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This paper investigates the global synchronization method of two identical systems and two different 
chaotic systems. The proposed method is effective and convenient to synchronize two identical 
systems and two different chaotic systems by using nonlinear control functions. The method has been 
applied successfully to make two identical four-scroll attractor and also two different chaotic systems; 
four-scroll attractor and Lorenz system globally synchronized. Numerical simulations are given to 
validate the proposed synchronization methods. 
 
Key words: Chaotic system, global synchronization, four-scroll attractor, Lorenz system, Lyapunov function. 

 
 
INTRODUCTION 
 
Chaos has been developed and thoroughly studied over 
the past two decades. A chaotic system is a nonlinear 
deterministic system that displays complex and 
unpredictable behavior. The sensitive dependence on the 
initial conditions and on the system's parameter variation 
is a prominent characteristic of chaotic behavior. 
Research efforts have investigated chaos control and 
chaos synchronization problems in many physical chaotic 
systems. 

Chaos control and synchronization have attracted a 
great deal of attention from various fields since Huber 
published the first paper on chaos control in 1989 
(Hubler, 1989). Over the last decades, many methods 
and techniques have been developed, such as OGY 
method (Ott et al., 1990), PC method (Pecora and 
Carroll, 1990; Carroll and Pecora, 1991), feedback 
approach, adaptive method, nonlinear control, active 
control, and backstepping design technique (Chen and 
Dong, 1989; Wang et al., 2001; Huang et al., 2004; 
Elabbasy et al., 2004; Liao and Tsai, 2000; Jiang et al., 
2002) etc. 

In 1963, Lorenz found the first classical chaotic 
attractor. In 1999, Chen found another similar but not 
topological equivalent chaotic attractor the Chen attractor 
(Chen et al., 1999). In 2002, Lü and Chen found a new  
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critical chaotic system (Lü and Chen 2002), bearing the 
name of Lü system. It is noticed that these systems can 
be classified into three different types by the definition of 
Van��ek and �elikovsky (Van��ek and �elikovsky, 
1996): the Lorenz system (Sparrow, 1982; Lorenze, 
1963) satisfies the condition 02112 >aa , the Chen 

system satisfies 02112 <aa  and the Lü system (Lü and 

Chen, 2002) satisfies 02112 =aa , where 12a  and 21a  
are the corresponding elements in the linear part matrix 

[ ]
33×

= ijaA  of the system. 

In this paper we study the synchronization of the 
system (Liu and Chen, 2004) which is described by the 
following equation:  
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Where a, b and c are positive control parameters. This 
system exhibits a chaotic attractor at the parameter 
values a = 0.4, b = 12 and c = 5. This system bridges the 
gap between the Lorenz and Chen attractors (Lü et al., 
2002). 

Differing from other known similar systems, system (1) 
has five equilibria, and does not have Hopf and pitch 
bifurcations (Lü et al., 2004).  Of  most  interesting  is  the  
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Figure 1. Shows the chaotic attractor of two-scroll chaotic attractor 
at a = 4.5, b = 12 and c = 5. 
 
  

 
 
Figure 2. Shows the chaotic attractor of four-scroll chaotic attractor 
at a = 0.4, b = 12 and c = 5. 
 
 
observation that this chaotic system not only can display 
a two-scroll chaotic attractor when a = 4.5, b = 12 and c = 
5 (see Figure 1), but also can display a four-scroll chaotic 
attractor when a = 0.4, b = 12 and c = 5 (see Figure 2). 
Although, system (1) exhibits by computer simulation 
four-scroll chaotic attractor for certain values of the 
parameters no complete answer for the following 
challenging question. Is it true that a three-dimensional 
smooth quadratic autonomous system can generate a 
truly single four-scroll Attractor? On the other hand, 
however, from the engineering applications point of view, 
even a numerical four-scroll chaotic attractor can be quite 
useful due to its strong randomness and complex 
topological properties with a wider power spectrum. It 
implies that one can take advantage of these phenomena 
and use this kind of numerical chaotic signals for better 
and wider use in digital or electronic devices for some 
good engineering applications such as random signal 
generation and secure communication. 

 
 
 
 

The paper is organized as follows. In Section 2, a 
modified control scheme based on Lyapunov stability 
theory is proposed. In Section 3, the control method is 
applied to synchronize two identical systems of four-scroll 
attractor and numerical simulations are presented to 
show the effectiveness of the proposed method. In 
Section 4, the proposed scheme is applied to 
synchronize two different chaotic systems (four-scroll 
attractor and Lorenz system). Also numerical simulations 
are presented in order to validate the proposed 
synchronization approach. Finally, in Section 5 the 
conclusion of the paper is given. 
  
