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This paper investigates the global synchronization method of two identical systems and two different
chaotic systems. The proposed method is effective and convenient to synchronize two identical
systems and two different chaotic systems by using nonlinear control functions. The method has been
applied successfully to make two identical four-scroll attractor and also two different chaotic systems;
four-scroll attractor and Lorenz system globally synchronized. Numerical simulations are given to

validate the proposed synchronization methods.
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INTRODUCTION

Chaos has been developed and thoroughly studied over
the past two decades. A chaotic system is a nonlinear
deterministic system that displays complex and
unpredictable behavior. The sensitive dependence on the
initial conditions and on the system's parameter variation
is a prominent characteristic of chaotic behavior.
Research efforts have investigated chaos control and
chaos synchronization problems in many physical chaotic
systems.

Chaos control and synchronization have attracted a
great deal of attention from various fields since Huber
published the first paper on chaos control in 1989
(Hubler, 1989). Over the last decades, many methods
and techniques have been developed, such as OGY
method (Ott et al.,, 1990), PC method (Pecora and
Carroll, 1990; Carroll and Pecora, 1991), feedback
approach, adaptive method, nonlinear control, active
control, and backstepping design technique (Chen and
Dong, 1989; Wang et al., 2001; Huang et al., 2004;
Elabbasy et al., 2004; Liao and Tsai, 2000; Jiang et al.,
2002) etc.

In 1963, Lorenz found the first classical chaotic
attractor. In 1999, Chen found another similar but not
topological equivalent chaotic attractor the Chen attractor
(Chen et al., 1999). In 2002, LG and Chen found a new
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critical chaotic system (LG and Chen 2002), bearing the
name of L0 system. It is noticed that these systems can
be classified into three different types by the definition of
Vangdek and Celikovsky (Vanédek and Celikovsky,
1996): the Lorenz system (Sparrow, 1982; Lorenze,

1963) satisfies the condition a,, a,; >0, the Chen
system satisfies a,, a,, <0 and the Li system (Lu and
Chen, 2002) satisfies a,, a,, =0, where a,, and a,,
are the corresponding elements in the linear part matrix
A=la,; ., of the system.

In this paper we study the synchronization of the
system (Liu and Chen, 2004) which is described by the
following equation:

X=ax—yz
y=-by+axz (1)
z=—-cz+xy

Where a, b and c¢ are positive control parameters. This
system exhibits a chaotic attractor at the parameter
values a = 0.4, b = 12 and ¢ = 5. This system bridges the
gap between the Lorenz and Chen attractors (L0 et al.,
2002).

Differing from other known similar systems, system (1)
has five equilibria, and does not have Hopf and pitch
bifurcations (LU et al., 2004). Of most interesting is the
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Figure 1. Shows the chaotic attractor of two-scroll chaotic attractor
ata=45b=12andc =5.

Figure 2. Shows the chaotic attractor of four-scroll chaotic attractor
ata=04,b=12andc =5.

observation that this chaotic system not only can display
a two-scroll chaotic attractor whena =4.5,b=12andc =
5 (see Figure 1), but also can display a four-scroll chaotic
attractor when a = 0.4, b = 12 and ¢ = 5 (see Figure 2).
Although, system (1) exhibits by computer simulation
four-scroll chaotic attractor for certain values of the
parameters no complete answer for the following
challenging question. Is it true that a three-dimensional
smooth quadratic autonomous system can generate a
truly single four-scroll Attractor? On the other hand,
however, from the engineering applications point of view,
even a numerical four-scroll chaotic attractor can be quite
useful due to its strong randomness and complex
topological properties with a wider power spectrum. It
implies that one can take advantage of these phenomena
and use this kind of numerical chaotic signals for better
and wider use in digital or electronic devices for some
good engineering applications such as random signal
generation and secure communication.

The paper is organized as follows. In Section 2, a
modified control scheme based on Lyapunov stability
theory is proposed. In Section 3, the control method is
applied to synchronize two identical systems of four-scroll
attractor and numerical simulations are presented to
show the effectiveness of the proposed method. In
Section 4, the proposed scheme is applied to
synchronize two different chaotic systems (four-scroll
attractor and Lorenz system). Also numerical simulations
are presented in order to validate the proposed
synchronization approach. Finally, in Section 5 the
conclusion of the paper is given.

Modification based on Lyapunov stability theory to
design a controller

Consider the following chaotic system described by
X =AX + f(X) (D)

Where X (t)€ R" is a n-dimensional state vector of the

system, A€ R™" is the matrix of the system parameter,
and f:R"—R" is the nonlinear part of the system.
Equation (1) is considered as a drive system.

