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UNIFORM CONVERGENCE OF MONOTONE ITERATIVE METHODS FOR
SEMILINEAR SINGULARLY PERTURBED PROBLEMS OF ELLIPTIC AND

PARABOLIC TYPES
�
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Abstract. This paper deals with discrete monotone iterative methods for solving semilinear singularly perturbed
problems of elliptic and parabolic types. The monotone iterative methods solve only linear discrete systems at each
iterative step of the iterative process. Uniform convergence of the monotone iterative methods are investigated and
rates of convergence are estimated. Numerical experiments complement the theoretical results.
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1. Introduction. We are interested in monotone iterative methods for solving nonlinear
singularly perturbed problems of elliptic and parabolic types.

Firstly, introduce singularly perturbed problems which correspond to the reaction-diffusion
and the convection-diffusion problems of the elliptic type�������
	���
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where
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and
/

are small positive parameters,
S � and

^ 7.b ! are constants. If
	

,
`

and
5 78b ! are

sufficiently smooth, then under suitable continuity and compatibility conditions on the data,
a unique solution

�
of (1.1) exists (see [10] for details).

For
�dceJ

, the reaction-diffusion problem (1.1) with
�9�\�f�

is singularly perturbed and
characterized by the boundary layers (i.e., regions with rapid change of the solution) of widthg �#��hjilk
��h �

near
[a?

(see [2] for details). For
/Cc@J

, the convection-diffusion problem (1.1)
with

�m�n� -
is singularly perturbed and characterized by the regular boundary layers of

width
g �o/Vhpiqk0/Vh �

at

��rJ

and
�C��J

(see [12] for details).
Secondly, introduce singularly perturbed problems which correspond to the reaction-

diffusion and the convection-diffusion problems of the parabolic type���N&'�as����
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�
from (1.2). The initial-boundary conditions are defined by���A`)�>�#
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If
	

,
`

,
5*7.b ! and

� �
are sufficiently smooth, then under suitable continuity and compatibility

conditions on the data, a unique solution
�

of (1.3) exists (see [11] for details).
For

��c�J
, the reaction-diffusion problem (1.3) with

�����f�
is singularly perturbed

and characterized by the boundary layers of width
g ����hpiqk2��h �

near
[a?

(see [3] for details).
For

/Rc�J
, the convection-diffusion problem (1.3) with

�O����-
is singularly perturbed and

characterized by the regular boundary layers of width
g �o/Vhpiqk0/Vh �

at

H��J

and
�3��J

(see
[12] for details).

It is well-known that classical numerical methods for solving singularly perturbed prob-
lems are inefficient, since in order to resolve layers they require a fine mesh covering the
whole domain. For constructing efficient numerical algorithms to handle these problems,
there are two general approaches: the first one is based on layer-adapted meshes and the sec-
ond is based on exponential fitting or on locally exact schemes. The basic property of the
efficient numerical methods is uniform convergence with respect to the perturbation param-
eter. The three books [9], [12] and [16] develop these approaches and give comprehensive
applications to wide classes of singularly perturbed problems.

In the study of numerical methods for nonlinear singularly perturbed problems, the two
major points have to be developed: i) constructing parameter uniform difference schemes; ii)
obtaining reliable and efficient computing algorithms for computing nonlinear discrete prob-
lems. A fruitful method for the treatment of these nonlinear systems is the monotone method
(known as the method of lower and upper solutions, see [13] for details). The monotone
method leads to iterative algorithms which converge globally and solve only linear discrete
systems at each iterative step which is of great importance in practice. Since the initial iter-
ation in the monotone iterative method is either an upper or a lower solution, which can be
constructed directly from the difference equation without any knowledge of the exact solu-
tion, this method eliminates the search for the initial iteration as is often needed in Newton’s
method. This elimination gives a practical advantage in the computation of numerical solu-
tions.

In this paper, we investigate uniform convergence properties of the monotone iterative
methods constructed in [5]-[8].

The structure of the paper is as follows. In Section 1, we present differences schemes
which approximate the nonlinear problems (1.1) and (1.3). In Section 3, we construct a mono-
tone iterative method for solving the nonlinear difference schemes which approximate the
nonlinear elliptic problems (1.1) and study convergence properties of the proposed method.
Section 4 is devoted to the construction and investigation of a monotone iterative method for
solving the nonlinear difference schemes which approximate the nonlinear parabolic prob-
lems (1.3). The final Section 5 presents results of numerical experiments.

2. Difference schemes.
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2.1. Difference schemes for solving (1.1). On
?

introduce nonuniform mesh
?>�\�?f� $ B ?�� (

: ? � $ ��D*
)����EC�9�f�H� $�� 
 � �\E<��
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For approximation (1.1), we use the classical difference scheme for the reaction-diffusion

problem with
�A�r� �

and the upwind difference scheme for the convection-diffusion prob-
lem with

�'�O� -
: ¡ �£¢ ��¤��"&6	���¤0� ¢ ���OE<�;¤�=�? � � ¢ ��`
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¦}©$ ¢

,
¦}©( ¢

are the central difference and the backward difference approxi-
mations to the second and first derivatives, respectively,¦ !$ ¢ � � �r�jª�V$ �w� © 7~« � ¢ �q� 78b � � ¢ � � �,� �a$ �w� © 7 ��� ¢ � � � ¢ � © 78b � �"� �a$Mb � © 7 � © 7.¬ �

¦ !( ¢ � � �r�jª�V(8� � © 7 « � ¢ � b � � 7 � ¢ � � �,� �V(�� � © 7 ��� ¢ � � � ¢ � b � © 7 �,� �a(+b � © 7 � © 7 ¬ �
ª� $ � ��­ © 7 � � $|b � © 7�& � $ � �,��ª� (��
�O­ © 7 � � (4b � © 7�& � (8�*�,�

¦ ©$ ¢ � �Y��� � $Mb � © 7*� © 7 � ¢ � � � ¢ � © 78b �1�,��¦ ©( ¢ � �Y��� � (4b � © 7�� © 7 � ¢ � � � ¢ � b � © 7*���
where

¤��r��
)����� � �>=�? �
and

¢ � � � ¢ �w
a����� � �
.

