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LARGE-EDDY SIMULATION AND MULTIGRID METHODS∗
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Abstract. A method to simulate turbulent flows with Large-Eddy Simulation on unstructured grids is presented.
Two kinds of dynamic models are used to model the unresolved scales of motion and are compared with each other
on different grids. Thereby the behaviour of the models is shown and additionally the feature of adaptive grid
refinement is investigated. Furthermore the parallelization aspect is addressed.
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1. Introduction.

1.1. The Problem. Flows of incompressible fluids are modeled by the Navier-Stokes
equations
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with viscosity ν, velocity ~u = (u1, ..., ud)
T , d the spatial dimension and pressure p.

Throughout this paper Einstein’s summation convention is applied unless stated otherwise.
For fluids subject to linear material laws, the viscosity ν is constant. However, for small
viscosities and large velocities the flow develops unordered small scale fluctuations of ve-
locity and pressure. Turbulence has a slowdown and a mixing effect for the flow. It occurs
everywhere in nature as well as in technology. Since the first description of turbulence as a
phenomenon by Reynolds in 1893, turbulence and its generation is still not fully understood.

The multi-scale character of turbulence makes simulation of turbulent flows a difficult
business. To account for the full nonlinear multi-scale effect of turbulence, the Navier-Stokes
equations must be solved resolving the micro-scale effects (see e.g. [9]). This is not possible
for flows on technical scales. Thus, depending on the scale of interest, different modeling
approaches exist.

A full simulation of turbulent flows resolving all scales involved, so-called Direct Nu-
merical Simulation (DNS), is restricted to micro-scale or low-turbulence problems. DNS
on a technologically interesting scale is not possible and will not be possible for many years.
Statistical averaging models, so-called Reynolds-averaged Navier-Stokes-Equations (RANS),
are derived and closed by some empiric equations for additional unknown quantities, like the
turbulent kinetic energy and dissipation. Though widely used in practice, these models only
give rough approximations of the flow. In particular there are critical important quantities of
the flow like the Reynolds stresses, which are in many cases approximated poorly by RANS
models. However, RANS models offer a cheap and simple way to approximate coarse scale
behaviour of turbulent flows.
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A third way to model turbulence is the Large-Eddy Simulation (LES). The idea is to
resolve the large scales which can be represented by the computational grid and to model
structures smaller than the resolution of the grid by subgrid-scale models, see e.g. for an
overview [17]. Due to the resolution requirement LES computations need finer grids than
RANS simulations do, however, LES gives much better accuracy for critical turbulence quan-
tities and thus using LES gets more and more in the range of simulations on technical scales.

1.2. Numerical Methods and Tools for Turbulent Flows. The methods used differ
according to the modeling approach. For DNS high-order explicit schemes are used to dis-
cretize in time and in spite of the non-smoothness of the solutions due to high small-scale
fluctuations high-order or even spectral methods for the discretization in space. Since it is as-
sumed that all scales are resolved in DNS, people use structured equidistant Cartesian grids,
allowing discretizations like spectral methods etc. This assumption also gives rise for explicit
schemes in time, avoiding the necessity of constructing sophisticated solvers, but requiring a
huge number of time-steps. Mostly academic software is used for the simulations.

With the RANS approach standard methods for the Navier-Stokes equations are applied,
like finite volume discretizations in space, implicit schemes in time, and sometimes multigrid
methods. There is a bunch of commercial software around, providing simple RANS models.
Advanced models, however, are typically implemented in academic software, since several
numerical issues are connected with those models. Primary issues are adaptivity, discretiza-
tion, solver, and parallelization. Advanced strategies are found only in recently developed
academic software. Numerical methods for turbulence computation using RANS models
are still highly developed compared with the relatively new field of Large-Eddy Simulation.
Therefore mainly approaches from DNS are used, i.e. explicit discretization in time, since
the idea is to apply filtering only in space and higher order methods on structured grids etc.

