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1 Introduction

The approximation properties of the g-analogue operators in compact disks have recently
been an active area of the research in the field of the approximation theory [1-8]. Details
of the g-calculus can be found in [9-11].

Balazs [12] defined the Bernstein-type rational functions. She gave an estimate for the
order of its convergence and proved an asymptotic approximation theorem and a conver-
gence theorem concerning the derivative of these operators. In [13], Baldzs and Szabados
obtained the best possible estimate under more restrictive conditions, in which both the
weight and the order of convergence would be better than [12]. They applied their re-
sults to the approximation of certain improper integrals by quadrature sums of positive
coefficients based on a finite number of equidistant nodes. The g-form of these operators
was given by Dogru. He investigated Korovkin-type statistical approximation properties
of these operators for the functions of one and two variables [14]. Atakut and Ispir [15]
defined the bivariate real Bernstein-type rational functions of the Bernstein-type ratio-
nal functions given by Baldzs in [12] and proved the approximation theorems for these
functions. Ispir and Gupta [16] studied the Bézier variant of generalized Kantrovich-type
Balazs operators.

Approximation properties of the rational Baldzs-Szabados operators on compact disks
in the complex plane were investigated by Gal [17]. He proved the upper estimate in an

approximation of these operators. Also, he obtained the exact degree of its approximation
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by using a Voronovskaja-type result. In [18], the approximation properties given by Gal in
the complex plane was extended to the bivariate case.

The complex g-Baldzs-Szabados operators was defined in [19] as follows:

1 ~ i 4\ |7 :

B = oo 3 (00) | (@,
I—[S=01(1 +q°a,z) j:ZO by /1,

where f : Dr U [R, 00) — C is uniformly continuous and bounded on [0, co) with Dg = {z €

C:|z|<R}forR>0,a, = [n]qﬁ_l, b, = [rz]g, q€(0,1,0<B8 < %, neN,zeC, andz#—qslan

fors=0,1,2,....

We consider the following complex bivariate g-Baldzs-Szabados operators of the tensor

product kind:

n m [k] ‘]
RO (F)z,20) =Y Y f < o [;qu >Pn,k(21)pm,j(z2); 6]

k=0 j=0 " m
where f : (Dg, U [R;,00)) X (Dg, U [Ry,00)) — C is a uniformly continuous function

bounded on [0, 00) x [0,00), a,, = [n]gl_l, b, = [n]gl, Ay = [m]gz_l, b,, = [m]g2 for n,m e N,

71,92 €(0,1],0< B < 2.

— (71— / .
o) V2, @m) 4 oo S I OS]

p k z1) = — an p J Z2) = —
" 120+ g} anz) " 12260 + g7 amz)

foralls; =0,1,...,n—1,8,=0,1,...,m—1and z;,z, € C with z; #_qil;“n and z, #—q;z%m.

The complex bivariate g-Baldzs-Szabados operators of the tensor product kind are well
defined and linear, and these operators are analytic for all n > ny, m > my, |z1| <r <
[no]y,” and |za] <1y < [mol,”.

The aim of this paper is to obtain the exact degree of approximation of the complex
bivariate g-Baldzs-Szabados operators of the tensor product kind. The Voronovskaja-type
theorem in the bivariate case is very different from the univariate case, so the exact degree
of approximation of these operators can be obtained for 0 < 8 < %

Throughout this paper, we denote by ||f|,,,-, = max{|f(z1,22)| : (z1,22) € Dn X l_)rl} the
uniform norm of the function f in the space of continuous functions on D,, x D,, and by
If 1l B(10,00) x [0,00)) = SUP{|f(21,22)| : (z1,22) € [0,00) x [0,00)} the norm of the function f in
the space of bounded functions on [0, c0) x [0, 00), where D, = {z € C: |z| < r} for r > 0.

The convergence results will be obtained under the condition that f : (Dg, U [R;, 00)) x
(DR, U [Ry,00)) — C is analytic in Dg, x Dg, for r; < R; and ry < Ry, which ensures the
representationf(z1,22) = 3 roofc(22)2F, where fi(z,) = Zjo:oo ck,j% forall (z1,22) € Dg, X D, .

