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Abstract

Plasmacytoid dendritic cells (pDC) provide an important link between innate and acquired immunity, mediating their action
mainly through IFN-a production. pDC suppress HIV-1 replication, but there is increasing evidence suggesting they may also
contribute to the increased levels of cell apoptosis and pan-immune activation associated with disease progression. Although
having the same clinical spectrum, HIV-2 infection is characterized by a strikingly lower viremia and a much slower rate of CD4
decline and AIDS progression than HIV-1, irrespective of disease stage. We report here a similar marked reduction in circulating
pDC levels in untreated HIV-1 and HIV-2 infections in association with CD4 depletion and T cell activation, in spite of the
undetectable viremia found in the majority of HIV-2 patients. Moreover, the same overexpression of CD86 and PD-L1 on
circulating pDC was found in both infections irrespective of disease stage or viremia status. Our observation that pDC
depletion occurs in HIV-2 infected patients with undetectable viremia indicates that mechanisms other than direct viral
infection determine the pDC depletion during persistent infections. However, viremia was associated with an impairment of
IFN-a production on a per pDC basis upon TLR9 stimulation. These data support the possibility that diminished function in
vitro may relate to prior activation by HIV virions in vivo, in agreement with our finding of higher expression levels of the IFN-a
inducible gene, MxA, in HIV-1 than in HIV-2 individuals. Importantly, serum IFN-a levels were not elevated in HIV-2 infected
individuals. In conclusion, our data in this unique natural model of ‘‘attenuated’’ HIV immunodeficiency contribute to the
understanding of pDC biology in HIV/AIDS pathogenesis, showing that in the absence of detectable viremia a major depletion
of circulating pDC in association with a relatively preserved IFN-a production does occur.
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Introduction

Plasmacytoid dendritic cells (pDC) are one of the two main

subtypes of human dendritic cells. pDC, like the classical myeloid

dendritic cells (mDC), are able to present antigens to T cells [1],

but have a distinctive feature of producing type I interferons (IFN)

[2]. pDC are able to secrete IFN-a at levels up to 1000 fold higher

than any other blood cell following viral infection [2]. They

recognize pathogens mainly via two pattern recognition receptors:

Toll-like receptor 7 (TLR7), which recognizes single-strand RNA,

and TLR9, which recognizes unmethylated DNA. The triggering

of these receptors induces pDC activation and IFN-a production

[3]. IFN-a is a potent stimulator of other immune cells, like mDC

and NK cells, playing a central role in the development of immune

responses, in addition to its well-documented antiviral effects [2].

pDC are thought to be particularly important in immune responses

against viral infections, including HIV. Accordingly, IFN-a is one of

the most important cytokines able to suppress HIV replication [4,5].

However, increasing evidence suggests that IFN-a contributes to the

generalized pan-immune activation and increased levels of cell

apoptosis associated with AIDS progression, and thus the exact role of

pDC in HIV/AIDS pathogenesis remains debatable [6–10].

HIV-2 infection is associated with low levels of circulating virus at

all disease stages [11–15]. This is thought to be the main reason for

the reduced HIV-2 transmission and its geographical confinement

to West Africa and a few related European countries, in particular

Portugal [16,17]. Despite being associated with a clinical spectrum

similar to HIV-1 [18], the rate of disease progression and CD4

decline is much slower irrespective of the disease stage [19,20],

leading to a limited impact on the survival of the majority of infected

adults [21]. The reasons for the relatively benign course of HIV-2

infection remain poorly understood, and its potential to generate

valuable insights into HIV immunopathogenesis has been little

explored [16,17,22,23]. Importantly, we have previously shown that

in HIV-2 infected patients, as in HIV-1 infection, CD4 depletion is

directly linked to immune activation [22,24]. HIV-2 is closely

related to HIV-1, sharing ,60% homology at the amino acid level

in the group antigens (GAG) and polymerase (POL) and 30–40% in

the regions encoding the envelope protein (ENV) [23], and has been

shown to be equally cytopathic in vitro [25]. Moreover, despite

plasma viremia remaining low or undetectable throughout HIV-2

infection, the levels of proviral DNA do not significantly differ from

those found in HIV-1 infected individuals [26–29]. These data

suggest that HIV-2, like HIV-1, is able to disseminate and
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establishes a similar pool of infected cells. The reduced productive

viral replication and the slow rate of the progressive immune

activation and CD4 decline through the natural history of the

disease are in agreement with distinct viral-host equilibrium during

HIV-2 infection. Evidence exists to support preserved polyfunc-

tional cellular specific responses [30–32], and broad neutralizing

antibodies are found in HIV-2 infected patients [33,34]. However,

the debate continues as to whether these are the cause or the

consequence of the control of viral replication and/or of a better

preserved immune system [23]. Given the importance of the innate

immunity in defining host-pathogen interactions, it is plausible that

DC and other components of the innate response play a role.

Accordingly, NK numbers and cytolytic activity have been shown to

be better maintained in HIV-2 than in HIV-1 infection [35].

Importantly, a recent study showed that pDC are less

susceptible to HIV-2 than to HIV-1 infection in vitro [36]. pDC

express CD4 and both the HIV co-receptors CXCR4 and CCR5,

and may be infected by HIV-1 in vitro and in vivo [37,38].

Moreover, pDC apoptosis may be triggered by the binding of

HIV-1 envelope in the absence of direct infection [39].

In this study we characterized for the first time circulating pDC

in HIV-2 infected patients in order to generate insights into their

role in HIV/AIDS pathogenesis. A similar marked reduction in

the frequency of circulating pDC was found in untreated HIV-1

and HIV-2 infections that correlated with the degree of CD4

depletion and T cell activation, in spite of the absence of

detectable viremia documented in the majority of HIV-2 patients.

However, in contrast with HIV-1, IFN-a production upon TLR9

stimulation was relatively preserved in HIV-2 infection, except in

the few HIV-2 patients with detectable viremia in whom major

impairments were found.

Results

HIV-2 infection is associated with a marked reduction of
circulating pDC that correlates with CD4 depletion

HIV-2 infection is characterized by reduced to undetectable

viremia [11–15] and a much slower rate of CD4 decline as

compared to HIV-1 [19,20]. We first asked whether this

‘‘favourable’’ outcome is associated with the preservation of

circulating pDC. For this purpose, pDC were defined within

freshly isolated peripheral blood mononuclear cells (PBMC) as

HLA-DR+CD123+CD11c2 after the exclusion of cell-lineage

markers, as illustrated in Fig. 1A. Cohorts of untreated HIV-2

Author Summary

Infection by HIV-2, the second AIDS-associated virus, is
considered a unique natural model of attenuated HIV
disease. HIV-2 infected individuals exhibit much lower
levels of circulating virus (viremia) and progress to AIDS at
slower rates than HIV-1 infected patients. In this study, we
characterized for the first time blood plasmacytoid
dendritic cells (pDC), important mediators between innate
and acquired immunity, in HIV-2 infection. We observed a
profound reduction in circulating pDC levels in HIV-2
infected patients, even in those with undetectable viremia,
to levels similar to those found in HIV-1 infection.
Moreover, we documented a more differentiated pDC
phenotype in both infected cohorts relative to healthy
individuals. Despite these similarities between HIV-1 and
HIV-2 infections, pDC from HIV-2 patients with undetect-
able viremia exhibited, upon in vitro stimulation, a better-
preserved ability to produce interferon-a (IFN-a), an
important anti-viral cytokine with potential to stimulate
other immune cells. Overall, our data suggest that the
presence of virus in circulation, although not critical for the
reduction in pDC number, appears to be central for the
impairment of their function. This study of pDC in HIV-2
infection fills a gap in the understanding of their potential
role in HIV/AIDS pathogenesis.