 
Modification based on Lyapunov stability theory to 
design a controller 
  
Consider the following chaotic system described by  
 
 )(XfAXX +=�     (D) 
  
Where nRtX ∈)(  is a n-dimensional state vector of the 

system, nnRA ×∈  is the matrix of the system parameter, 
and nn RRf →:  is the nonlinear part of the system. 
Equation (1) is considered as a drive system. 
  

The controller nRU ∈  is added into the system (D) to 
get the new system. 
 
  UYgBYY ++= )(�     (R) 
 

Where nRtY ∈)( denotes the state vector of the 

response system, nnRB ×∈  is the matrix of the response 
system parameter, and nn RRg →:  is the nonlinear 
part of the response system. The system (R) is known as 
the response system. If BA = and )()( XfYg = , then 
X and Y are the states of two identical chaotic systems. If 

BA ≠ and )()( XfYg ≠ , then X and Y are the states 
of two different chaotic systems. 

The synchronization problem is to design a controller 
U, which synchronizes the states of both the drive and 
response systems. The dynamics of synchronization 
errors can be expressed 
  
 UXfAXYgBYe +−−+= )()(�  (E) 
  
Where XYe −= . The aim of synchronization is to 

make 0)(lim =
∞→

te
t

. 

 
The problem of synchronization between the drive and 

response systems can  be  translated  into  a  problem  of  



 
 
 
 
how to realize the asymptotic stabilization of the system 
(E). So the objective is to design a controller U for 
stabilizing the error dynamical system (E) at origin. 

If we take the Lyapunov function to be PeeeV T=)( , 

and the matrix P  is a positive definite matrix, then )(eV  
is a positive definite function. Assuming that the 
parameters of the drive and response systems are known 
and the states of both systems are measurable. One may 
achieve the synchronization by selecting a nonlinear 

controller U to make eQe
dt
dV T−=  be a negative 

definite function, i.e., the matrix Q  is also a positive 
definite matrix. Then the states of the response system 
and drive system are globally asymptotically 
synchronized. 
  
 
Synchronization of tow identical four-scroll chaotic 
attractor 
 
In this section, we apply the technique detailed in the 
previous section to four scroll attractor (Liu et al., 2004)  
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   Where a > 0, b > 0, c > 0 and b + c > a. 
  

In order to observe the synchronization behavior in the 
four-scroll system, we have two four-scroll systems 
where the drive system with three state variables denoted 
by the subscript 1 drives the response system having 
identical equations denoted by the subscript 2. However, 
the initial condition on the drive system is different from 
that of the response system. The two four-scroll systems 
are described, respectively, by the following equations:  
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Where [ ]TuuuU 321=  is the nonlinear controller 
to be designed. The aim of  this  section  is  to  determine  
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the controller U for the global synchronization of two 
identical four-scroll chaotic attractors. For this purpose, 
the error dynamical system between the drive system (3) 
and response system (4) can be expressed by  
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Where 
 

[ ]Tzyxzyx eeeeandzzeyyexxe =−=−=−= 121212 ,,
.  

We choose a controller [ ]TuuuU 321= as follows:  
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Then the error system can be rewritten as: 
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Let us consider the Lyapunov function )(eV  which is 
defined by  
 

)(
2
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)( 222
zyx eeeeV ++=   (8) 

 
Then we can rewrite (8) as the following  
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It is clear that the Lyapunov function )(eV is a positive 

definite function. Now, taking the time derivative of 
equation (8), then we get 



068    Sci. Res. Essays 
 
 
 

�
�
�

�

�

�
�
�

�

�

=−=

++−=

100
010
001

)( 222

QwhereeQe

eee
dt
dV

t

zyx

 (9) 

  
Based on Lyapunov stability theory, this translates 

to 0)(lim =
∞→

te
t

. Thus the response system and drive 

systems are globally asymptotically synchronized. 
  
 

 
 
   (a) 
 

 
(b) 

 
 
 
 

 
(c) 
 

 
(d) 
 
Figure 3. Shows that the time response of states for drive system 

),,( 111 zyx  and response system ),,( 222 zyx  
with active control law (6) is activated, (a) Signals 

)()( 21 txandtx : (b) Signals )()( 21 tyandty : (c) Signals 

)()( 21 tzandtz and (d) show that the error system (5) tends to 
zero (x1, y1 and z1 _________: x2, y2 and z2 -----------). 
 