However, LES may also be viewed as an improvement of RANS models, since they are
only modeling a few scales in contrast to modeling all scales as in RANS methods. Then it
may be reasonable to apply a filter in time too, opening the opportunity to use implicit meth-
ods and larger time steps. This gives rise to the investigation of solvers for LES. Multigrid as
numerical multi-scale approach matches LES quite well in that respect. Choosing multigrid
as solver for LES systems, the coarse-grid operator needs a discussion, since the model now
depends on the computational grid. Another interesting topic is the issue of adaptive local
grid refinement in LES. Usually adaptive refinement is used to balance the numerical trunca-
tion error throughout the grid. In case of LES the model itself depends on the grid-size. Thus,
adaptivity in LES computations should be used to equilibrate the modeling error as well. To
that end, a tool to estimate modeling errors has to be developed.

In the present paper we discuss the use of multigrid methods for Large-Eddy Simulation
in a parallel unstructured grid environment. First we describe our LES setting addressing
some of the multi-scale issues. Thereafter we present a discretization for the incompressible
Navier-Stokes equations on unstructured grids in 3 space dimensions, then multigrid methods
suited for LES computations and the parallelization and software framework are described.
Finally we show results of computations. Problems computed include the flow past a square
cylinder benchmarking problem and the 2d mixing layer problem showing vortex pairing.

2. LES: Framework, Filtering, Subgrid-scale Models. The basic principle in a Large-
Eddy Simulation is, that large scales are resolved and only the unresolved small scales are
modeled. To realize this, one needs a scale separation decomposing the unknowns in large
and small scales. Therefore each unknown is split in a local average f i and a subgrid-scale
component f ′

i where fi = f i + f ′
i stands for a velocity component or pressure. The local

averages are generated by the application of a filter operator. This operator is a convolution
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integral of the form:

f(x, t) =

∫

Ω

G∆(x, y)f(y, t) dV

Throughout the paper we use a volume-average box-filter with

G∆(x, y) =

{
1

|Ω∆(x)| y ∈ Ω∆(x)

0 else
and filter width ∆ := d

√
|Ω∆(x)|

where Ω∆ denotes the support of the filter function. For the subgrid-scale components a
model has to be defined which will be described later.

To transform the governing equations system into one only depending on local aver-
ages, the filter operator is applied to the incompressible Navier-Stokes equations. Under the
assumption that integration and differentiation commute the resulting system is:
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The unclosed convection term has to be replaced by ∂
∂xj

(uiuj) only depending on av-
eraged quantities. In order not to change the equation the subgrid scale stress tensor τij :=
uiuj − uiuj is introduced. The momentum equation then becomes:
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It remains to specify a model for τij . This will be called ”model part” throughout
the paper. There are different models in use, for example one developed by Germano [8]
and slightly modified by Lilly [12], then there is the first and oldest model introduced by
Smagorinsky [15] and a model developed by Zang et.al. [18]. Except the Smagorinsky
model all others are based on a locally varying model parameter C and a dynamic deter-
mination of this parameter. Partly the models are based on a pure eddy viscosity assump-
tion [8], [12], [15], where it is assumed that the anisotropic part of the subgrid scale stress
tensor is proportional to the shear stress tensor. In the model developed by Zang et.al. [18] a
slightly different approach is introduced. Their model consists of a mixture between an eddy
viscosity and a scale similarity model. The model terms of these models for the anisotropic
part of the subgrid-scale stress tensor read:

eddy viscosity model: τij −
1

3
δijτkk = −2C∆2|S|Sij(4)

mixed model: τij −
1

3
δijτkk = −2C∆2|S|Sij + Lm
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)
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ij = uiuj − uiuj .

For the determination of the model parameter C a dynamic approach is applied, based
on the assumption that the subgrid scales can be modeled by the smallest resolved scales.
This range of scales is derived by filtering equation (1) with a second filter G∆̂ with ∆̂ > ∆
resulting in:
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The unclosed term is again replaced in the same way as before but the model term is now
called testgrid-scale stress tensor Tij := ûiuj−ûiûj . The same model as for τij is introduced
for Tij depending on twice filtered variables but the same parameter C. Then there are two
different representations with different sizes of resolution or scale separation. To compare
these two representations, equation (3) is filtered with G∆̂ and subtracted from equation (6).
The result is then:

(7) Lij := ûiuj − ûiûj = Tij − τ̂ij .