2 Auxiliary results
Let g = (¢,) be a sequence satisfying

lim g,=1 and limg,=c (0<c<1). (2)
n—oQ n—0oQ

We need the following lemmas in order to prove the main results for the operators (1).
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1

1-p
[n0]
Lemma 1 Letno,m022,0<,3§%,—<r1<R1§%

Imoly,
3 and } <ry <Ry < 0‘“ ff
(DR, U [R1,00)) X (Dg, U [Ry,00)) = C is a uniformly continuous function bounded on

[0, 00) X [0, 00) and analytic in Dg, x Dg, then we have the form

[o¢] o0
RIS (F)(z1,20) = Y > cijRIE (exj) (21, 22)

k=0 j=0

for all (z1,23) € Dy, x D,,, where (ex)(z1,22) = N (21)e(22) with €¥(z) = 25, €} (25) = 2}, for
k,jeN.

Proof For any s,r € N, we define

Jor(z1,22) chk,;ek/ z1,22) if |z1] <r,lze| <, and
k=0 j=0

forz1,20) =f(z1,20)  if (z1,22) € (r1,00) X (r2,00).

From the hypothesis on f, it is clear that each f;, is bounded on [0, 00) x [0, 00), which
implies that

n m
[RIE(f ) (z1,20)| < Y ) |pui(@1)| [ (22) | My, < 00,
k=0 j=0

where My, , is a constant depending onj; -, 50 all RIVE (f, ) are well defined for all n,m € N,

1-p
noly ry < [m 02]q

2 ’

[n
n>ng, m=>mo, r < and (z1,22) € Dy, X Dy, .

Defining

Jorkj(z1,22) = crjerjlz1,22)  if|z1] <1 lz| <2 and

_faz)
(s+1)(r+1)

Jorkj(z1,22) = if (21,22) € (r1,00) X (ry, 00).

It is clear that each f;, x ; is bounded on [0, 00) x [0, 00) and

ﬁr Zl;Z2 Z E )srk} Z11Z2)

k=0 j=0

qu g2

From the linearity of R},,,*, we have

RIS (f,,)(21,22) = Z Z iR (€)1, 22).

k=0 j=0

It suffices to prove that
Jim RIVE(f )21, 22) = RIVE2 () (21, 22)
for any fixed n,m e N, n > ng, m > my, |z1| <r and |z;| < r,. Since

|Lﬂ,r _f”B([O,oo)x[O,oo)) = W;,r _f”rl,rzr
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we can write

|RILE2 () (21, 22) = RIS (F) (21, 20) | < MESE2,  (1fsr — 11 B(0,00)x [0,00)

= leli?zzmn”fw’ _f”r‘lr*’z (3)

for |z1] < rj and |z3| < 1s.
In equation (3), taking the limit as s,7 — 0o and using limy, oo |lfir = f llry,r, = 0, We get
the result. O
1-p
3 %and%<r2<R2 b °q2 . For all
n>ng, m=>my, |z1| <, |zl <ryand k=0,1,2,... the following inequality holds.

Lemma 2 Letno,m022,0<,3§%,l<r1 <R; <

|RDE (ex,) 21, 22) | < KY(20r1) (207,

Proof Using Lemma 4 in [19], the lemma is easily proved, so we omit the proof of the
lemma. O

3 Main results
Let us denote by Ac the space of all uniformly continuous complex valued functions
defined on (Dg, U [Ry,00)) X (Dg, U [Ry,00)), bounded on [0, oo) x [0,00) and ana-

lytic in Dp, X DR2 and for which there exist M > 0, 0 < A1 < and 0 < A; < W

_r1
with || < MA o ,2 for all k,j = 0,1,2,... (which implies |f(z1,2)| < Me1al+42122] for all
(21,22) € Dg, x Dg,).

We have the following upper estimate.