2.2. Difference schemes for solving (1.3). On
v

introduce a rectangular mesh
?>� B ?�®

,
where

?f�
is defined in (2.1) and? ® ��D%t�¯¨�\°£±V��EN�A°²��� ® �;� ® ±R�\x¨L³�

For approximation of problem (1.3), we use the implicit difference scheme¡ �£¢ �w¤0��t���& J±d´ ¢ ��¤0��t��³� ¢ �w¤0��t���±V��y,�r�
	���¤0��t.� ¢ ���
(2.4)

¢ ��¤0��t����H`,��¤0��t��.� ��¤0��t��0=µ[V? � B ? ® � ¢ ��¤0��E������)�:�w¤��.��¤�= ? � �
where on each time level

¡ � ¢
is defined in (2.3) and

¢ ¯� � � ¢ ��
a����� � ��t ¯ � .
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2.3. The maximum principle. On
?0�

, we represent a difference scheme in the follow-
ing canonical form¶ �w¤���·��w¤���� ¸¹�º#»:¼V½l¹"¾+¿ ��¤0��¤¨ÀÁ�V·Â�z¤¨Àq�;&'ÃR�w¤��.��¤�=�? � �
(2.5)

·��w¤����\·K�£��¤�����¤�=�[a? � �
and suppose that¶ �w¤�� T EV� ¿ �#¤0��¤ À �>Q�E<��SM��¤���� ¶ �w¤���� ¸¹ º »:¼ º ½l¹"¾4¿ ��¤0��¤ À � T E<��¤r=�? � �
where Ä À �w¤���� Ä ��¤���Å
D+¤NL , Ä �w¤�� is a stencil of the difference scheme. Now, we formulate
a discrete maximum principle and give an estimate on the solution to (2.5).

LEMMA 2.1. Let the positive property of the coefficients of the difference scheme (2.5)
be satisfied.

(i) If
·���¤��

satisfies the conditions¶ �w¤���·���¤��³� ¸¹ º »:¼V½l¹"¾ ¿ �#¤0��¤ À �<·e�w¤ À ����ÃR��¤��>Q�EV���6E��.��¤�=�? � �
·��w¤��>QHEa�j��E:���;¤�=�[a? � �

then
·��w¤��>QHEa�j�HE:�.��¤r= ? �

.
(ii) The following estimate on the solution to (2.5) holds trueÆ · Æ Ç<È �HÉCÊMË²ÌjÍÍ · � ÍÍ%Î Ç È � Æ Ã
]4S Æ8Ç ÈMÏ �(2.6)

where Æ · Æ Ç È ��ÉRÊMË¹�» Ç<È h ·���¤��%hÐ� ÍÍ · �VÍÍ%Î Ç È �ÑÉRÊ4Ë¹�»:Î Ç È2ÒÒ · � ��¤�� ÒÒ �
The proof of the lemma can be found in [17].

3. Monotone iterative method for the elliptic problems.

3.1. Monotone convergence. For solving the nonlinear difference scheme (2.2), we
investigate uniform convergence of the monotone iterative methods constructed in [5] and
[7].

Additionally, we assume that
	

from (1.1) satisfies the two-sided constraintsECF�S � ��	4P}�HS � �_S � ��S � � const
�

(3.1)

We say that
¢ ��¤��

is an upper solution of (2.2) if it satisfies the inequalities¡ � ¢ &9	��w¤0� ¢ �>Q�E<��¤�=�? � � ¢ Q9`
on
[a? � �

Similarly,
¢ ��¤��

is called a lower solution if it satisfies all the reversed inequalities.
The iterative sequence

� ¢ ½lÓM¾  
is constructed using the following recurrence formulas¢ ½ � ¾ ��¤����

fixed
� ¢ ½ � ¾ ��¤����A`��w¤��.��¤�=µ[a? � �

(3.2)
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Õ ½lÓM¾ ��¤���� ¡ ¢ ½lÓ|¾ &6	IÖ*¤0� ¢ ½lÓM¾�× � Ô ½lÓ � 7 ¾ ��¤����OE<��¤�=µ[a? � �

¢ ½lÓ � 7 ¾ ��¤��f� ¢ ½lÓ|¾ ��¤���& Ô ½qÓ � 7 ¾ ��¤��.��¤�= ? � �
The following proposition gives the monotone property of the iterative method (3.2).
PROPOSITION 3.1. Let

¢ ½ � ¾ � ¢ ½ � ¾
be upper and lower solutions of problem (2.2) and let	

satisfy (3.1). Then the upper sequence Ø ¢ ½lÓ|¾*Ù generated by (3.2) converges monotonically

from above to the unique solution
¢

of (2.2), the lower sequence Ø ¢ ½lÓ|¾ Ù generated by (3.2)
converges monotonically from below to

¢
:¢ ½ � ¾ � ¢ ½lÓM¾ � ¢ ½qÓ � 7 ¾ � ¢ � ¢ ½lÓ � 7 ¾ � ¢ ½lÓM¾ � ¢ ½ � ¾ �

on
? � �

and the sequences converge with the linear rate Ú �rJ ��S � ]4S%� .
The proof of the proposition can be found in [5], [7].