Figure 1. Similar reduction of circulating pDC in HIV-1 and HIV-
2 infections. A representative flow cytometric pDC analysis is shown
in (A). After a large gate including lymphocytes and monocytes defined
by forward and side scatter, cells were further gated on HLA-DR+ cells
that do not express lineage markers (left dot-plot). pDC were
subsequently identified as CD123+CD11c2 cells (right dot-plot).
Numbers represent the percentage of cells within the illustrated gates
from an HIV-2 infected patient with 523 CD4 T cell/ml and undetectable
viremia. The proportion of pDC within PBMC is 0.15% corresponding to
4 pDC/ml. (B) Graphs show circulating pDC levels in HIV-1 and HIV-2
infected cohorts and healthy controls expressed as percentage within
PBMC and absolute numbers. Each dot represents one individual and
bars represent mean. (C) The infected cohorts were stratified according
to CD4 T cell counts (.350 and ,350 cells/ml) and pDC levels
compared as percentages and absolute numbers. Bars represent
mean6SEM. Numbers under the bars represent the total individuals
analyzed. *p,0.05, **p,0.01 and ***p,0.001 as compared to pDC levels
in controls. #p,0.05 between early and advanced HIV-2 cohorts.
doi:10.1371/journal.ppat.1000667.g001

Plasmacytoid DC in HIV-2 Infection
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and HIV-1 individuals with similar degrees of CD4 T cell

depletion but distinct viremia were evaluated (Table 1).

HIV-1 and HIV-2 infected patients exhibited a similar marked

reduction in blood pDC as compared to seronegative controls,

assessed both as percentage of total PBMC and as absolute

numbers (Fig. 1B). This was not ascribed to sex, ethnicity or age

distribution since no significant differences were found between

males and females, Caucasians and non-Caucasians, and individ-

uals with more or less than 45 years within each cohort or all

cohorts combined (data not shown).

In order to evaluate whether the two infections also have similar

levels of pDC depletion in early and advanced HIV disease, we

stratified the HIV-1 and HIV-2 cohorts according to CD4 T cell

counts (.350 and ,350 CD4 T cells/ml). As previously reported

[40–43], in HIV-1 infection pDC depletion was more marked in

the advanced disease stage (Fig. 1C). Of note, we found

comparable pDC levels in advanced HIV-2 infected patients

(Fig. 1C). Moreover, a similar significant depletion was also

documented in early disease in both infections as compared to

seronegative subjects (Fig. 1C).

The association of pDC levels with disease progression in

HIV-2 infection was further demonstrated by the statistically

significant positive correlation found between the frequencies of

pDC and circulating CD4 T cells (Fig. 2A). Although pDC levels

were found to negatively correlate with the frequency of CD4 T

cells in some HIV-1 studies [42–46], we found no significant

correlation in our untreated HIV-1 cohort, possibly due to

the reduced representation of patients with very low CD4

counts.

Hence, HIV-1 and HIV-2 diseases are associated with a similar

extent of pDC depletion in spite of the slower rate of CD4 decline

and the better prognosis that characterize HIV-2 infection.

HIV-2 infected patients with undetectable viremia
showed a marked decrease of circulating pDC

Plasma viremia is thought to be a major determinant of pDC

depletion in HIV-1 infection [7,40,42–44,47]. HIV-1 and HIV-2

infections are associated with markedly distinct plasma viral loads

[11–15]. As shown in Table 1, 20 out of 28 HIV-2 infected

patients had undetectable viremia and those with detectable

viremia showed levels significantly lower than the ones found in

HIV-1 patients. Of note, the highest viremia documented in the

HIV-2 cohort was 26,263 RNA copies/ml.

In order to address the impact of viremia on the levels of

circulating pDC, we divided the patients into two groups, viremic

and ‘‘aviremic’’ (levels below the test cut-off). As shown in Fig. 2B,

the HIV-2 group with undetectable viremia exhibited significantly

lower pDC levels than the seronegative cohort. In addition, HIV-2

infected patients with detectable viremia had significantly lower

Table 1. Characteristics of the cohorts studied.

Healthy HIV-1 HIV-2

Number (male/female) 18 (7/11) 22 (17/5) 28 (9/19)

Age, years 4262 3962# 4863

[25–57] [23–61] [19–78]

Ethnicity: Caucasian/Black 16/2 16/6 14/14

CD4 T cell count, cells/ml 935663a 5696105** 666680*

[518–1397] [18–1848] [52–1511]

% CD4 T cells 44.962.0a 22.863.3*** 28.562.6***

[34.4–61.1] [1.3–47.2] [7.1–54.1]

% HLA-DR+ within CD4 4.160.4b 17.863.1c; *** 11.361.7**

[1.9–7.6] [1.7–54.5] [1.9–36.3]

% HLA-DR+CD38+ within CD8 4.461.4b 29.764.2c; *** 20.663.6***

[1.3–22.7] [1.4–62.2] [0.6–69.5]

Viremia, HIV RNA copies/ml NA 672,3106294,026d; ## 3,03561,125d

[40–4,470,000] [200–26,263]

Proviral DNA, copies/106 PBMC NA 172655e 173660e

[5–975] [5–1033]

Data are mean6SEM with limits in brackets. NA, not applicable. #p,0.05 in
comparison with HIV-2 infected patients; *p,0.05, **p,0.01, ***p,0.001 in
comparison with healthy individuals. an = 17; bn = 16; cn = 21; d4 out of 22 HIV-1
patients and 20 out of 28 HIV-2 patients had undetectable viremia. In these
cases, the cut-off value of the test (40 and 200 RNA copies/ml for HIV-1 and HIV-
2, respectively) was used to calculate the mean; eProviral DNA was quantified in
21 HIV-1 and 28 HIV-2 infected patients. It was detectable in all the patients
evaluated but in 3 cases from the HIV-2 cohort it was below the cut-off value of
the test (5 HIV DNA copies/106 PBMC copies). In these cases, the cut-off value of
the test was used to calculate the mean.
doi:10.1371/journal.ppat.1000667.t001

Figure 2. Relationship of pDC levels with CD4 T cell, T cell
activation and viremia. Correlation between percentage of pDC
within PBMC and percentage of CD4 T cells (A), percentage of HLA-DR
within CD4 T cells (C), as well as percentage of HLA-DR+CD38+ within
CD8 T cells (D), in HIV-2 and HIV-1 infections. Comparison of the pDC
frequencies in the infected cohorts divided into viremic and ‘‘aviremic’’
(below test cut-off) groups (B). Bars represent mean6SEM. Numbers
under the bars represent the total individuals analyzed. ***p,0.001 as
compared to controls. ##p,0.01 between ‘‘aviremic’’ and viremic
patients of the same cohort. &&p,0.01 between HIV-1 and HIV-2
‘‘aviremic’’ patients.
doi:10.1371/journal.ppat.1000667.g002

Plasmacytoid DC in HIV-2 Infection
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pDC levels than the ‘‘aviremic’’ HIV-2 patients (Fig. 2B).