The Leonard term Lij represents the resolved turbulent stress and relates the subgrid-scale
and testgrid-scale stress tensors with each other independent of the precise models for them.

Insertion of model (4) for Tij and τij :

Tij −
1

3
δijTkk = − 2C∆̂2|Ŝ|Ŝij

τij −
1

3
δijτkk = − 2C∆2|S|Sij

into relation (7) leads to the following equation:

Lij −
1

3
δijLkk = −2C∆̂2|Ŝ|Ŝij + 2C∆2 ̂|S|Sij =: 2CMij

Since this is a tensorial equation for a single parameter, a least squares approach is used to
determine C.

minimize: Q = (Lij −
1

3
δijLkk − 2CMij)

2

⇒ C =
LijMij

MklMkl

For model (5) the result is very similar except that a slightly more difficult expression
has to be minimized. First the models for the stress tensors are:
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with LM
ij = ûiuj − ûiûj . To describe the expression for the model parameter C a few

auxiliary tensors are defined:

Hij := ûiuj − ûiûj

Ikk := Lkk + L̂m
kk − LM

kk isotropic part

Mij := −∆̂2|Ŝ|Ŝij + ∆2 ̂|S|Sij

In this case the insertion of the terms in expression (7) results in:

minimize: Q = (Lij − Hij −
1

3
δijIkk − 2CMij)

2

⇒ C =
(Lij − Hij)Mij

MklMkl
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FIG. 1. Sketch of a 2d control volume

For this model the parameter is smaller than for the first model since the tensors Lij and Hij

are approximately of the same size which can be easily seen by their definitions.
After determination of the model parameter C the insertion of the model term in equation

(3) results in:
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3τ
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kk the trace of the eddy viscosity part of the model.

The Navier-Stokes equations are modified substituting viscosity ν by the effective vis-
cosity νeff for the eddy viscosity type model and additionally for the mixed model a contri-
bution from the scale similarity part. The isotropic contribution of τij can not be represented
by a eddy viscosity approach in an incompressible framework and is therefore added to the
pressure term. Thus a modified pressure p̃ is introduced in a Large-Eddy Simulation with a
pure eddy viscosity model. For the mixed model the situation is different due to the scale
similarity term. The isotropic part of the model coming from the shear stress tensor contribu-
tion is again added to the pressure term and also in this case the pressure is modified. But the
contribution of the isotropic part to the pressure is reduced in comparison with model (4).

3. Discretization. The equations are discretized with a finite volume method based on
a vertex centered scheme where the control volumes are defined via dual boxes of the under-
lying finite element grid. A simple sketch of the resulting control volume in a 2d situation
can be seen in figure 1. The construction, however, is general and applies to 3d as well.

After application of Gauss’ theorem and splitting the integration over the whole control
volume surface into a sum of integrations over subsurfaces the resulting system in discretized
form reads:
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)
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) ∣∣∣
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= 0.(9)

Nip(CV ) denotes the number of subsurfaces of the control volume surface and is therefore
equal to the number of integration points of the control volume. In figure 1 an example
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FIG. 2. Sketch of elements with integration points and other positions

for a control volume is shown with 10 integration points or subsurfaces respectively. Small
letters correspond to integration point quantities and have to be further specified whereas
capital letters denote nodal quantities and can be evaluated directly. The outer normal of each
subsurface ~n = (n1, ..., nd)

T is scaled with the subsurface area to get a shorter notation. A
quasi-Newton linearization of the convection term yields

d∑

j=1

uiujnj =

d∑

j=1

uiu
0
jnj

where u0
j stands for the last approximation of the integration point velocity uj . The assembly

of the discretized system can be done element-wise since mainly subsurface integrals have to
be computed.

All unknowns are located in the nodes, thus the discretization would be unstable if the
integration point quantities are interpolated via the Ansatz functions only, because the LBB-
condition is not fulfilled in this case, [7]. To stabilize the system a special interpolation for the
integration point velocities is constructed. The determination of this interpolation is based on
the idea that the correct dependence of velocity and pressure is contained in the momentum
equation itself. This kind of interpolation and stabilization was developed by Schneider and
Raw [14] and was further modified by Schneider and Karimian [10]. To determine this kind
of interpolation of ui in each element and in each integration point the momentum equation
is approximated with a very simple finite difference approach. The diffusion part is assumed
to be a Laplacian for this finite difference approximation. In contrast to the above mentioned
references, the Laplacian is then approximated with a standard 5-point stencil in 2d or 7-point
stencil in 3d respectively. The convection term is linearized and afterwards discretized by an
upwind method.