Theorem 1 Let q; = (q1,,) and g2 = (q2,m) be sequences satisfying the conditions given in

[ o]ql Imoly,”
— —

equation (2) and let ng,mg >2,0< B < %, % <rn <R < and =<1y <Ry <

Iff € Ac, then for all n > ny, m > my, |z1| <r and |z3| <ry thefollowmg inequality holds:

|RIV22(f)(21,25) — f(21,22) | < (an - bi)Cg(f) + (am - bi)C“(f),

where

o0
Cs(f) = maX{MrlrzezrlAl’r’zAz, 9Me'2A2 Z(k _ 1)(207’1141)/(_1 },
k=1

C*(f) = max { 2M(rp)*e® 242 Y12 (20m Ay, }

IM 3120 (20n AN 3 (- 1) (20r4,) ™

and also the series Y ;°((20rA1)", 372 (k = 1)(20r.41) " and 3, (j — 1)(20r,A,) " are
convergent.

Proof Using Lemma 1, we can write

|RIV(f)(21,22) — fz1,22)| <D D lewsl |[RU (e )21, 22) — ez, 22)] (4)

k=0 j=0


http://www.journalofinequalitiesandapplications.com/content/2014/1/20

Yildiz Ozkan Journal of Inequalities and Applications 2014, 2014:20
http://www.journalofinequalitiesandapplications.com/content/2014/1/20

Taking into account Lemma 4 in [19] and the estimate given in the proof of Theorem 2 in

[19], for all |z1| < 11 and |z| < ry, we obtain

|RIVE2 (¢ 1) (21, 22) — ex,j(z1,22) |
= ’R‘“ (e’f)(zl).Rq2 (e/) 2)) — 2 z’|

< IR e e R4 )~ 2+ 2 e o
(k'>(2om’<{zam(r2> (2, +—(/ 1((20r)- }

+(ra) [2an(r1)2k(2r1)k'1 + b_(k - 1)(k!)(20r1)k-1}
=2a,(n)*(2r) Yj(r2) + 2, (r2)* (k1) (207 ) (21, Y !

¢ k= DE)EOR) ) + - (D(20m) G~ D(207) (5)

n

Applying equation (5) in equation (4), we get

RV () (z1,20) - f (21, 22)|

o0
< a,Mrirye? 417242 1 0g. M(r,)?e?242 E (20mA4;)*
k=0

M gt Z(k 1)(20rA;)* 1+ — Z(ZOrlAl)kZ(J 1)(20r4,) 7

" k=1 j=1
Choosing C3(f) and C*(f) as given in the theorem, we reach the desired result. O

For f(z1,2,), we define the parametric extensions of the Voronovskaja formula by

z21L,q,(F)(z1,22) := R (f('»ZZ))(Zl) —f(z1,22) - nq1 (1) afl (z1,22)

1 2
- glﬁnz,ql (Zl)é;(zhzz)

and

oL Ve 22) = R (1))~ a1 22) ~ W (22) 21 2)

2
- Vo) @2,
2

where 1//,i’q(z) = RZ((L‘ —2)%2) for i = 1,2 given in Lemma 6 in [19].
Their product (composition) gives

Zsz,qz (f) (z1,22) 0 Zan,q1 (f) (z1,22)

2
=R;2<Rzl(f<-,->)<zl) 1)~ Vg ) (a1~ wz,ql(zn%(zl,-)><zﬁ
1
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2
- [Rzl (1 220) ) 1, 22) = Vg ) e 22) ~ W )5 Zf (zm)]

2

Voo (Zz)[Rzl (88—52(',220 (z1) - 88—52(21,22) Vo (ZI)%J;ZI(ZLZZ)

2 il
“Youa (Zl)m(zl:zz)}
. 32 82f 83f
Yo (22)|:RZ (a—zg(',zz))(zl) - 8—z%(zl’22) “ Vo (Zl)W(Zhlz)
V(2 1)8 R 2(21,Z2)] =E1—E + E3 — Ey. (6)

After a simple calculation, we obtain the commutativity property,
22 Lmg, (f)(21,22) © 21 Ly gy (f)(21,22) = Z1L g, (f) (21, 22) © Z2 L g (f) (21, 22).