However, it is important to stress that HIV-2 viremic individuals

had significantly lower CD4 T cell counts than HIV-2 ‘‘aviremic’’

(356660 cells/ml, n = 8, and 790697 cells/ml, n = 20, respectively,

p = 0.0112).

Nevertheless, a significant inverse correlation between the

frequency of pDC within PBMC and viremia was observed in

both HIV-2 (r = 20.4485; p = 0.0089; n = 28) and HIV-1

(r = 20.7684; p,0.0001; n = 22) cohorts.

As shown in Fig. 2B, HIV-1 individuals with undetectable

viremia do not exhibit pDC depletion. The HIV-1 patients able to

control viral replication in the absence of antiretroviral drugs are

considered to represent less than 1% of HIV-1 infected individuals

[48]. Our small group of 4 HIV-1 ‘‘aviremic’’ individuals had

follow-ups with undetectable viremia ranging from 2 to 10 years

(6.4563.28 years of follow-up as compared to 7.0361.21 in

‘‘aviremic’’ HIV-2) and showed relatively well preserved CD4 T

cell counts (8146242 cells/ml, range 344–1425; as compared to

790697 cells/ml, range 52–1511, in ‘‘aviremic’’ HIV-2). Similar

findings were obtained when circulating pDC numbers were

analyzed instead of pDC frequency (data not shown).

In summary, in agreement with previous reports [40,42,43,47],

we found a significant negative correlation between viremia and

pDC levels in HIV-1 infection. However, a major reduction of

circulating pDC levels was found in HIV-2 infected patients with

undetectable viremia, showing that HIV-2 infected patients

exhibited a major reduction in circulating pDC irrespective of

the presence of detectable plasma viral load.

The decrease in circulating pDC correlates with T cell
activation in both infected cohorts

Both HIV-1 and HIV-2 infections are associated with a

persistent generalized immune-activation, which is considered a

main determinant of the immunodeficiency and that inversely

correlates with CD4 T cell counts [22,24,49]. We assessed the

relationship between pDC levels and expression of activation

markers on T cells. HIV-2 infected cohort exhibited a significant

inverse correlation between the frequency of pDC and the

proportion of CD4 T cells expressing HLA-DR as well as of

CD8 T cells that simultaneously expressed HLA-DR and CD38

(Fig. 2C and 2D). In the case of HIV-1 infection, a significant

inverse correlation was only found with CD8 T cell activation, as

shown in Fig. 2C and 2D. This is relevant since CD8 T cell

activation is considered a better marker of the hyper-activation

state associated with HIV infection with prognostic value [50]. On

the other hand, CD4 T cell activation may be in part related to the

homeostatic response to CD4 depletion, and, as described above,

in our HIV-1 cohort no inverse correlation was documented

between pDC and CD4 circulating levels. Similar findings were

obtained in relation to the absolute number of circulating pDC as

well as in relation to other parameters of CD8 T cell activation,

namely the percentage and mean fluorescence intensity (FI) of

CD38 expression (data not shown).

Overall, pDC depletion directly correlates with T cell activation

in both infections.

Phenotype of circulating pDC
We next asked whether the phenotype of circulating pDC differ

in the two infections. The co-stimulatory molecule CD86 was

similarly overexpressed on pDC in the HIV-1 and HIV-2 infected

cohorts and this increase was statistically significant as compared

to healthy controls (Fig. 3A). No significant correlation was found

between the CD86 expression, as assessed by percentage or

geomean FI, and percentage of CD4 T cell (r = 20.0699 for

HIV-1; r = 20.08539 for HIV-2, in the case of CD86 geomean FI)

or viremia (r = 20.01922 for HIV-1; r = 0.1975 for HIV-2, in the

case of CD86 geomean FI) in both infections. Moreover, we also

found no correlation with the different parameters of CD4 and

CD8 T cell activation evaluated.

The ex vivo expression of the co-stimulatory molecules CD40

and CD80 within pDC was minimal in all individuals (data not

shown).

Programmed death-1 (PD-1) signaling mediates an inhibitory

pathway of T cell response and its overexpression is considered to

contribute significantly to the impairment of specific T cell

responses in HIV-1 infected individuals [51]. We compared the

expression of PD-1 ligands on pDC and found a statistically

significant increase in the percentage of PD-L1+ pDC in both

infections as compared to healthy controls (Fig. 3A). In addition,

the increase in the PD-L1 geomean FI within total pDC also

reached statistical significance in HIV-1 infected individuals in

comparison with healthy controls (Fig. 3A). Again, no significant

correlation was found between PD-L1 expression and percentage

of CD4 T cell (r = 0.1200 for HIV-1; r = 20.02762 for HIV-2, in

the case of PD-L1 geomean FI), or viremia (r = 20.02476 for

HIV-1; r = 20.2501 for HIV-2, in the case of PD-L1 geomean FI),

or the T cell activation markers assessed in both infections. pDC

expression of PD-L2 was minimal in all the three cohorts (data not

shown).

In summary, both CD86 and PD-L1 were similarly up-

regulated on pDC of both HIV-2 and HIV-1 cohorts, irrespective

of disease stage.

Modulation of pDC Phenotype by TLR9 stimulation in
vitro

pDC are known to express TLR9, which binds to unmethylated

CpG motifs, and to mature upon TLR9 signaling [3,52]. Studies

on the modulation of pDC phenotype in vitro have been scarce and

mainly conducted in HIV-1 patients under antiretroviral therapy

[53]. We assessed the modulation of pDC phenotype upon TLR9

stimulation by stimulating freshly isolated PBMC with a TLR9

ligand (CpG type A) or a non-CpG oligodeoxynucleotide (ODN)

as a negative control. After 22 h, cells were harvested and

analyzed within a pDC gate as described above.