REMARK 3.2. Consider the following approach for constructing initial upper and lower
solutions

¢ ½ � ¾
and

¢ ½ � ¾
. Suppose that a mesh function Û ��¤�� is defined on

?>�
and satisfies

the boundary condition Û �A` on
[a? �

. Introduce the following difference problems¥ ¡ � &9S � §�Ô ½ � ¾Ü ��Ý¨h ¡ Û &6	���¤0� Û �%h���¤�=�? � �
(3.3) Ô ½ � ¾Ü ��¤��f�AE<��¤�=I[a? � �ZÝR�rJ|�%�¨J|�
Then the functions

¢ ½ � ¾ � Û & Ô ½ � ¾7 � ¢ ½ � ¾ � Û & Ô ½ � ¾© 7 are upper and lower solutions,
respectively.
The proof of this result can be found in [5], [7].

REMARK 3.3. Since the initial iteration in the monotone iterative method (3.2) is either
an upper or a lower solution, which can be constructed directly from the difference equation
without any knowledge of the solution as we have suggested in the previous remark, this
algorithm eliminates the search for the initial iteration as is often needed in Newton’s method.
This elimination gives a practical advantage in the computation of numerical solutions.

REMARK 3.4. We can modify the iterative method (3.2) in the following way. Proposi-
tion 3.1 still holds true if the coefficient

S1�
in the difference equation from (3.2) is replaced

by S ½lÓM¾ �w¤����AÉRÊ4Ë 	4P)��¤0� ¢ �.� ¢ ½lÓM¾ �w¤��0� ¢ �w¤��0� ¢ ½lÓM¾ ��¤�����¤��
fixed

�
To perform the modified algorithm we have to compute two sequences of upper and lower
solutions simultaneously. But, on the other hand, this modification increases significantly the
rate of the convergence of the iterative method.

Without loss of generality, we assume that the boundary condition in (1.1) is zero, i.e.`,��¤��Þ�ßE
. This assumption can always be obtained via a change of variables. Let the

initial function
¢ ½ � ¾

be chosen in the form of (3.3), i.e.
¢ ½ � ¾

is the solution of the following
difference problem ¥ ¡ � &9S � § ¢ ½ � ¾ �OÝ¨h 	���¤0��E:�*h��_¤�=�? � �
(3.4)
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where Û �w¤����\E . Then the functions

¢ ½ � ¾ ��¤��.� ¢ ½ � ¾ �w¤��
corresponding to

ÝC�rJ
and

ÝR���¨J
are upper and lower solutions, respectively.

THEOREM 3.5. Suppose that the initial upper or lower solution
¢ ½ � ¾

is chosen in the
form of (3.4). Then the monotone iterative method (3.2) converges uniformly in the perturba-
tion parameters

�
and

/
:ÍÍÍ ¢ ½qÓ � 7 ¾ � ¢ ½lÓ|¾ ÍÍÍ Ç£È �HS � Ú Ó Æ 	���¤0��E:� Æ Ç<È �_S � �âá S � &9S%�S � S � �

(3.5)

where Ú ��J ��S � ]MS � .
Proof. Using the mean-value theorem and (3.2), we obtain¥ ¡ � &'S � § Ô ½lÓ � 7 ¾ � « S � ��	 ½lÓ|¾P ��¤�� ¬ Ô ½lÓM¾ ��¤����_¤�=�? � �

Ô ½lÓ � 7 ¾ ��¤����OE<�à¤�=�[a? � �
where

	 ½lÓM¾P �w¤��2�r	 P ÌÐ¤0� ¢ ½lÓ © 7 ¾ ��¤��"&�ã ½lÓM¾ �w¤�� Ô ½lÓM¾ ��¤�� Ï , E�F�ã ½lÓM¾ �w¤��UF�J
. By (2.6) and

(3.1), ÍÍÍ Ô ½lÓ � 7 ¾ ÍÍÍ Ç<È � Ú Ó ÍÍÍ Ô ½ 7 ¾ ÍÍÍ Ç<È �(3.6)

Applying (2.6) to (3.2) for ä ��J and taking into account (3.4), we haveÍÍÍ Ô ½ 7 ¾ ÍÍÍ Ç È � JS � ÍÍÍ Õ ½ � ¾ ÍÍÍ Ç È � JS � ÍÍÍ ¡ � ¢ ½ � ¾ ÍÍÍ Ç È & JS � ÍÍÍ 	 Ö ¤0� ¢ ½ � ¾p× ÍÍÍ Ç È �(3.7)

Estimating
¢ ½ � ¾

from (3.4) by (2.6), we getÍÍÍ ¢ ½ � ¾ ÍÍÍ Ç È � JS � Æ 	��w¤0��E�� Æ Ç<È �
From here and (3.4), it follows thatÍÍÍ ¡ ��¢ ½ � ¾ ÍÍÍ Ç È ��S � ÍÍÍ ¢ ½ � ¾ ÍÍÍ Ç È & Æ 	���¤0��E�� Æ Ç<È ��­ Æ 	��w¤0��E:� Æ Ç<È �
Using the mean-value theorem, (3.1) and the estimate on

¢ ½ � ¾
, we conclude thatÍÍÍ 	��w¤0� ¢ ½ � ¾ � ÍÍÍ Ç<È � Æ 	���¤0��E:� Æ Ç�È &'S � ÍÍÍ ¢ ½ � ¾ ÍÍÍ Ç�È �må,Jf& S �S ��æ Æ 	���¤0��E�� Æ Ç�È �

Substituting the above estimates in (3.7), we estimate Ô ½ 7 ¾ in the formÍÍÍ Ô ½ 7 ¾ ÍÍÍ Ç<È �6S � Æ 	���¤0��E:� Æ Ç È �
where

S � is defined in (3.5). Thus, from here and (3.6), we conclude the uniform estimate
(3.5).