To explain the detailed form of the stabilization, in Figure 2 the position of all integration
points is shown as well as the local flow direction at integration point ip4. For the 5-point
stencil in 2d, the corresponding positions are shown in the triangle to illustrate the applica-
tion for the unstructured case. In 3d the procedure is straight forward and is applicable to
hexahedra, tetrahedra, prisms and pyramids.

The finite difference approximation for one integration point reads:
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where ui(δ
+
j ) and ui(δ

−
j ) are the velocities interpolated at positions δ+

j and δ−j as indicated
in Figure 2 and δj is the associated distance from the integration point. u

up
i denotes the

upwind velocity, Lc is the distance between the integration point ip and the corresponding
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upwind position up and ~u0 denotes the last approximation of integration point velocity ~u.
Nk are the nodal Ansatz functions with k = 1, ..., nN and nN the number of nodes of the
element.

This leads to a system of equations depending on integration point velocities, nodal ve-
locities and nodal pressures which can be solved directly in each element. The resulting
integration point velocities are then inserted into the convection term of the momentum equa-
tion and first of all in the mass equation. By doing so, we introduce a pressure dependence in
the mass equation in form of a Laplacian scaled with a constant times the mesh size squared.

Only the momentum equation was taken into account for the determination of the inter-
polation. But additionally the continuity equation can be considered to create an interpolation
in the following way. The momentum equation minus ui times the continuity equation will
be discretized resulting in:
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For this interpolation the integration point velocity component ui depends on Uj(ck) at the
nodes ck with j = 1, ..., d and k = 1, ..., nN , and on nodal pressures whereas in the first
interpolation ui only depends on Ui(ck), k = 1, ..., nN , and nodal pressures. Therefore
the second version is better suited for turbulent calculations with small viscosities where the
dependence between the velocity components is stronger than in the laminar case.

4. Multigrid for LES. The discretized equation system is solved by a multigrid method
with BiCGStab acceleration. The multigrid employs point-block ILUβ as smoother, standard
restriction and prolongation and V(2,2)-cycle. By using multigrid in conjunction with LES
one has to be aware that modeling and grid size are strongly coupled. Therefore on coarser
meshes the large scales get larger and the portion of the modeled scales increases more and
more. To prevent this effect, the model part is computed on the finest grid only and transfered
to all coarser levels to insert the same model or more precisely to model the same scales. To
realize that, the corresponding model terms have to be restricted to coarser levels. The scale
similarity part contributes only to the right hand side of the equation system and therefore only
to the defect. The multigrid cycle already restricts the defect to coarser levels and nothing
has to be done for this part of the model. But the turbulent viscosity influences the Jacobi
matrix. In order to allow assembling of the matrix on each grid level in a non-linear multigrid
framework, the turbulent viscosity has to be restricted to coarser levels. This is done per
simple injection. Therefore the effective viscosity νeff = ν + νt can be evaluated point-wise
and is relatively smooth in comparison to the fine grid due to the coarser representation. The
coarse grid operator is then assembled as described above in §3 where ν is replaced by νeff .

Unfortunately the model parameter C can oscillate strongly in space and time after the
determination process. Numerical problems can arise due to these oscillations and should be
smoothed. This can be achieved by averaging C in space and time. Anyway, C is determined
in the least squares sense only, therefore the averaging or smoothing process does not damage
the model but ensures numerical stability. Local spatial averaging over the testcell is applied
to damp the spatial oscillations and a low pass filter of the form Cn+1 =

(
1−ε

)
Cn+1 +εCn

is used as temporal smoothing operator. Still the parameter varies strongly in space and time,
but at least the high frequencies are damped by these modifications.
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5. Implementation and Parallelization. The above methods have been implemented
in the UG framework. UG is a software system for the simulation of PDE based models
providing a lot of advanced numerical features. The main simulation strategies are the com-
bination of adaptivity on locally refined unstructured grids, parallelism aiming at the use of
massively parallel computers and multigrid methods, [4], [11]. Combining all these features
in one software system is a challenging task for software engineering as well as algorithm
development. It has been one of the main objectives of the Simulation in Technology Center
at Heidelberg University, [2], [3], [4].