CD86 and PD-L1 were found to be up-regulated by the control

non-CpG ODN (data not shown), precluding their use to evaluate

pDC maturation induced by CpG. Therefore, we focused our

analysis on the CD40 and CD80 molecules that, although

exhibiting reduced ex vivo expression, were specifically up-

regulated upon CpG stimulation (Fig. 3B). Results are shown as

stimulation index (SI) calculated as the ratio of the geomean FI

measured in the presence of CpG and medium alone. The

capacity of pDC to up-regulate CD40 after CpG stimulation was

significantly decreased both in HIV-1 and in HIV-2 individuals

relative to healthy controls (Fig. 3C). An impairment of CD80 up-

regulation was also documented in both infections, though without

reaching statistical significance in comparison with controls (CD80

SI: 2.460.3 for seronegatives, 1.960.1 for HIV-1, 1.960.1 for

HIV-2).

The stimulation index for CD40 geomean FI was found to have

a significant positive correlation with the percentage of CD4 T

cells (r = 0.8451; p,0.0001) and a negative correlation with

viremia (r = 20.7312; p = 0.002) in the HIV-1 cohort, but no

significant correlations were found in the HIV-2 cohort

(r = 20.065 with percentage of CD4 T cells; and r = 0.0846 with

viremia). Moreover, in contrast to the HIV-1 cohort, similar levels

were found when HIV-2 patients with more and less than 350

CD4 T cells/ml (data not shown) or with detectable and

Plasmacytoid DC in HIV-2 Infection
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undetectable viremia were compared (Fig. 3C). These data suggest

that the impairment in CD40 up-regulation upon CpG stimula-

tion was present throughout HIV-2 disease and was not further

aggravated in late stages.

Overall, the circulating pDC of HIV-infected individuals

showed a reduced ability to further differentiate upon CpG-A

stimulation as compared to seronegative controls.

Assessment of IFN-a production upon TLR9 stimulation
IFN-a production is mainly triggered through TLR7 and TLR9

[3]. CpG-A has been shown to preferentially act on pDC [52] and

was used here to assess pDC ability to secrete IFN-a upon TLR9

stimulation. Using single-cell assessment by flow cytometry, we

further confirmed that in our experimental conditions the CpG-A

used selectively induced IFN-a production by pDC (Fig. S1).

Both HIV-1 and HIV-2 infected cohorts exhibited a signifi-

cantly lower IFN-a production upon CpG stimulation as

compared to healthy controls (Fig. 4A). Of note, similar levels of

IFN-a production were found in the infected cohorts in

Caucasians and non-Caucasians, individuals with more or less

than 45 years, as well as males and females. Thus, despite recent

data showing increased IFN-a production in women upon TLR7

stimulation in vitro [54], we were unable to detect any difference

upon CpG stimulation.

Patients with less than 350 CD4 T cells/ml tended to produce

lower IFN-a levels than the patients with higher CD4 counts

(Fig. 4B). In agreement, IFN-a production was found to positively

correlate with the frequency of circulating CD4 T cells and

inversely with the up-regulation of activation markers in CD4 and

CD8 T cells in both infected cohorts (Fig. 5A). Noteworthy, the

ability to produce IFN-a was also significantly lower in viremic

than ‘‘aviremic’’ cohorts (Fig. 4C) and a significant correlation was

found with viremia in both infections (Fig. 5A).

We estimated the IFN-a production on a per cell basis, by

dividing the concentration of IFN-a produced upon CpG

stimulation by the absolute number of pDC in the culture.

Although there was a decrease in the ability of pDC to produce

IFN-a in both infections, significantly higher estimated IFN-a
levels per pDC were found in HIV-2 than in HIV-1 infected

patients (Fig. 4D). Patients with less than 350 CD4 T cells/ml had

lower levels of IFN-a production per pDC (Fig. 4E), but no

significant correlation was found between IFN-a production per

pDC and the degree of CD4 depletion in either infection (Fig. 5B).

In addition, no correlation was found between the estimated levels

of IFN-a production per pDC and CD4 or CD8 T cell activation

in the HIV-1 cohort, in contrast with the significant correlations

found in HIV-2 infection (Fig. 5B).

Importantly, when the cohorts were divided according to the

viremia status, the HIV-2 patients with undetectable viremia

exhibited preserved levels of IFN-a production per pDC (Fig. 4F).

Figure 3. pDC Phenotype. (A) Phenotype of circulating pDC in HIV-1
and HIV-2 infections. Levels of expression of CD86 and PD-L1 on pDC
from freshly isolated PBMC assessed as proportion within pDC and as
geomean FI within total pDC measured by flow cytometry. Each dot
represents one individual and bars represent mean. (B) pDC phenotype
upon CpG stimulation. Freshly isolated PBMC were cultured with
medium alone, CpG or the non-CpG ODN control. pDC phenotype was
assessed by flow cytometry after 22 hours. Histograms represent the
analysis of CD40 and CD80 expression upon CpG stimulation within
pDC in a representative HIV-2 infected patient with 508 CD4 T cells/ml
and 13627 HIV-2 RNA copies/ml. After a large gate including
lymphocytes and monocytes defined by forward and side scatter, cells
were sequentially gated on HLA-DR+ cells that do not express lineage

markers and on CD123+CD11c2 cells. (C) The up-regulation of CD40
expression on pDC is showed as stimulation index defined as ratio
between the geomean FI in the presence of CpG or ODN and in its
absence (medium). Data are presented within total HIV-1 and HIV-2
cohorts (left graph) and within the infected cohorts grouped according
to viremia status (right graph). Bars represent mean6SEM. Numbers
under the bars represent the total HIV-1 and HIV-2 infected individuals
as well as healthy controls analyzed. The subgroups of patients
analyzed are representative of their respective patient population
described in Table 1 with respect to CD4 counts and viral load. There
are no significant differences between HIV-1 and HIV-2 cohorts.
*p,0.05, **p,0.01 and ***p,0.001 as compared to controls. #p,0.05
between ‘‘aviremic’’ and viremic patients of the HIV-1 cohort.
doi:10.1371/journal.ppat.1000667.g003
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Moreover, detectable HIV-2 viremia was associated with a

significant decrease in the levels of IFN-a per pDC, reaching

levels similar to the ones documented in HIV-1 viremic patients

(Fig. 4F). In agreement, a significant correlation was documented

between IFN-a production per pDC and viremia in the HIV-2

cohort that was not observed in the HIV-1 cohort (Fig. 5B). These

data suggest a major role of plasma viral load, even at low levels

such as those found in HIV-2 patients, in the impairment of IFN-a
production. Therefore, we next assessed the relationship between

IFN-a production and proviral DNA. The levels of proviral DNA

were similar in the HIV-1 and HIV-2 cohorts, including in

‘‘aviremic’’ groups (Fig. S2). No significant correlations were found

between proviral DNA and pDC levels in both infections (data not

shown). Of note, a significant correlation between viremia and

proviral DNA was only found in the HIV-2 cohort (r = 0.4480,

p = 0.0168 for HIV-2; and r = 0.0145, p = 0.9518 for HIV-1).