3.2. Uniform convergence of the monotone iterative method (3.2). Here we analyze
a convergence rate of the monotone iterative method (3.2) defined on meshes of the general
type introduced in [15].
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3.2.1. Layer-adapted meshes. The reaction-diffusion problem (1.1). For the reaction-
diffusion problem (1.1), a layer-adapted mesh from [15] is formed in the following man-
ner. We divide each of the intervals

? $ � ´ E<�*J*y and
? ( � ´ EV�*J*y into three parts ´ EV��ç $ y ,´ ç $ �%J ��ç $ y , ´ J ��ç $ �*J*y , and ´ E<��ç ( y , ´ ç ( �%J ��ç ( y , ´ J ��ç ( �*J*y , respectively. Assuming that� $ ��� (

are divisible by 4, in the parts ´ E<��ç $ y , ´ J ��ç $ �*J*y and ´ EV��ç ( y , ´ J ��ç ( �%J�y we al-
locate

� $ ]4è�&éJ
and

� ( ]+è²&éJ
mesh points, respectively, and in the parts ´ ç $ �*J ��ç $ y

and ´ ç ( �*J ��ç ( y we allocate
� $ ]M­R&êJ

and
� ( ]M­C&�J

mesh points, respectively. Pointsç $
,
��J ��ç $ �

and
ç (

,
��J ��ç ( �

correspond to transition to the boundary layers. We con-
sider meshes

? � $
and

? � (
which are equidistant in

Ì 
 � �*ë�ì ��
aí � �%ë�ì Ï
and

Ì � ��� ë�ì ���|í �;� ë�ì Ï
but

graded in
Ì E<��
 � �%ë�ì Ï

,
Ì 
aí � �%ë�ì �*J Ï

and
Ì E<��� ��� ë�ì Ï

,
Ì �:í ��� ë�ì �%J Ï

. On
Ì EV��
 � ��ë�ì Ï

,
Ì 
)í � �*ë�ì �%J Ï

and
ÌîEV��� ��� ë�ì Ï

,
Ìï�|í ��� ë�ì �*J Ï

let our mesh be given by a mesh generating function ð withð ��E��G�ñE
and ð �jJ+]4è��N��J

which is supposed to be continuous, monotonically increasing,
and piecewise continuously differentiable. Then our mesh is defined by
a�;�_òó ô çV$ ð ��õ � ��� õ � �A��].��$<�;�³�AE<�%�*�%�����G$�]+è �� � $V� ���O��$:]4èY&AJ:�*�%�*��� á ��$�]+è~�6J �J ��ça$2��J � ð �#õ � ���"��õ � �r���;� á ��$:]4è��<]���$������ á ��$�]+èY&\J|�*�%�*������$��

�+�Y� òó ô ça( ð �wõ8�1��� õ.�Y�9��].��(£�,�G�\E<�%�*�*�*����(|]4è �� � (�� �N�\�G(|]+è
&\J|�*�%�*��� á �G(4]4è¨�6J �J ��ç ( ��J � ð ��õ � ������õ � �r�q��� á � ( ]+è£�<].� ( ���N� á � ( ]+èY&\J|�*�%�*����� ( �� $��O­ �jJ ��­|çV$:�<� © 7$ � � (¨�\­ ��J ��­|çV(M��� © 7( �
We also assume that ð º does not decrease. This condition implies that� $ � � � $Mb �q� 74�����rJ|�%�*�%�����G$:]+è¨�HJ|� � $ � Q � $|b �q� 7+����� á ��$�]+è
&AJ:�*�%�*������$~�HJ|��V(8� � �V(+b � � 7 �,�G�rJ|�*�%�*����� ( ]+è¨�HJ|� �a(�� Q �a(+b � � 7 �)�G� á � ( ]+èY&\J|�*�%�*����� ( �6J:�

The convection-diffusion problem (1.1). For the convection-diffusion problem (1.1),
a layer-adapted mesh from [15] is formed in the following manner. We divide each of the
intervals

? $ � ´ EV�*J�y and
? ( � ´ E<�%J�y into two parts ´ EV�*J0��ç $ y , ´ J ��ç $ �%J�y|� and ´ E<�%J ��ç ( y:�´ J ��ç ( �*J�y�� respectively. Assuming that

� $ ��� (
are even, in each part we allocate

� $ ]|­>&�J
and

� ( ]M­C&êJ
mesh points in the



- and

�
-directions, respectively. Points

�jJ ��ç $ �
and�jJ ��ç ( �

correspond to transition to the boundary layers. We consider meshes
? � $

and
? � (

which are equidistant in
ÌîEV��
 � ��ë ! Ï and

ÌîE<��� �;� ë ! Ï but graded in
ÌÐ
 � �*ë ! �%J Ï and

ÌÐ� ��� ë ! �%J Ï .
On

Ì 
 � �%ë ! �*J Ï and
Ì � ��� ë ! �%J Ï let our mesh be given by a mesh generating function ö �#õ|� withö ��E����mJ

and ö ��J+]M­:�U�âE
which is supposed to be continuous, monotonically decreasing,

and piecewise continuously differentiable. Then our mesh is defined by
a�;�é� � �a$ � �³�AEV�*J|�%�*�%����� $ ]M­ �J ��ça$ ö �#õ � ����õ � �r��������$£]M­|�<]���$������\��$£]M­ &AJ:�*�%�*������$<�
�+�
� � � � (:� �G�OE<�%J|�%�*�*�.����(|]|­ �J ��çV( ö �#õ8�4����õ8�Y�r�q������(M]|­|�<].�G(£���N�A�G(|]M­ &AJ:�*�%�*������(£�

�a$ �O­2�jJ ��ç $ �<� © 7$ � �V( �\­ ��J ��ç ( ��� © 7( �
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We also assume that ö º does not decrease. This condition implies that� $ � Q � $|b �l� 7+�à���O��$�]M­2&\J|�*�%�*������$~�HJ|�
� (��¨Q � (+b � � 7M�÷�N�\�G(|]M­ &\J|�*�%�*������(Y�6J:�

3.2.2. Shishkin-type mesh. The reaction-diffusion problem (1.1). For the reaction-
diffusion problem (1.1), we choose the transition points