UG is based on a parallel programming model, called Dynamic Distributed Data (DDD),
which has been developed by Birken, [5]. DDD is suited for graph based data structures
and can be used independently of UG. DDD does the job of load migration and supports
communication among distributed objects in a flexible and efficient way.

To ensure load balance the whole multigrid tree needs to be evenly distributed. To this
end we form clusters of elements through the grid tree and distribute clusters, [1]. Methods
used for static load balancing like recursive spectral bisection (RSB), recursive coordinate
bisection (RCB) or others can be used to compute the graph partitioning, [11]. Most of the
numerical part parallelizes well. The main difficulty is caused by parallelizing the smoother.
This is done via a block-Jacobi approach. In particular if a problem needs strong smoothers
like ILU this can mean a significant deterioration of the convergence for large numbers of
processors especially on coarse grids.

To reduce the computational domain in a LES computation, periodic boundary condi-
tions are introduced in directions where the flow is assumed to be periodic. This causes some
problems concerning parallelization since the size of the discretization stencil at a periodic
boundary should be the same as in the interior of the domain. Normally the boundary sten-
cils are smaller than the interior ones, but in the periodic case this is no longer true. The
connections to the nearest neighbours of each node are already provided by UG. But in the
unstructured framework of UG, the additional matrix entries needed for periodicity have to
be added by using geometrical informations. Since the load distribution is based on elements,
the additional matrix entries can be easily found, if the corresponding elements and therewith
their nodes are assigned to the same processor. Thus the load balancing strategy is adapted
in such a way that the periodic boundary conditions can be realized similar to the sequential
case despite the loss at processor boundaries as in the interior of the domain.

6. Numerical Results. As a 2d example the mixing layer problem at Re=500 based on
the initial vorticity thickness δ and the free-stream velocity U∞ is presented. The main feature
of this flow is its temporal evolution resulting in pairing of eddies. The computational domain
consists of a unit square with periodic boundary conditions in x-direction and prescribed
velocity at the top boundary and in opposite direction at the bottom. The initial velocity
distribution is given by

u(y) = U∞ tanh(
y

δ
) with δ =

1

56

To enforce the formation of the fundamental eddies the initial velocity field is perturbed by
superposing two divergence free functions of the form:

u′ =
∂Ψ

∂y
, v′ = −

∂Ψ

∂x
, with Ψ = 0.001 U∞e−( y

δ
)2 cos(φ x) and φ = 8π, 20π.

Three different grids are compared in this study to show that the large structures of the flow
are well resolved on rather coarse grids and that adaptive refinement does not disturb these
well resolved scales while still the main portion of the flow is fine enough to model the pairing
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effect. The first grid has got a grid size of 1
256 in each direction and will be further referred to

as ’fine’. It serves as a reference solution where the model part of the simulation is relatively
small. The second one is a stretched grid with equidistant spacing in x-direction with h = 1

256
and in y-direction the spacing is enlarged by a factor of 1.05 to the top and bottom boundary
and is later called ’coarse’. The third one finally has got the same resolution as the ’coarse
grid’ but only in a restricted area where it has been refined adaptively. This grid will be
referred to as ’adap’. The adaption was performed by a simple indicator which compares
the gradients on two levels to check if a refinement is necessary. The bottom left part of
the ’adap’ grid is shown in Figure 5. The refinement region corresponds to the area of the
domain where the interesting features of the flow develop. To compare these three grids with
each other, the subgrid dissipation εSGS is calculated for all three realizations. The subgrid
dissipation is a measure for the model contribution on the grid and will be integrated over the
domain for comparison:

∫
Ω εSGS dV =

∫
Ω τijSij dV .