Remarkably, a statistically significant positive correlation between

proviral DNA and Net IFN-a production was found in the HIV-2

cohort that was not documented in HIV-1+ patients, showing that

the higher the number of infected cells the higher the IFN-a
production in HIV-2 infection (Fig. 5A). In contrast, the estimated

levels of IFN-a per pDC correlated negatively with proviral DNA

in the HIV-1 but not in the HIV-2 cohort (Fig. 5B). These data

suggest that the number of infected cells contributed more to the

impairment of IFN-a production on a per pDC basis upon TLR9

stimulation in HIV-1 than in HIV-2 infection, possibly related to

the higher levels of effective viral replication in HIV-1 infection.

CpG has been suggested to modulate the production of other

cytokines both directly and indirectly through effects mediated by

CpG-induced IFN-a [2]. We investigated the effect of CpG

stimulation on the production of IL-10, IL-12p40, TNF-a and the

b-chemokine MIP-1b by measuring their levels in the culture

supernatants using a Luminex-based multiplex assay. Of note, the

analysis of the combined cohorts revealed a direct correlation

between the levels of IFN-a production upon CpG stimulation and

the levels of TNF-a (r = 0.4033, p = 0.0027 for Net IFN-a and

r = 0.4207, p = 0.0017 for Net IFN-a/1000pDC; n = 53) and MIP-

1b (r = 0.3978, p = 0.0035 for Net IFN-a and r = 0.4272,

p = 0.0016 for Net IFN-a/1000pDC; n = 52). No such correlations

were found in the case of IL-10 or IL-12p40. As illustrated in

Fig. 6A, the most striking finding was a reduced ability of HIV-1

infected individuals to produce MIP-1b and TNF-a, as compared

Figure 4. IFN-a production upon CpG stimulation. Freshly isolated PBMC were stimulated with CpG or the non-CpG ODN control. After
22 hours IFN-a was quantified in culture supernatants by ELISA. (A) Levels of IFN-a upon CpG or the non-CpG ODN control in healthy, HIV-1 and HIV-
2 cohorts. The infected cohorts were further stratified according to CD4 T cell counts (B) or the presence or absence of detectable viremia (C) and the
levels of IFN-a upon CpG stimulation are shown. Results expressed as ‘‘Net IFN-a’’ refer to the amount of IFN-a produced upon CpG stimulation
subtracted by the IFN-a measured with medium alone. The ‘‘Net IFN-a’’ was divided by the total number of pDC in the culture and results are shown
for the healthy, HIV-1 and HIV-2 cohorts (D), as well as for the infected cohorts stratified according to CD4 T cell counts (E) or the presence or absence
of detectable viremia (F). Each dot represents one individual. Bars represent mean6SEM. Numbers under the bars represent the total individuals
analyzed. The subgroups of patients analyzed are representative of their respective patient population described in Table 1 with respect to CD4
counts and viral load. **p,0.01 and ***p,0.001 as compared to controls. #p,0.05 and ##p,0.01 between the two groups of the same infected
cohort. & p,0.05 between HIV-1 and HIV-2 patients with more than 350 CD4 T cells/ml.
doi:10.1371/journal.ppat.1000667.g004
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to healthy and HIV-2 infected cohorts upon CpG stimulation.

These decreases were clearer when the stimulation index was

analyzed as illustrated in Fig. 6B, showing that a statistically

significant reduction was only found in the case of TNF-a
production in the HIV-1 cohort as compared to healthy controls.

Of note, when the HIV-2 cohort was split accordingly to viremia

status, the individuals with undetectable viremia exhibited a

preserved ability to produce TNF-a (Fig. 6C) and MIP-1b (data

not shown) in response to CpG stimulation, whereas the patients

with detectable viremia showed a decrease in stimulation indexes

similar to HIV-1 infected patients. However, despite the clear

trends (p = 0.07 in the case of the viremic cohorts as compared to

healthy controls), none of these differences reached statistical

significance (Fig. 6C). These data suggest that viremia impacts on

the ability to produce pro-inflammatory cytokines upon TLR9

stimulation ex vivo in HIV-2 infected individuals, as documented

for IFN-a.

Despite the consensual data regarding the decreased ability of

pDC to produce IFN-a upon in vitro stimulation in HIV-1 infected

patients [40,41,47,55], there are conflicting results regarding

circulating IFN-a levels [43,56–58]. To our knowledge, there are

no reports of serum IFN-a levels in chronic HIV-2 infection. We

assessed serum IFN-a by ELISA and found that, similarly to

seronegative donors, all HIV-2 and the majority of HIV-1 infected

patients had undetectable levels (,12,5 pg/ml). The only

exceptions were two advanced HIV-1 infected patients with

13,18 pg/ml and 22,16 pg/ml of IFN-a (patients with 6.5 and 5.7

log10 RNA copies/ml, and with 18 and 290 CD4 T cells/ml,

respectively).

In spite of the reduced circulating IFN-a levels and impaired

production upon TLR9 and/or TLR7 stimulation in vitro, there is

increasing evidence of increased IFN-a production in vivo during

HIV-1 infection [7,39,59]. In order to evaluate this possibility, we

quantified in freshly isolated PBMC the relative mRNA expression

levels of MxA, a gene that is mainly induced by IFN-a and, thus,

has been used as an indicator of IFN-a activity [46,60–63]. As

depicted in Table 2, significantly higher levels were found in HIV-

1 than in HIV-2 infected patients. Importantly, in the HIV-1

cohort, the MxA levels were directly correlated with both viremia

and levels of CD8 T cell activation, and inversely correlated with

the frequency of circulating pDC and with the Net IFN-a
production upon CpG stimulation in vitro (Table 2). No significant

Figure 5. Relationship of IFN-a production upon CpG stimulation with CD4 T cells, T cell activation, viremia and proviral DNA
levels. Correlations of frequency of circulating CD4 T cells, proportion of CD4 T cells that express HLA-DR, proportion of CD8 T cells that
simultaneously express HLA-DR and CD38, viremia and levels of proviral DNA with the Net IFN-a production (A) and the Net IFN-a per 1000 pDC (B)
upon in vitro CpG stimulation. Each dot represents one individual from the HIV-2 cohort, the HIV-1 cohort and healthy controls.
doi:10.1371/journal.ppat.1000667.g005
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Figure 6. IL-10, IL-12p40, MIP-1b and TNF-a levels upon CpG stimulation in Healthy, HIV-1 and HIV-2 cohorts. Freshly isolated PBMC
were cultured in the absence or in the presence of CpG. After 22 hours, culture supernatants were harvested and analyzed for the secretion of IL-10,
IL-12p40, MIP-1b and TNF-a using the Luminex multiplex assay. (A) Cytokine levels. Each dot represents one individual. The levels observed in non-
stimulated cultures (open symbols) are connected with those documented in the presence of CpG (closed symbols), and were compared using
Wilcoxon test. (B) Stimulation indexes defined as ratio between the level of cytokine in the supernatant of the culture in the presence of CpG and in
its absence (medium) in the three cohorts. (C) The HIV-2 and the HIV-1 cohorts were split according to the presence of detectable and undectable
viremia and the stimulation indexes for TNF-a are shown. Bars represent mean6SEM. Numbers under the bars represent the total individuals
analyzed. The subgroups of patients analyzed are representative of their respective patient population described in Table 1 with respect to CD4
counts and viral load. The Mann-Whitney test was used to compare the data of the HIV-2, HIV-1 and healthy cohorts, and the significant p values
(,0.05) are shown.
doi:10.1371/journal.ppat.1000667.g006
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correlations were found in the HIV-2 cohort (Table 2). The