In the following a Voronovskaja-type result for the operators (1) is presented. It will be the
product of the parametric extensions generated by Voronovskaja’s formula in the univari-
ate case.

Theorem 2 Let q; = (q1,,) and q» = (q2,m) be sequences satisfying the conditions given in
1
%<r1<R15 and%<r2<R2 [mO]qz Af

f €Ac, then for all n > ny, m > my, |z1| < n and |zy| < ry the following inequality holds.

equation (2) and let ng,mg >2,0< f < %, %

2 2
2oLy ()21 22) 0 Z1Lngy (F)21122)] < CS(f)[(éln . ,}) R (am R bi) ]

where C°(f) = max{Cﬁl » U Cr (O}, €', and C" are fixed constants,

r172

Ch () = Mrie™42 ) " (k = 2)(k — 1)k(k +1)(20r14,)

2
k=2

o0
x max{C/e"zA2 Z(ZOrzAz)/, C,CrAy C" 1+ + r%)rzAﬁ}
=0

and

C2 () = Mrye ™y (i = 2)( = 1)j(j + 1)(20r24,) >
j=2

o0
X max { Cle Z(20r1A1)k, C,C'nA, C”(l +7+ rlz)rlA% }
k=0

Proof From the analyticity of f in Dg, % Dg,, since all partial derivatives of f are analytic
in Dp, x Dg,, using Lemma 1, we can write

2

RIN(f(2) (@) - fla1, 22) = ¥ (Z1)§—f(z1,22) Y (21)8—J2((Z1,22)
z1 0z;

oo

Z fi(22)[RE (ef) (z1) — €f (z1) - wnql(zl)kz ,,ql(zl)k(k 1)z2). (7)

Page 6 of 12
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Applying now R?? to equation (7) with respect to z, and Lemma 1 in [19], we obtain

[ee]

E =) R2(f)(2)[RY (e} ) (21) — €f (21) - Wiy, (1)Kt

k=2
= Y (KK — 1)z 2]
= Z ch JRE (€)) (22)[RE: (€} ) (z1) — € (z1) — ¥, o (z)kz
k=2 j=0

— g (@)k(k =17 7%]. (8)

In equation (8), passing now to absolute value for |z;| < r; and |z;| < r, and taking into
account the Lemma 4 in [19] and the estimate given in the proof of Theorem 3 in [19], it
follows that

2 o0 e}
|E)| < (a,, + —) D ekl (20r2) D Clk = 2)(k — 1)k(k + 1)k!(20r,)

bn j=0 k=2

1 2 ) oo o0
< (an + b_,,) MC'r ;(20@42 /; k(k +1)(207.A;)F3 )

for |zi| < r and |z3] < ry.
Similarly, using the estimate given in the proof of Theorem 3 in [19] for |z;| < r; and
|zo| < ry we have

|E>| < Zlfk(zz)HRZl (ef)(z1) — € (z1) - v, a (z)kz} ™! = Y (2K = 1)z 2|

k=2
1 2 o0 .o
< <a,, + b—) > lewjlrh Y Clk = 2)(k = Dk(k + 1)ki(207)**3
=0 k=2
1 /.3 r2A2 . k-3
< (a,, ¥ b—) MC're™*2 " (k - 2)(k — 1)k(k +1)(20r,.4,)>. (10)
" k=2

Using
a
RZI (a—i(',22)>(21) Z sz?; qu (61)(21)

k=0
=3 aidy 'R (eF) (),

k=0 j=1

o
~.

we can write

2
E3=‘/fmq2(22)|:qu(%( zZ))(zl)—;’—f(zl,ZZ) V@) 52

1/0%,,1 (z1)—— (21,22)]

882
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= VU@ YD ckiidy [RE(eF) (@) — e (@) = ¥}, (21)kf

k=2 j=1

— Yy (@)k(k - 1)z} 2.