ç $
,
�jJ ��ç $ �

and
ç (

,
��J ��ç ( �

as in
[12]: ç $ ��ÉCøqk � è © 7 �%�jJ4]|ù S � �£�~ilk2� $   �_ç ( �\ÉCølk � è © 7 �1�jJ+]:ù S � ���Uiqk2� (   �
If
ç $|b ( ��J+]+è

, then
� © 7$|b ( are very small relative to

�
. In this case, the difference scheme (2.2)

can be analyzed using standard techniques. We therefore assume thatç $ �r��J+]:ù S � �£�~iqk2� $ �_ç ( ���jJ4]|ù S � �£�~ilk2� ( �
Consider the mesh generating function ð in the formð ��õ|����è:õ��(3.8)

In this case the meshes
?f� $

and
?f� (

are piecewise equidistant with the step sizes� © 7$ F � $NFA­M� © 7$ � � $%�R��è
��J+] ù S � �£�"� © 7$ iqk2��$��
� © 7( F �a( FA­M� © 7( � �a(�� ��è
��J+]|ù S � �£�"� © 7( ilk2� ( �

The difference scheme (2.2) on the piecewise uniform mesh (3.8) converges
�

-uniformly
to the solution of (1.1):Æ ¢ ��� Æ Ç<È ��ú~� © ! iqk ! �I�_���\ÉNøqk~D%� $ ��� ( L��
(3.9)

where
ú

(sometimes subscripted) denotes a generic constant that is independent of
�

or
/

and�
. The proof of this result can be found in [12].

The convection-diffusion problem (1.1). For the convection-diffusion problem (1.1),
we choose the transition points

��J ��ç $ �
and

��J ��ç ( �
as in [12]:ç $ �AÉCøqk��:­ © 7 �%�w­�]+^ 7 ��/�ilk2� $   �_ç ( �\ÉCølk���­ © 7 �1�w­:]4^ ! ��/�iqk � (  2�

If
ç $|b ( �rJ+]|­

, then
� © 7$Mb ( are very small relative to

/
. In this case, the difference scheme (2.2)

can be analyzed using standard techniques. We therefore assume thatç $ �r�z­:]4^ 7 �£/�iqk � $ �_ç ( ���w­�]+^ ! ��/�ilk2� ( �
Consider the mesh generating function ö in the formö ��õ|����J �3­4õ��(3.10)

In this case the meshes
? � $

and
? � (

are piecewise equidistant with the step sizes� © 7$ F �a$ FH­|� © 7$ � �V$%- ���#è�]+^ 7 ��/M� © 7$ ilk2� $ �
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The upwind difference scheme (2.2) on the piecewise uniform mesh converges

/
-uniformly

to the solution of (1.1):Æ ¢ �Þ� Æ Ç<È ��ú~� © 7 iqk ! �I�_���\ÉCølk~D+� $ ��� ( L��
(3.11)

where constant
ú

is independent of
/

and
�

. The proof of this result can be found in [12].
THEOREM 3.6. Suppose that the initial upper or lower solution

¢ ½ � ¾
is chosen in the

form of (3.4). Then the monotone iterative method (3.2) on the piecewise uniform meshes
(3.8) and (3.10) converges parameter-uniformly to the solution of problem (1.1):ÍÍÍ ¢ ½lÓM¾ �Þ� ÍÍÍ Ç�È ��� ú ¥ � © !�iqk ! �é& Ú Ó § � for

�'�\�f�)�ú ¥ � © 7 iqk ! �é& Ú Ó § � for
�'�\��-4�

where Ú ��J ��S � ]4S%� and constant
ú

is independent of
�

or
/

and
�

.
Proof. Using (3.6), we obtainÍÍÍ ¢ ½lÓ �)û ¾ � ¢ ½lÓ|¾ ÍÍÍ Ç<È � Ó ��û © 7¸ �lü Ó ÍÍÍ ¢ ½ �l� 7 ¾ � ¢ ½ � ¾ ÍÍÍ Ç�È � Ó �)û © 7¸ �qü Ó ÍÍÍ Ô ½ �q� 7 ¾ ÍÍÍ Ç<È� ÚJ � Ú ÍÍÍ Ô ½qÓM¾ ÍÍÍ Ç<È � S � Ú ÓJ � Ú Æ 	���¤0��E:� Æ Ç<È �

where
S � is defined in (3.5). Taking into account that

iløqÉ ¢ ½lÓ ��û ¾ � ¢
as ýÿþ X

, where
¢

is the solution to (2.2), we conclude the estimateÍÍÍ ¢ ½lÓM¾ � ¢ ÍÍÍ Ç È � S � Ú ÓJ0� Ú Æ 	���¤0��E:� Æ Ç�È �
From here, it follows thatÍÍÍ ¢ ½lÓM¾ ��� ÍÍÍ Ç<È � Æ ¢ ��� Æ Ç È & S � Ú ÓJ � Ú Æ 	���¤0��E:� Æ Ç È �
From here and (3.9) for the reaction-diffusion problem, and (3.11) for the convection-diffusion
problem, we prove the theorem.

3.2.3. Bakhvalov-type mesh. The reaction-diffusion problem (1.1). For the reaction-
diffusion problem (1.1), we choose the transition points

ç $
,
�jJ¨��ç $ �

and
ç (

,
�jJ¨��ç ( �

in
Bakhvalov’s sense (see [2] for details), i.e.çV$����jJ4] ù S � �<�~ilk¨��J+]+���)�_ça(~���jJ4] ù S � �£�~ilk���J+]4���)�
and the mesh generating function ð is given in the formð �#õ|��� iqk ´ J ��èa��J �Þ���jõ+yiqk � �
(3.12)

The difference scheme (2.2) on the Bakhvalov-type mesh converges
�

-uniformly to the
solution of (1.1): Æ ¢ ��� Æ Ç<È �Aú~� © 7 �_����ÉCøqk~D1��$<����(�L��
where constant