-1e-05

0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

0 20 40 60 80 100 120 140 160 180

coarse
adap

fine

FIG. 3. Subgrid dissipation for three different grids over time

The evolution of this quantity is shown in Figure 3 for the mixed model on all grids. The
first peak indicates the formation of the fundamental eddies, the second is the beginning of
the first pairing and the last one belongs to the second pairing when only one eddy remains
out of four fundamental ones. It can be seen that the model part slows down very strongly
for the ’fine’ grid when less small structures are present through the pairing process. For the
’coarse’ and ’adap’ grid case the portion of small scales which can not be resolved and have
to be modeled is much larger of course, due to the coarser resolution. In the beginning of the
flow evolution, the ’coarse’ and ’adap’ case fit perfectly. They model the same portion of the
flow, so that the adaption does not disturb the flow features during this period. At the end of
the evolution they don’t fit any longer. But then the refined area of the grid is smaller than the
size of the last remaining eddy which covers almost 2

3 of the domain at that time and is very
strongly influenced by the boundary conditions. Therefore the adaption did not deteriorate
the result for the main period of the evolution process where no boundary influences are
present. Since for model (4) the result is similar no curves are plotted for this case. Thus, the
model used is not that important for this kind of flow. But the turbulence models do have a
slightly different behaviour which can be seen in Figure 4 where the evolution of the vorticity
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FIG. 4. Vorticity thickness relative to δ0 over time

thickness over time is shown for models (4) and (5). The vorticity thickness is defined by
δ := 2U∞

|〈ωz〉|max
where 〈.〉 denotes an average over the periodic direction and ωz := ∂u2

∂x1
− ∂u1

∂x2

The curve with the ’+’ symbol belongs to model (5) and the other one to model (4). Since
for model (5) the pairing starts earlier than for model (4), this shows that backscatter, which
means that energy flows from small to large scales, can not be represented very well by a pure
eddy viscosity model. When pairing occurs, energy flows from small to large scales and thus
two small eddies result in one large eddy. But since eddy viscosity models are dissipative, if
C is positive, this phenomenon can not be modeled very well. Therefore the pairing starts
later than in the mixed model case. Scale similarity models, however, are capable to model
backscatter very well but not dissipation. The combination of them produces good results,
since then the advantages of both models are combined. But still the evolution of the mixed
and eddy viscosity model is very similar. At last, the evolution of the flow until the first pairing
occurs is shown in Figure 5. The results compare very well to those of Boersma et.al., [6],
who also made some investigations with adaptive refinement but using block-structured grids.

The solver for this 2d problem was a pure linear multigrid method where 4 levels and a
V(2,2)-cycle with standard restriction and prolongation were used. The nonlinear reduction
rate was set to 10−3. Each time step needed approximately 5 nonlinear steps where at most 19
linear steps were needed for one nonlinear iteration. For both types of models the multigrid
performed very similar and most of all very robust. Only in the beginning of the simulation
more linear steps were needed. The main difficulty for the linear solver in the beginning is
the zero starting solution for the pressure which doesn’t fit to the prescribed velocity profile.
As soon as the pressure solution was appropriate the solver worked well.

As a 3d example the flow around a long square cylinder is presented at a Reynolds num-
ber of 21400, [13], [16]. The domain and the boundary conditions are shown in Figure 6. In
this case a BiCGStab method with linear multigrid as preconditioner was used to solve the
linearized system in each nonlinear step. Since in 3d the flow phenomena are much more
complicated, especially for flows around obstacles, the pure linear multigrid method with
V(4,4)-cycle did not work. But in combination with BiCBStab the iteration converged well.

LES calculations need a relatively fine resolution, therefore the simulation was done in
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FIG. 5. Vorticity of the mixing layer problem

parallel. The load balance for 16 processors can also be seen in Figure 6. This problem is
very complicated because of steep gradients around the cylinder. As an example in Figure
7 the u1 velocity component is plotted along the centerline of the cylinder in x-direction at
subsequent instants. Around the cylinder the resolution has to be increased further to resolve
these gradients. Uniform refinement would be too costly in this case. Bearing the 2d test with
adaptivity in mind, which gave very good results, this approach will be applied also to the
3d case. Then only in the important regions of the domain the resolution will be increased
and the portion of scales which have to be modeled reduces simultaneously. But a suitable
criterion for the appropriate adaptive refinement has to be developed.
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