‘‘aviremic’’ patients tended to have lower levels of MxA expression

than the viremic individuals in both infections, though not

reaching statistical significance (relative MxA expression: 50639

and 3806155, for the HIV-1 cohort; 81623 and 122650, for the

HIV-2 cohort; respectively). These data are in agreement with

lower activity of IFN-a in vivo during HIV-2 as compared to HIV-1

infection, that possibly explain the reduced refractoriness to IFN-a
production upon further in vitro pDC stimulation observed in HIV-

2 infected patients.

In summary, despite the similar decrease of pDC in both

infections, pDC from HIV-2-infected patients appear to better

preserve their ability to produce IFN-a upon CpG stimulation. Of

note, no increase in the ex vivo levels of serum IFN-a was

documented in HIV-2 infection in parallel with absence of

evidence of significant increase in the IFN-a activity in vivo, as

assessed by MxA relative expression levels. However, detectable

viremia was associated with a similar impairment of IFN-a
production in both infections, suggesting a major role of

circulating virus in the pDC functional impairment ex vivo.

Discussion

This study characterized for the first time circulating pDC in

individuals with HIV-2 infection. A similar decrease in pDC levels

was found in untreated HIV-2 and HIV-1 infections in spite of the

much lower viremia and slower rate of disease progression that

distinguishes HIV-2 disease. Importantly, a significant depletion of

circulating pDC was documented even in HIV-2 infected

individuals with undetectable viremia. The pDC levels were

directly correlated with the degree of CD4 T cell depletion and T

cell activation in both infections. Conversely, viremia appears to

have a major impact on the ability of the remaining pDC to

produce IFN-a upon TLR9 stimulation in vitro in HIV-2 infected

patients.

HIV-1 infection has been consistently shown to be associated

with reduced frequency and impaired function of circulating pDC,

both during primary and chronic infection [40–44,47,55,56].

These defects have been found to be more pronounced in

individuals with higher viremia [40,42–44,47] and/or lower CD4+

T cell counts [42–44] and to be associated with the development of

opportunistic infections and tumors [40]. Viral infection and

induction of pDC apoptosis are thought to significantly contribute

to the pDC depletion during both HIV-1 and SIV disease [39].

However, HIV-2 was shown to be less able than HIV-1 to infect

pDC in vitro [36] and reduced levels of viral replication are

documented in HIV-2 infected patients [11–15]. Therefore, the

finding of a similar reduction of pDC levels was unexpected and

suggests that it may be related to other mechanisms than direct

viral effects. This possibility is further supported by the delayed

and frequently incomplete recovery of pDC numbers and function

following long-term successful antiretroviral treatment in HIV-1

seropositive patients [44,47,56]. Interestingly, the 4 HIV-1

infected patients with undetectable viremia in the absence of

antiretroviral therapy evaluated in this study showed better

preserved pDC levels than aviremic HIV-2 individuals. This was

not apparently related to distinct length of patients’ follow-up or

proviral load, and could not be ascribed to the higher HIV-2

viremia cut-off, since viremia was quantified in the last 14 HIV-2

patients evaluated using an up-dated assay with a limit of detection

of 40 RNA copies/ml and found to be undetectable (data not

shown). The distinct pDC levels in the ‘‘aviremic’’ HIV-1 and

HIV-2 groups suggest that the study of larger cohorts of these

particular HIV-1 infected individuals, usually called ‘‘Elite

controllers’’, will be instrumental to better understand pDC

biology in HIV/AIDS.

Traffic alterations have also been suggested to contribute to the

reduced levels of circulating pDC. Several in vitro studies have

documented a viral-associated up-regulation of molecules, such as

CCR7 on pDC, that may contribute for their preferential homing

to lymphoid tissues [64]. However, the changes in cell redistribu-

tion have not been consistently confirmed either in HIV-1 infected

patients [7,65–67] or in non-human primates infected with SIV

[68–71]. Although there are studies that demonstrated an increase

in pDC counts in lymph nodes and spleen during HIV-1 and SIV

infections [65–67,69,70], other studies reported a parallel pDC

decrease in the peripheral blood and lymphoid tissues [68] and an

increase in pDC primed to apoptosis in the lymph nodes [71].

There are no data available on lymphoid tissues during HIV-2

disease. Of note, the establishment of HIV-2 infection is associated

with levels of proviral DNA similar to those found in HIV-1,

suggesting an equivalent viral dissemination despite the reduced

HIV-2 viremia [26–29,72]. Therefore, it is plausible that HIV-2

RNA and/or HIV-2 proteins may induce pDC maturation and

migration. In agreement, we found the same alterations in the

phenotype of circulating pDC in the two infections, and these

changes were not associated with disease stage or viremia status.

Of note, PD-L1 has been shown to be up-regulated in pDC upon

TLR stimulation by HIV-1 products [73].

Strong correlations between pDC decline and up-regulation of

markers of CD8 T cell activation both in HIV-2 and HIV-1

infections represent another important finding of our study. We

have previously shown that generalized immune activation is likely

to be a main determinant of HIV-2 disease progression [22,24], as

has been demonstrated in HIV-1 infection [22,24,50,58].

Persistent HIV-2 infection is thought to induce a chronic

stimulation of the immune system leading to a progressive T cell

impairment and CD4 depletion, though at much slower rates than

in HIV-1 infection [22,24,49]. The generalized pro-inflammatory

state is likely to contribute to pDC depletion both by altered cell

traffic and apoptosis susceptibility, as well as through the

impairment of the ability of DC precursors to differentiate. We

showed a similar up-regulation of the levels of expression of co-

Table 2. Relative MxA mRNA expression.