ú
is independent of

�
and

�
. The proof of this result can be found in [2].
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The convection-diffusion problem (1.1). For the convection-diffusion problem (1.1),
we choose the transition points

�jJ��Hç)$£�
and

��J��Hça(|�
in Bakhvalov’s sense (see [15] for

details), i.e. ç $ �r�w­:]4^ 7 ��/�ilk���J+]1/|�)�_ç ( ���w­�]+^ ! ��/�ilk���J+]1/|�)�
and the mesh generating function ð is given in the formð �#õ|�f� iqk ´ J �H��J �ÿ/|����J ��­Mõ|��yiqk0/ �
(3.13)

The upwind difference scheme (2.2) on the Bakhvalov-type mesh converges
/
-uniformly

to the solution of (1.1): Æ ¢ �Þ� Æ Ç<È �Aú~� © 7 �_�m�\ÉCølk~D+� $ ��� ( L��
where constant

ú
is independent of

/
and

�
. The proof of this result can be found in [15].

Similar to Theorem 3.6, for the monotone iterative method (3.2) on the log-meshes (3.12)
and (3.13), we can prove the following theorem.

THEOREM 3.7. Suppose that the initial upper or lower solution
¢ ½ � ¾

is chosen in the
form of (3.4). Then the monotone iterative method (3.2) on the log-meshes (3.12) and (3.13)
converges parameter-uniformly to the solution of problem (1.1):ÍÍÍ ¢ ½qÓM¾ �Þ� ÍÍÍ Ç<È �Hú ¥ � © 7 & Ú Ó § �_���AÉNøqk¨D%� $ ��� ( L��
where Ú ��J ��S � ]MS%� and constant

ú
is independent of

�
or
/

and
�

.

4. Monotone iterative method for the parabolic problems.

4.1. Monotone convergence. For solving the nonlinear difference scheme (2.4), we
investigate uniform convergence of the monotone iterative methods constructed in [6] and
[8].

Represent the difference equation from (2.4) in the equivalent form¡ ¢ ��¤0��t������
	��w¤0��t.� ¢ �"& ¢ ��¤0��t���±V�± � ¡ � å ¡ � & J± æ �
We say that on a time level

t�=3? ®
,
�²��¤0��t��

is an upper solution with a given function�}�w¤0��t��Þ±V�
, if it satisfies¡ �²��¤0��t��;&6	²¥z¤0��t.� � § ��± © 7 �}�w¤0��t���±V�0QHEV�;¤�=²? � �

�R��¤0��t�� Q'`,��¤0��t��.��¤�=I[a? � �
Similarly,

� ��¤0��t��
is called a lower solution on a time level

t�=O? ®
with a given function�}�w¤0��t��Þ±V�

, if it satisfies all the reversed inequalities.
Additionally, we assume that

	
from (1.3) satisfies the two-sided constraintsEC��	 P �6S � �_S � �

const
�

(4.1)

An iterative solution
�}��¤0��t��

to (2.4) is constructed in the following way. On each time
level

t�='? ®
, we calculate ä � iterates

� ½lÓM¾ ��¤0��t��.�0¤�= ?f�
, ä ��J:�*�%�*��� ä � using the recur-

rence formulas � ¡ &'S � � Ô ½lÓ � 7 ¾ ��¤0��t������2Õ ½qÓM¾ ��¤0��t��.�Z¤�=²? � �
(4.2)
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96 I. BOGLAEVÕ ½lÓM¾ �w¤0��t���� ¡ � ½lÓM¾ �w¤0��t���&6	 Ö ¤0��t.��� ½lÓM¾p× �Þ± © 7 �²��¤0��t³��±V�.�
Ô ½lÓ � 7 ¾ ��¤0��t����\EV�;¤�=I[V? � � ä �\E<�%�*�*�*� ä � �HJ|�
� ½qÓ � 7 ¾ ��¤0��t������ ½lÓM¾ ��¤0��t��;& Ô ½qÓ � 7 ¾ ��¤0��t�����¤�= ? � �

�}�w¤0��t������ ½lÓ���¾ �w¤0��t�����¤�= ? � ���²��¤0��E����A�)�:�w¤��.��¤�= ? � �
where an initial guess

� ½ � ¾ ��¤0��t��
satisfies the boundary condition� ½ � ¾ ��¤0��t����A`��w¤0��t��.��¤�=�[a? � �

PROPOSITION 4.1. Let
� ½ � ¾ �w¤0��t��

be an upper or a lower solution of problem (2.4) and
let
	

satisfy (4.1). If on each time level the number of iterates ä � in the iterative method (4.2)
satisfies ä � QH­ , then the following estimate on convergence rate of the iterative method (4.2)
holds ÉRÊ4Ë7	��¯
� ��� Æ �}��t ¯ ��� ¢ �#t ¯ � Æ Ç�È �Aú�
 Ó�� © 7 ��
C�AS � ]��wS � &'± © 7 �.�(4.3)

where
¢ �w¤0��t��

is the solution to (2.4), and constant
ú

is independent of
±

. Furthermore, on
each time level the sequence

� � ½lÓM¾ �w¤0��t��  
converges monotonically.

The proof of the theorem for the reaction-diffusion problem (2.4) can be found in [6], the
result for the convection-diffusion problem (2.4) may be proved in a similar way.