 
Numerical results 
 
Fourth-order Runge-Kutta method is used to solve the 
systems of differential equations (3), (4), and (5). In 
addition, a time step of size 410−=h   is  employed.  The  



 
 
 
 
parameters are chosen as a = 0.4, b = 12 and c = 5 in all 
simulations so that the four-scroll system exhibits a 
chaotic behavior when no control is applied (see Figure 
2). 
 

The initial states of the drive system are 
1.0)0(,23.0)0( 11 == yx and 32.0)0(1 =z  and initial 

states of the response system are 
1.5)0(,23.6)0( 22 −== yx and 3)0(2 −=z  hence the 

error system has the initial values -
2.5)0(,6)0( −== yx ee and 32.3)0( −=ze .  

 
The results of the two identical four-scroll systems with 

active control are shown in Figure 3: (a) displays the 
trajectories )(1 tx and )(2 tx , (b) displays the traject-

ories )(1 ty and )(2 ty , (c) displays the trajectoryies 

)(1 tz and )(2 tz  and (d) shows that the trajectories of 

)(),( tete yx and )(tez  of the error system tended to 

zero. 
 
 

 
 
Figure 4. Shows the chaotic attractor of the Lorenze system 
 
 
 
Synchronization of two different chaotic systems 
 
In this section, the application of the above method is 
used to synchronize two different chaotic systems. One is 
the familiar Lorenz system (Sparrow, 1982; Lorenz, 1963) 
considered as the drive system. The Lorenz system is a 
third-order autonomous system with only two quadratic 
multiplication terms but it can display very complex 
dynamical behaviors. The other is the four-scroll chaotic 
attractor considered as the response system. Our aim is 
to design a controller and make the response system 
trace the drive system and become ultimately the same. 

In this section we take the Lorenz system, as a drive 
system, which is described by the following equation:  
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Where 111 , zandyx  are the state variables and 

γβσ and,  are parameters of the system. The Lorenz 
system has a chaotic attractor for some typical parameter 

values: 28
3
8

,10 === γβσ and , as shown by Figure 

4. Form equations (3) and (10), the following error system 
equation can be obtained:  

at 28
3
8

,10 === γβσ and . 
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Where 
 

[ ]Tzyxzyx eeeeandzzeyyexxe =−=−=−= 121212 ,,

. We choose a controller [ ]TuuuU 321=  as follows: 
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Then the error system can be rewritten as:  
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Let us consider the Lyapunov function )(eV  which is 
defined by  
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It is clear that the Lyapunov function )(eV  is a positive 
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definite function. Now, taking the time derivative of 

)(eV defined in equation (14), we get  
 

)( 222
zyx eee

dt
dV ++−=     (15) 

 

It is found that )(eV and 
dt
dV

 is positive and negative 

definite functions. Also, ∞→)(eV as ∞→e . Hence, 

by Lyapunov stability theory, the error dynamics is 
globally asymptotically stable. Therefore, this choice will 
lead the error states )()(),( teandtete zyx  to converge 

to zero as time t tends to infinity and hence the global 
synchronization of two different chaotic systems is 
achieved. 
 

 
(a) 
 

 
(b) 

 
 
 
 

 
(c) 
 
 
 
Numerical results 
 
In this subsection, numerical simulations are also given to 
verify the proposed method. The parameters are selected 

as follows: 
3
8

,10 == βσ  and 28=γ  with initial 

values 
1.0)0(,23.0)0(,1)0(,1)0(,1)0( 22111 ===== yxzyx

and 32.0)0(2 =z . The simulation results are illustrated 
in Figure 5 (a) - (d). It can be seen that the 
synchronization error will converge to zero and two 
different chaotic systems are indeed achieving chaos 
synchronization. 
 
 
CONCLUSIONS 
  
In this paper, modification based on Lyapunov stability 
theory to design a nonlinear controller is proposed to 
synchronize two identical chaotic systems and two 
different chaotic systems. Numerical simulations are also 
given to validate the proposed synchronization approach. 
The simulation results show that the states of two 
identical four-scroll attractor are globally asymptotically 
synchronized. For two different chaotic systems, the four-
scroll attractor is forced to trace the Lorenz system and 
the states of two systems become ultimately the same. 
Since the Lyapunov exponents are not required for the 
calculation, this method is effective and convenient to 
synchronize two identical systems and two different 
chaotic systems. 
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