Considering Lemma 6 in [19] and the estimate given in the proof of Theorem 3 in [19], for

|z1] < and |z3| < r,, we obtain

2 oo o0 .
|Es| < (a,, + 1}) [V (@) Z Z lewjljry  Clk = 2)(k = Dk(k +1)k!(20r, )<+

k=2 j=1
1\° =
< (an + b—) MC'rrsAze™2 Yy " (k - 2)(k - 1)k(k +1)(20r, A1) (11)
" k=2

and also, using

2 o 2
Rn(a s (m)) @ =3 R, () @)

9z — 923
o0 oo
. )
= DY i~ D2 Rl 20)
k=0 j=2
we can write
f 92f 3
Ei = U2 R, —(, — e zy) — U ,
4 ‘/fm,qz(22)|: (E)z%( ZZ))(ZI) 022 (z1,22) ‘ﬁn,ql(a)—azl 02 (z1,22)
) 4
- wn,ql (ZI)W(ZI, 22)}

=2, @) YD i - D2 [RE () (@) - ef (z1) — v (21)hzt ™

k=2 j=2

— 2, @k(k - D).

Taking into account Lemma 6 in [19] and the estimate given in the proof of Theorem 3 in

[19], for |z1] < r and |z;| < ry we get

1)\? > -
|E4| < (an + b—n) W2 @)D -1

j=2

X Y lexi| Clk = 2)(k = Dk(k + 1)k1(20r)*3
k=2

1\2
< <a,, + b_) MC'r} (141 +73)rAse™"”

n

x Z(k —2)(k = Dk(k +1)(204,r,)*3 (12)
k=2

Page 8 of 12
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for |z1| < and |z3| < rp. Using equations (9)-(12), we get

|Z2Lm,qz (F)(z1,22) 0 21 L gy (f)(21122)| < |Ei| + |Ea| + |E3| + | Es]

2
<ct (f)(a +i) .
11,17 n bn

If we estimate |21 L, 4, (f)(21,22) © 22Lyn,g, (f)(21,22)], then by reason of the symmetry we get
a similar order of approximation, simply interchanging above the places of n with m and
r1 with ry.

In conclusion, using the commutativity property, we reach the result. O

Let us denote by Ag) the space of all complex valued functions where they and their
first and second partial derivatives are uniformly continuous on (Dg, U [R;,00)) X (Dg, U
[R,, 00)), bounded on [0,00) x [0,00) and analytic in Dg, X Dg,, and there exist M > 0,

0<A;< 53— 0<Ay< 20r with | j| < M k" 2 (which implies |f(z1,2,)| < MeA1/a1l+42122
for all (zl,zz) € Dp, X Dg,).

Theorems 1 and 2 will be used to find the exact degree in the approximation of RZ, (f).
In this sense, we have the following lower estimate.

Theorem 3 Let q; = (q1,,) and q; = (qz n) be sequences satisfying the conditions given in

-p
equation (2) and let ng >2,0< <35, =<r <R < [nolg,™ 012‘11 and % <1y <Ry < [”O]qz If

fe A(c) and f is not a solution of the complex partial differential equation

2 2

a
K(f)(z1,22) =215 2 (z1,22) + 205 (21,22) =
0z 023

then for all n > ny we have

1 1
”th 9 (f) f”r1 - m( b_n> ”K(f) ”r],rz.

Proof From equation (6), we can write

RIV(f)(z1,22) - f (21, 22)
zz(an bln){K (e 22) +2<an bn)[%ﬁ;ﬂ
+ B () (z1,22) + Falf) 21, 22) + G,,(f)(zl,zz)}, )
where

Dn (f) (Zl: ZZ) = Z2Ll'l.q2 (f)(zli ZZ) o Zan,q1 (f) (Zl; Z2):

Z1Lnq (F(z1,22) + Z2Lng, (F(z1,22)

E,(f)(z1,22) = 2+ 1)
nt g,

’