REMARK 4.2. Consider the following approach for constructing initial upper and lower
solutions

� ½ � ¾ ��¤0��t��
and
� ½ � ¾ ��¤0��t��

. Suppose that for
t

fixed, a mesh function Û ��¤0��t�� is
defined on

? �
and satisfies the boundary condition Û ��¤0��t��>�O`,��¤0��t�� on

[a? �
. Introduce the

following difference problems¡ Ô ½ � ¾Ü �w¤0��t�����Ý ÒÒ ¡ Û ��¤0��t���&9	��w¤0��t.� Û �³�Þ± © 7 �²��¤0��t���±V� ÒÒ ��¤�=²? � �
(4.4) Ô ½ � ¾Ü �w¤0��t����OE<��¤�=I[a? � �ZÝR�rJ|�*�¨J:�
Then the functions

� ½ � ¾ ��¤0��t���� Û �w¤0��t���& Ô ½ � ¾7 ��¤0��t��.��� ½ � ¾ ��¤0��t��f� Û ��¤0��t��£& Ô ½ � ¾© 7 �w¤0��t�� are
upper and lower solutions, respectively.
The proof of this result for (2.4) with

¡ � ¡ �� &6± © 7 can be found in [6] and this result for
(2.4) with

¡ � ¡ �- &'± © 7 may be proved in a similar way.
REMARK 4.3. On each time level the initial iteration in the monotone iterative method

(4.2) is either an upper or a lower solution, which can be constructed directly from the dif-
ference equation without any knowledge of the solution as we have suggested in the previous
remark, hence, this algorithm eliminates the search for the initial iteration as is often needed
in Newton’s method. This elimination gives a practical advantage in the computation of
numerical solutions.

Without loss of generality, we assume that the boundary condition
`}�KE

. This assump-
tion can always be obtained via a change of variables. On each time level, let

� ½ � ¾ �w¤0��t��
be

chosen in the form of (4.4), i.e.
� ½ � ¾ �w¤0��t��

is the solution of the following difference problem¡ � ½ � ¾Ü ��¤0��t�����Ý ÒÒ 	��w¤0��t.��E����Þ± © 7 �²��¤0��t���±V� ÒÒ �;¤�=�? � �
(4.5)
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where Û ��¤0��t����éE

. Then the functions
� ½ � ¾7 �w¤0��t��.��� ½ � ¾© 7 �w¤0��t�� are the upper and the lower

solutions.
THEOREM 4.4. Let initial upper or lower solutions be chosen in the form of (4.5), and

let
	

satisfy (4.1). Suppose that on each time level the number of iterates ä � Q�­ . Then the
monotone iterative method (4.2) converges parameter-uniformly, and the estimate (4.3) holds
true with constant

ú
which is independent of

±
, the perturbation parameter (

�
or
/
) and the

nonuniform mesh.
Proof. Using the mean-value theorem and the equation for Ô ½lÓ|¾ , we have¡ � ½lÓM¾ �w¤0��t��;&6	µÖ1¤0��t.��� ½lÓM¾p× � �²��¤0��t���±V�± �r� « S � ��	 ½qÓM¾P ��¤0��t�� ¬ Ô ½qÓM¾ ��¤0��t��.�(4.6)

where 	 ½lÓM¾P ��¤0��t����\	 P « ¤0��t.��� ½lÓ © 7 ¾ ��¤0��t��;&�� ½qÓM¾ ��¤0��t�� Ô ½lÓM¾ �w¤0��t�� ¬ �
and

E�F�� ½lÓ|¾ ��¤0��t��3F J
. From here and (4.2), it follows that Ô ½qÓ � 7 ¾ ��¤0��t�� satisfies the

difference equation� ¡ &9S � � Ô ½lÓ � 7 ¾ �w¤0��t���� Ö S � �3	 ½lÓM¾P × Ô ½lÓM¾ ��¤0��t��.�³¤�=�? � �
Using (2.6) and (4.1), we concludeÍÍÍ Ô ½lÓ � 7 ¾ �#t�� ÍÍÍ Ç<È ��
 Ó ÍÍÍ Ô ½ 7 ¾ �#t�� ÍÍÍ Ç<È ��
N� S%�S � &'± © 7 �(4.7)

Introduce the notation ·��w¤0��t���� ¢ �w¤0��t������}�w¤0��t��.�
where

�}�w¤0��t������ ½lÓ � ¾ ��¤0��t��
. Using the mean-value theorem, from (2.4) and (4.6), conclude

that
·���¤0��±V�

satisfies¡ ·��w¤0��±V�;&6	4P)��¤0��±V��·���¤0��±V� � « S � �3	 ½lÓ � ¾P �w¤0��±V� ¬ Ô ½lÓ � ¾ �w¤0��±V����¤�=�? � �
·��w¤0��±V�>�\EV�;¤�=�[a? � �

where
	 ½lÓ���¾P ��¤0��±V�~��	4P ´ ¤0��±<� ¢ �w¤0��±V��&��V�w¤0��±V��·���¤0��±V�pyV�fEdF��V��¤0��±V��FéJ

, and we have
taken into account that

�²��¤0��E:��� ¢ ��¤0��E:�
. By (2.6), (4.1) and (4.7),Æ ·��#±V� Æ Ç<È �HS � ±�
 Ó � © 7 ÍÍÍ Ô ½ 7 ¾ ��±V� ÍÍÍ Ç È �

Using (4.5) and the mean-value theorem, estimate Ô ½ 7 ¾ ��¤0��±V� from (4.2) by (2.6),ÍÍÍ Ô ½ 7 ¾ �#±V� ÍÍÍ Ç<È �6± ÍÍÍ ¡ � ½ � ¾ ��±V� ÍÍÍ Ç<È &9S � ± ÍÍÍ � ½ � ¾ �#±V� ÍÍÍ Ç<È&Y±CÍÍ 	G�z¤0��±<��E:����± © 7 � � ÍÍ Ç<È� ¥ ­4±�&9S � ± ! § ÍÍ 	G�w¤0��±<��E:����± © 7 �)�<ÍÍ Ç È�K�z­2&'S � ±V� Ì ± Æ 	G�w¤0��±<��E:� Æ Ç È & ÍÍ �a� ÍÍ Ç<È Ï ��ú 7 �
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where
ú27

is independent of
±

, the perturbation parameter (
�

or
/
) and the nonuniform mesh.