Healthy HIV-1 HIV-2

Relative MxA mRNA expression 100623 3326119# 92620

Correlation of relative MxA mRNA with:

% CD4 T cells r = 20.2143 r = 20.3873 r = 20.2200

p = 0.6191 p = 0.1246 p = 0.3132

Viremia, HIV RNA copies/ml NA r = 0.6143 r = 0.1260

p = 0.0087 p = 0.5666

% HLA-DR+CD38+ within CD8 r = 0.1667 r = 0.5172 r = 0.2699

p = 0.7033 p = 0.0335 p = 0.2130

% pDC within PBMC r = 0.0952 r = 20.6027 r = 20.0763

p = 0.8401 p = 0.0104 p = 0.7294

Net IFN-a, pg/ml r = 0.1190 r = 20.7011 r = 20.1031

p = 0.7930 p = 0.0052 p = 0.6938

Relative MxA mRNA expression was quantified by real-time PCR in 10 healthy
subjects, 20 HIV-1 and 24 HIV-2 infected patients and expressed as mean6SEM
of MxA mRNA copies/1000 GAPDH mRNA copies. Correlations were evaluated in
8 healthy, 17 HIV-1 and 23 HIV-2 individuals, except for Net IFN-a (14 HIV-1 and
17 HIV-2). #p = 0.0421 as compared to HIV-2 cohort. NA, not applicable.
doi:10.1371/journal.ppat.1000667.t002
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stimulatory and co-inhibitory molecules in the two infections,

which may represent a state of incomplete differentiation that may

preclude adequate antigenic presentation or be associated with

tolerogenic properties, as previously reported [66,74].

On the other hand, besides their antiviral properties, pDC are

increasingly viewed as conductors of the immune activation

associated with HIV/AIDS pathogenesis [6]. In this respect, a

dual role has been suggested. A deleterious contribution of the

pDC-mediated activation of other cells of the immune system [9]

was further supported by the recently documented impairment of

pDC activation and IFN-a production in sooty mangabeys,

natural hosts of SIV infection that are known to exhibit reduced

levels of immune activation and do not progress to AIDS [8].

Additionally, pDC were shown to be able to induce regulatory T

cells upon activation by HIV-1 through an indoleamine 2,3-

dioxygenase (IDO)-mediated mechanism [75] and, in this way,

modulate immune activation and limit HIV specific responses

[74,75].

Despite some discrepant results, there is usually no significant

increase in circulating IFN-a levels until advanced HIV-1 disease

stages [43,56–58]. In agreement, we were unable to detect

increased serum IFN-a in the large majority of HIV-1 infected

patients. We also found no detectable serum levels of IFN-a during

HIV-2 infection.

Importantly, although a decrease in the pDC ability to produce

IFN-a in vitro has been consistently observed during HIV-1

infection [40,41,47,55], several lines of evidence suggest that there

is increased production of IFN-a in vivo. HIV-1 infected patients

have been shown to exhibit increased transcriptional levels of IFN-

a and of several genes that are known to be induced by IFN-a
[7,39,59]. There are no data on HIV-2 infected patients. Here, we

showed that HIV-2 as compared to HIV-1 infection is associated

with lower levels of MxA expression, a gene induced by IFN-a
[60,61]. Our data support a lower IFN-a activity in vivo throughout

the course of HIV-2 infection, possibly contributing to the slower

progression of immune activation and consequently lower rate of

CD4 decline that distinguishes the HIV-2 disease [19,20,22,24].

Worth noting, we found that in HIV-1 infection the levels of

MxA expression directly correlated with viremia and were

inversely related to the circulating pDC levels and the amount

of IFN-a production upon in vitro TLR9 stimulation. These data

further support the possibility that continuous pDC stimulation by

TLR ligands in vivo leads to a refractory state of the pDC that

explains the apparent paradox between reduced in vitro production

of IFN-a and indirect evidence of increased IFN-a production in

vivo [7]. HIV-1 itself has been shown to modulate pDC function,

particularly through the binding of viral RNA to TLR7 [76], as

well as through the impairment of TLR9 signaling by the envelope

protein gp120 [77]. The corresponding HIV-2 envelope protein,

gp105, was shown to exhibit distinct impacts in several

immunological systems [78–81], but there are no data on its

effects on TLR9 signaling.

We tested here the IFN-a production upon TLR9 stimulation in

vitro and found it to be significantly impaired in HIV-2 infected

individuals. Given the limited volume of patient samples, we

selected CpG type A as a standard TLR9 ligand thought to target

mainly pDC [52], as confirmed here by single-cell analysis of IFN-

a production. A similar decrease in IFN-a production upon CpG

stimulation of whole blood cultures was also recently reported in

HIV-2 and HIV-1 infected cohorts in Guinea-Bissau, West Africa,

as compared to non-infected individuals [82].

As discussed above, HIV-2 infected individuals are thought to

have reduced levels of viral replication and, therefore, it is

expected that their pDC would be exposed to much less HIV-

related molecules able to signal through TLR. Importantly, when

we split the HIV-2 cohort according to viremia status, we found

that the individuals with undetectable viremia exhibited a

preserved IFN-a production on a per pDC basis. These data

suggested that despite their reduced number, pDC function was

preserved in HIV-2 infected patients without detectable circulating

virus. In contrast, a similar impairment in IFN-a production was

found in viremic HIV-2 and HIV-1 infected patients despite the

average 2 log difference in the number of plasma viral RNA copy

numbers. These results suggest that even low levels of circulating

virus are sufficient to intrinsically impair IFN-a production by

pDC or to induce a pDC refractory state that prevents their

subsequent response to further TLR9 stimulation.

In conclusion, we reported here for the first time a major

depletion of circulating pDC during HIV-2 infection, a unique

natural model of ‘‘attenuated’’ HIV immunodeficiency. This

decrease was observed early in disease and also in HIV-2 infected

patients with undetectable viremia, suggesting that mechanisms

other than pDC direct viral infection play major roles in their

depletion during persistent infections. On the other hand, viremia

was associated with an impairment of IFN-a production on a per

pDC basis upon TLR9 stimulation, in agreement with the

possibility that diminished function in vitro is likely a consequence

of prior activation by HIV virions in vivo.

Materials and Methods

Ethics statement
The study was approved by the Ethical Board of the Faculty of

Medicine, University of Lisbon. Subjects gave written informed

consent to blood sampling and processing. In exceptional cases,

related to cultural factors, oral informed consent was chosen by the

patient and the assistant physician provided a written declaration

of the permission obtained.

Studied cohorts
A cross-sectional study was performed involving 28 HIV-2 and

22 HIV-1 infected patients without ongoing opportunistic

infections or tumours, followed at Hospital de Santa Maria in

Lisbon, Portugal. 18 HIV-seronegative age-matched control

subjects were studied. Cohort characterization is summarized in

Table 1.

Cell isolation and culture
PBMC were isolated from heparinized blood immediately after

venopuncture by Ficoll-Hypaque density gradient centrifugation.

PBMC were cultured at 26106 cells/ml in 24-well plates in 1.5 ml

of RPMI1640 supplemented with 100 U/ml penicillin/100 mg/ml

streptomycin, 2 mM glutamine (all from Gibco-Invitrogen,

Paisley, U.K.) and 10% human AB serum (Sigma-Aldrich, St

Louis, MO) at 37uC with 5% CO2, in the absence or presence of

10 mg/ml class A CpG-ODN 2336 (59-gggGACGACGTCG-

TGgggggg-39) or the non-CpG-ODN 2243 control (59-gggGGAG-

CATGCTGgggggg-39) provided by Coley Pharmaceutical Group

(Wellesley, MA). After 22 h, cells were harvested for phenotypic

analysis and culture supernatants stored at 280uC for subsequent

cytokine evaluation.