4

E(f)z1,22) = Y Fi(f)(z1,22)

h=1
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with

by, (21) T

Fyl,(f)(zbzz) m i "\ oz (21, ))(22) - —(21»22)]

b i

EX(f)(z1,22) = 2(11/1"—22:2; K (;—i(-,Zz))(zl)— ——(z1,22)
bn'(//iql (Zl) i

4(1+aub,)| " ( )

by I/f,,zqz(Zz) i
T a1+ tlnb)_ (

2
FS(f)(zl,zz) = 7(21, ) )(z2) - (21,22)
1

E(f)(z1,22)

o z»)(zl) <zl,zZ>}
2

b qul z1) 8f( )+ b W,,qz z2) Bf
2(1 + a,b,) 0z > 2(1 + a,b,) 0z,
b iUy @) Vn 0 (@) 92f

21 +a,b,) 029021

b WU g @)U, (1) 33
4(1 + a,b,) 0z 027 (21,22)

Gu(f)(z1,22) =

—(z1,22)

(Zl: 22)

by}, (@), (1) 33f
4(1 + a,b,) 025 0z

by, @)Y, ) 3t
8(1 + a,b,) az% Bzf

(21, Z2)

(21,22),

and

2 2

b, a a
K (f)(z1,22) = i0+ab) {‘ﬁnz,ql (21)8—;12((21&2) Vs (Zz)a—ZJZ;(ZhZz)}

Considering Theorems 2 and 3 in [19], we get

lim E,(f)(z1,22) =0 and lim F,(f)(z1,22) = 0.
n— o0 n—0oQ

Under the conditions of the theorem, since lim,,_, o @, = 0, lim,,_, oo i =0, lim,_, o a, X
b,=0for0< B < %, it is also clear that

lim Gn(f)(zl, 22) =0.
n— 00

From Theorem 2, we obtain

=0.

rLry

e {225 e

. . _ 1 1 2
Using lim,,_, o 2,0, = 0 for 0 < B < 5 and Tra] = 50 We get

2

|| o

1
oy = ﬁkﬂ —5 (z1,22)]- (14)
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Similarly, it follows that

1 2
||I<n(f) ”,1,,2 = m|22| 8—Z%(21,22) . (15)
From equations (14) and (15), we can write
K1, = 5 s 1O 16)
"V = 36(1 + ay,by,) o’

In equation (13), taking into account the inequalities
IH + Tl = [1H iy = 1T Ny | = 1 iy = 1Tl
and equation (16), it follows that

1
IR, )6

) Hz(“” ’ i) [Dim} +Ealf) + Eulf) + Gulf)

b, )| 4a, + i)z

!

rry

> (a5 )10,

1 1
> (5 )35 e <O

for all n > ny with ny depending only f, r; and r,. We used that by hypothesis we have
KGN,y > 0. O

Combining Theorem 2 with Theorem 3, we immediately obtain the following result
giving the exact degree of the operators (1).

Corollary 1 Suppose that the hypothesis in the statement of Theorem 3 holds. If the Taylor
series of f contains at least one term of the form ck,oz]f with ¢y # 0 and k > 2 or of the form
Co,2, With co; # 0 and j > 2, then for all n > no we have

1
IR0 1, ~ (a0 5

Proof 1Tt suffices to prove that, under the hypothesis on f, it cannot be a solution of the
complex partial differential equation
82 2

21— z,2) + 205 (21,22) =0, |z1] <Ry, |22] < Ry.
0z; 0z

Indeed, suppose the contrary. Since a simple calculation gives
2

9 92 - S
Z1é(21,22) + Zziﬁ(zbzz) = Z crenok(k + l)zlf + Z Creaik(k + I)ZII(ZZ
1 2 k=1 k=1

+2 Z cz,jzlzé + Z Z Cre1ik(k + l)z/fzé,

j=2 k=2 j=2
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+ Z cO,j+1j(i + 1)52 + Z Cl,j+1j(i + l)leg

j=1 =1
%) 00 00 )
+2 Z CkyzZIsz + Z Z CkJ+1j(j + 1)211(272,
k=2 k=2 j=2

by setting equal to zero and by the identification of the coefficients, from the terms under
the first and fifth sign ), we immediately get cx.1,0 = cojs1 =0, forall k =1,2,... and j =
1,2,..., which contradicts the hypothesis on f. Therefore the hypothesis and the lower
estimate in Theorem 3 are satisfied, which completes the proof. O
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