The controller U € R" is added into the system (D) to
get the new system.

Y=BY +g(Y)+U (R)

Where Y(t)e R"denotes the state vector of the

response system, Be€ R™" is the matrix of the response
system parameter, and g:R" —R" is the nonlinear
part of the response system. The system (R) is known as
the response system. If A=Bandg(Y)= f(X), then
X and Y are the states of two identical chaotic systems. If
A#B andg(Y)# f(X), then X and Y are the states

of two different chaotic systems.

The synchronization problem is to design a controller
U, which synchronizes the states of both the drive and
response systems. The dynamics of synchronization
errors can be expressed

é=BY +g(Y)-AX - f(X)+U (E)

Wheree=Y — X . The aim of synchronization is to
make lim”e(t)” =0.
t—o0

The problem of synchronization between the drive and
response systems can be translated into a problem of



how to realize the asymptotic stabilization of the system
(E). So the objective is to design a controller U for
stabilizing the error dynamical system (E) at origin.

If we take the Lyapunov function to beV(e) =e’ Pe,
and the matrix P is a positive definite matrix, then V (e)

is a positive definite function. Assuming that the
parameters of the drive and response systems are known
and the states of both systems are measurable. One may
achieve the synchronization by selecting a nonlinear

av
controller U to make 7=—eTQe be a negative
t

definite function, i.e., the matrix Q is also a positive

definite matrix. Then the states of the response system
and drive system are globally asymptotically
synchronized.

Synchronization of tow identical four-scroll chaotic
attractor

In this section, we apply the technique detailed in the
previous section to four scroll attractor (Liu et al., 2004)

X=ax—-yz
y=-by+xz 2
Z=—cz+Xxy

Wherea>0,b>0,c>0andb +c > a.

In order to observe the synchronization behavior in the
four-scroll system, we have two four-scroll systems
where the drive system with three state variables denoted
by the subscript 1 drives the response system having
identical equations denoted by the subscript 2. However,
the initial condition on the drive system is different from
that of the response system. The two four-scroll systems
are described, respectively, by the following equations:

X =axp =Yg
v, ==by, +x,z, 3)

7, =—cz, t Xy,
and

X, =ax, —y,z, +u,(t)
Y, ==by, +x,2, +u, (1) (4)
2y =—CZ, + X, ¥, +us(t)

Where U =[u1 u, u3]T is the nonlinear controller
to be designed. The aim of this section is to determine
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the controller U for the global synchronization of two
identical four-scroll chaotic attractors. For this purpose,
the error dynamical system between the drive system (3)
and response system (4) can be expressed by

e, =ae —ee —ze —ye. +ull)
e, =—be +ee +ze +xe +u,(r) (5)
e.=—ce . +ee +ye +xe +u,(l)

Where

r
€, =X, T X,e, =Y, T ) € _ZZ_Zlande_[ex €, ez]

T
We choose a controller U = [ul u, u3] as follows:

1
u(t)=ze, +ye. — (§+a)ex
u,(t)=(>b-De, —ze, —xe, (6)
u(t)=(c—le, —ye, —xe

y

Then the error system can be rewritten as:

.1

e, = —Eex —e.e.

e, =—e te.e. (7)
e, =—e tee,

Let us consider the Lyapunov function V(e) which is
defined by

V(e)=ef+%( e; +el) (8)

Then we can rewrite (8) as the following

V(e)=e'Pe and P=|0

S N|~O

Nj—= O O

It is clear that the Lyapunov function V (e)is a positive

definite function. Now, taking the time derivative of
equation (8), then we get
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C;—‘t/z—(ef+ ef,+ef)

=—e'" Qe where Q=

S O =
S = O
- O O

Based on Lyapunov stability theory, this translates
tolim”e(t)”:O. Thus the response system and drive
[—>00

systems are globally asymptotically synchronized.
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Figure 3. Shows that the time response of states for drive system

(x,,¥,,2,) and response system (x s Vo2, )
with active control law (6) is activated, (a) Signals

x,(t) and x,(t) : (b) Signals y,(¢) and y,(t) : (c) Signals

z,(t) and z,(t) and (d) show that the error system (5) tends to
zero (x4, yrand z; D Xz, Y2 and zp ----------- ).

