 
 � ? � � �4S	L�� �Y�`� � IF" � � � � �� � � � >�
 � 	B� 
 �� 
 � ? � �
Combining (3.22) and (5.25) we find

(5.26) > < � 	 �� < � ? � � � S	L�� �-�8� � IE" � � >�
 � 	B� 
 �� 
 � ? �
�
Finally (3.15), (5.22) and (5.26) yield

(5.27) � �����Z�� �� " � � S	L�� �Y�`� � IF" � � �
Therefore, for the second order model problem we have, by (5.10) and (5.27),

(5.28) �-�� �� "9# � ����� �� �� "
� ��� � �� �� " ! � � S	L����-�`� � IF" � � 	

where � is independent of I , � and $ .
In summary we have established the following theorem.
THEOREM 5.2. The condition number estimate � 4.20 " is sharp for the second order

model problem.
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REMARK 5.3. The sharpness of � 4.20 " for the fourth order model problem can also
be established within the additive Schwarz framework. Indeed � 5.10 " can be obtained in a
similar fashion with only minor modifications. However, the derivation of � 5.27 " requires the
construction of special piecewise quadratic polynomial functions whose symmetry properties
are different from the piecewise linear functions constructed in [8]. Such piecewise quadratic
polynomial functions will also be useful for showing that the condition number estimates in
[39] for iterative substructuring algorithms are sharp. The investigations in this direction
will be pursued elsewhere.
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