Cell surface staining by flow cytometry
PBMC surface staining was performed as previously described

[83], and analyzed for pDC frequency ex vivo with the following

anti-human conjugated antibodies: FITC conjugated lineage (Lin)

markers (CD3 and CD14 from Sanquin, Amsterdam, Nether-

lands; CD16 from BD Biosciences, San Jose, CA; and CD20 from
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eBioscience, San Diego, CA); HLA-DR PerCP (L243, BD

Biosciences); CD123 PE-Cy7 (6H6, eBioscience), and CD11c

APC (B-ly6, BD Biosciences). Analysis was done within a large

gate including lymphocytes and monocytes, defined according to

their forward/side scatter characteristics. pDC were defined as

Lin2HLA-DR+CD123+CD11c2. Gated pDC were further ana-

lyzed using PE-conjugated mAbs against CD40 (5C3) and PD-L2

(MIH18) from eBioscience, CD80 (L307.4, BD Biosciences) and

APC-conjugated mAbs against CD86 (FUN-1, BD Biosciences)

and PD-L1 (MIH1, eBioscience). The same strategy was applied to

evaluate the phenotype of pDC after in vitro culture of PBMC with

CpG-ODN. At least 400,000 events were acquired within a

lymphocyte+monocyte gate, using a CANTO flow cytometer (BD

Biosciences), and analyzed using FlowJo (Tree Star, Inc, Ashland,

OR). The absolute numbers of pDC/ml of blood were calculated

by multiplying their representation by the sum of the absolute

lymphocyte and monocyte counts obtained at the clinical

laboratory. The expression of pDC surface markers was evaluated

both in terms of percentage and of geomean FI.

Quantification of cytokines
IFN-a was quantified in serum samples and in culture

supernatants using the VeriKineTM Human IFN-Alpha Serum

Sample ELISA and Human IFN-Alpha ELISA Kit, respectively

(PBL InterferonSource, Piscataway, NJ), according to manufac-

turer’s instructions. IFN-a production at the single cell level was

assessed by flow cytometry in PBMC cultured for 18 h in the

presence of Brefeldin A (last 16 h culture; 10 mg/ml; Sigma) by

intracellular staining with the anti-human IFN-a (clone 225.C;

eBioscience) after surface staining, using a previously described

protocol [84]. IL-10, IL-12p40, MIP-1-b and TNF-a were

quantified in the supernatants of PBMC cultured as described

above using the Human Cytokine LINCOplex Kit (Millipore

Corporation, Billerica, MA) and the Luminex LX100 (Luminex

Corporation, Austin, TX) according to manifacturer’s instructions.

Samples were assayed in duplicate.

mRNA extraction and assessment of MxA expression by
real-time PCR

Freshly isolated PBMC (1–56106 cells) were immediately

placed into RLT lysis buffer (Qiagen, Valência, CA) and stored

at 280uC. Lysates were further homogenized by passage through

QIAshredder columns (Qiagen). Polyadenylated mRNA was

extracted using Oligotex Direct mRNA Mini kit (Qiagen). mRNA

was reverse transcribed into cDNA using random hexamers and

Superscript II Reverse Transcriptase Kit (all from Invitrogen).

mRNA and cDNA concentrations were determined using a

NanoDrop ND-10 spectrophotometer (NanoDrop technologies,

Wilmington, DE). MxA expression was determined by Quantita-

tive Real-Time PCR using AbiPrism 7000 SDS thermocycler

(Applied Biosystems) using an optimized kit prepared by

PrimerDesign Southampton, UK, with the following protocol:

enzyme activation (95uC for 10 minutes), followed by 45 cycles of

denaturation (95uC for 15 seconds) and annealing and data

collection (60uC for 60 seconds). Each sample was quantified in

duplicate using 1 mg of cDNA in a 20 ml PCR mixture volume

containing 10 ml of Platinum Quantitative PCR SuperMix-UDG,

0,4 ml ROX Reference Dye 50X (all from Invitrogen), 300 nM of

MxA primers/probe mix or 300 nM of GAPDH primers/probe

mix (internal control), both from PrimerDesign. Absolute

quantities of mRNA product were determined from a standard

curve of serial dilutions of known quantities of each specific

amplicon (Primer Design). Results are presented as number of

copies of MxA mRNA per 1000 copies of GAPDH.

Proviral DNA quantification
Proviral DNA was quantified by real-time PCR based assays

that amplify highly conserved regions in HIV-1 and HIV-2 gag

using protocols that we have previously described [29]. The

detection limit of the assays was 5 DNA copies/106 PBMC.

Plasma viral load assessment
HIV-1 viremia was quantified by RT-PCR (detection threshold

of 40 RNA copies/ml, Roche, Basel, Switzerland). HIV-2 viremia

was quantified using a RT-PCR-based assay [15] with a detection

limit of 200 RNA copies/ml. The cut-off values of the tests were

considered for the purpose of the analysis in the cases where

detection was below this level.

Statistical analysis
Statistical analysis was performed using GraphPad Prism

version 5.00 (GraphPad Software, San Diego, CA). The data are

presented as arithmetic mean 6 SEM and were compared using

Mann-Whitney test and Wilcoxon matched pairs test as

appropriate. Spearman’s correlation coefficient was used to assess

the correlation between two variables. P-values ,0.05 were

considered to be significant.

Supporting Information

Figure S1 CpG-type A selectively stimulate pDC to produce

IFN-a. PBMC were cultured for 18 h in the absence and

presence of CpG-A or its control ODN. Brefeldin A was added

for the last 16 h of culture. Cells were intracellularly stained for

IFN-a after surface staining. (A) IFN-a production by pDC

cultured with medium alone, CpG or ODN. Dot-plots show the

analysis performed within cells gated according to forward-

scatter and side-scatter in order to include lymphocytes and

monocytes, and subsequently gated in lineage negative cells

(CD192CD142CD562CD32) and HLA-DR+ cells. IFN-a was

selectively produced by CD123+ cells only after CpG stimula-

tion. (B) Dot-plots illustrate the absence of IFN-a production

after CpG stimulation within lineage positive cells including

monocytes, T cells, NK cells and B cells. (C) The absence of

IFN-a production by B cells is further confirmed by the

dot-plots showing the staining of IFN-a within CD19+

lymphocytes.

Found at: doi:10.1371/journal.ppat.1000667.s001 (0.70 MB TIF)

Figure S2 Proviral DNA levels. HIV-2 and HIV-1 proviral

DNA was quantified by real-time PCR within total PBMC. Graph

shows the results of the HIV-2 and HIV-1 cohorts split according

to viremia status.

Found at: doi:10.1371/journal.ppat.1000667.s002 (0.51 MB TIF)
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