Numerical results

Fourth-order Runge-Kutta method is used to solve the
systems of differential equations (3), (4), and (5). In

addition, a time step of size 4 =10"" is employed. The



parameters are chosenasa=0.4,b=12andc=5in all
simulations so that the four-scroll system exhibits a
chaotic behavior when no control is applied (see Figure
2).

The initial states of the drive system are
x,(0)=0.23,y,(0)=0.1 and z,(0)=0.32 and initial
states of the response system are
x,(0)=6.23,y,(0) ==5.1and z,(0) =-3 hence the
error system has the initial values -
e (0)=6, e, (0)=-5.2 and e¢,(0) =-3.32 .

The results of the two identical four-scroll systems with
active control are shown in Figure 3: (a) displays the

trajectories x,(f) and xz(t) ) displays the traject-
ories y,(t) and y,(t),
z,(t) and z,(¢) and (
e (1), e, (t) and e () of the error system tended to

dlsplays the trajectoryies
) shows that the trajectories of

zZero.

Figure 4. Shows the chaotic attractor of the Lorenze system

Synchronization of two different chaotic systems

In this section, the application of the above method is
used to synchronize two different chaotic systems. One is
the familiar Lorenz system (Sparrow, 1982; Lorenz, 1963)
considered as the drive system. The Lorenz system is a
third-order autonomous system with only two quadratic
multiplication terms but it can display very complex
dynamical behaviors. The other is the four-scroll chaotic
attractor considered as the response system. Our aim is
to design a controller and make the response system
trace the drive system and become ultimately the same.
In this section we take the Lorenz system, as a drive
system, which is described by the following equation:
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X, =0(y,—x)
=V =N —hG (10)
=xy-Bz

Where x,,y, and z, are the state variables and

o, fand y are parameters of the system. The Lorenz
system has a chaotic attractor for some typical parameter

values: 0 =10, =§and ¥ =28, as shown by Figure

4. Form equations (3) and (1
equation can be obtained:

ato =10, ﬂz%and y=28.

0), the following error system

é,=ae —ee —ze —Yyz,

e, —-oy, +(o+a)x, +u,(t)

é,=-be +ee +ze +xe —p +2xz, +(1=b)y +u,()
é.=-ce. tee +ye +xe, + (B-c)z, +us(t)

(11)
Where

r
€, =Xy =X, =Y, =Yy, e =2, —zand e_[ex ¢ ez]

T
. We choose a controller U = [ul u, u3] as follows:

1
ul(t) =Zz€, + (Zz +O_)y1 _(O-+a)x1 _(5+a)ex

u,(t)=-ze, —xe, +nm
us(t) =(c—De, —

~2x,2, —(1=b)y, + (b=,

—xe, - (B-o0)z,
(12)

Then the error system can be rewritten as:

e, =——e . —ee,
éy:—e +ee
e =—e¢_+ee

(13)

Let us consider the Lyapunov function V(e) which is
defined by

V(e)=ef+%( e§+ezz) (14)

It is clear that the Lyapunov function V (e) is a positive
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definite function. Now, taking the time derivative of
V (e) defined in equation (14), we get

cil—‘t/:—(ef+ef+ef) (15)

. dv . " .
It is found that V(e)and d_ is positive and negative
t

definite functions. Also, V(e) — oo as”e” — oo, Hence,

by Lyapunov stability theory, the error dynamics is
globally asymptotically stable. Therefore, this choice will

lead the error states e (), e (¢) and e (t) to converge

to zero as time t tends to infinity and hence the global
synchronization of two different chaotic systems is
achieved.
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Numerical results

In this subsection, numerical simulations are also given to
verify the proposed method. The parameters are selected

as follows: Gle,,B:g and =28 with initial

values
x0)=1y,0)=1,z,0)=1,x,(0)=0.23,y,(0)=0.1
and z,(0) =0.32. The simulation results are illustrated

in Figure 5 (a) - (d). It can be seen that the
synchronization error will converge to zero and two
different chaotic systems are indeed achieving chaos
synchronization.

CONCLUSIONS

In this paper, modification based on Lyapunov stability
theory to design a nonlinear controller is proposed to
synchronize two identical chaotic systems and two
different chaotic systems. Numerical simulations are also
given to validate the proposed synchronization approach.
The simulation results show that the states of two
identical four-scroll attractor are globally asymptotically
synchronized. For two different chaotic systems, the four-
scroll attractor is forced to trace the Lorenz system and
the states of two systems become ultimately the same.
Since the Lyapunov exponents are not required for the
calculation, this method is effective and convenient to
synchronize two identical systems and two different
chaotic systems.
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