Thus, Æ ·���±V� Æ Ç<È ��S � ú 7 ±�
 Ó � © 7 �
(4.8)

Similarly, from (2.4) and (4.6), it follows that¡ ·���¤0�8­4±V��&9	 P ��¤0�8­4±V��·���¤0��­M±V�f� ·���¤0��±V�±& « S � ��	 ½qÓ � ¾P ��¤0��­M±V� ¬ Ô ½lÓ � ¾ ��¤0�8­4±V���
Using (4.7), by (2.6),Æ ·��w­M±V� Æ Ç<È � Æ ·���±V� Æ Ç�È &'S � ±�
 Ó�� © 7 ÍÍÍ Ô ½ 7 ¾ �w­M±V� ÍÍÍ Ç�È �(4.9)

Using (4.5), estimate Ô ½ 7 ¾ ��¤0�8­4±V� from (4.2) by (2.6),ÍÍÍ Ô ½ 7 ¾ �z­4±V� ÍÍÍ Ç£È �K�z­2&'S � ±V� ´ ± Æ 	G�w¤0�8­4±<��E:� Æ Ç<È & Æ �R�#±V� Æ Ç<È y��Aú ! �
where

�A��¤0��±V�f��� ½lÓ���¾ �w¤0��±V�
. As follows from [6], the monotone sequences Ø � ½lÓ|¾ �w¤0��±V� Ù

and Ø � ½lÓM¾ �w¤0��±V� Ù are bounded from above by
� ½ � ¾ �w¤0��±V�

and from below by
� ½ � ¾ �z¤0��±V�

.
Applying (2.6) to the problem (4.5) at

t���±
, we haveÍÍÍ � ½ � ¾ �#±V� ÍÍÍ Ç<È �9± ÍÍ 	���¤0��±V��E:����± © 7 �)�:��¤�� ÍÍ Ç�È ��� 7 �

where constant
��7

is independent of
±

, the perturbation parameter (
�

or
/
) and the nonuni-

form mesh. Thus, we prove that
ú ! is independent of

±
, the perturbation parameter (

�
or
/
)

and the nonuniform mesh. From (4.8) and (4.9), we concludeÆ ·��w­M±V� Æ Ç<È ��S � �wú 7 &6ú ! �£±�
 Ó � © 7 �
By induction on

°
, we proveÆ ·e�#t�¯|� Æ Ç<È ��S � � ¯¸ � ü 7 ú ��� ±�
 Ó � © 7 ��°R��J|�*�%�*����� ® �

where all constants
ú �

are independent of
±

, the perturbation parameter (
�

or
/
) and the

nonuniform mesh. Taking into account that
� ® ±�� x

, we prove the estimate (4.3) withú��\S%��xµÉRÊ4Ë 7�� � � ����ú �
.

REMARK 4.5. The implicit two-level difference schemes (2.4) are of the first order with
respect to

±
. From here and since


}�HS1��±
, one may choose ä � �O­ to keep the global error of

the monotone iterative method (4.2) consistent with the global error of the difference schemes
(2.4).

4.2. Uniform convergence of the monotone iterative method (4.2). Here we analyze
a convergence rate of the monotone iterative method (4.2) defined on the spatial meshes of
Shishkin-type (3.8), (3.10) and on the spatial meshes of Bakhvalov-type (3.12), (3.13).
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4.2.1. Shishkin-type mesh. The difference scheme (4.2) on the spatial meshes of Shishkin-
type (3.8), (3.10) converges parameter-uniformly to the solution of problem (1.3):ÉRÊ4Ë7��,¯
� ��� Æ ¢ �#t�¯M�³�Þ���#t�¯4� Æ Ç<È � � ú ¥ � © !,iqk ! �â&9± § � for

�'�\� � �ú ¥ � © 7 iqk ! �â&9± § � for
�'�\� - �

where constant
ú

is independent of
�

or
/
,
�

and
±

. The proof of these results can be found
in [12]. From here and Theorem 4.4, we conclude the following theorem.

THEOREM 4.6. Let initial upper or lower solutions
� ½ � ¾ �w¤0��t ¯ �

be chosen in the form
of (4.5). Suppose that on each time level the number of iterates ä � Q�­ . Then the monotone
iterative method (4.2) on the piecewise uniform meshes (3.8) and (3.10) converges parameter-
uniformly to the solution of problem (1.3):ÉCÊMË7��,¯
� ��� Æ �}�#t�¯|���Þ���#t�¯4� Æ Ç<È � � ú ¥ � © !"ilk ! �é&'±G& 
 Ó � © 7 § � for

�9�A� � �ú ¥ � © 7 ilk ! �é&'±G& 
 Ó � © 7 § � for
�9�A� - �

where

C�\S1�%] ��S%��&'±V�

and constant
ú

is independent of
�

or
/
,
�

and
±

.

REMARK 4.7. In the case of the parabolic reaction-diffusion problem (4.2), Theorem 4.6
holds true on the piecewise uniform mesh (3.8) with an arbitrary fixed constant ! T E instead
of
ù S � in the transition points.

4.2.2. Bakhvalov-type mesh. The difference scheme (4.2) on the spatial meshes of
Bakhvalov-type (3.12), (3.13) converges parameter-uniformly to the solution of problem
(1.3): ÉRÊMË7��,¯
� ��� Æ ¢ �#t ¯ ��������t ¯ � Æ Ç È ��ú ¥ � © 7 &'± § �
where constant

ú
is independent of

�
or
/
,
�

and
±

. The proof of this result for the reaction-
diffusion problem can be found in [4] and for the convection-diffusion problem in [3]. From
here and Theorem 4.4, we conclude the following theorem.

THEOREM 4.8. Let initial upper or lower solutions
� ½ � ¾ �w¤0��t ¯ �

be chosen in the form
of (4.5). Suppose that on each time level the number of iterates ä � Q�­ . Then the monotone
iterative method (4.2) on the log-meshes (3.12) and (3.13) converges parameter-uniformly to
the solution of problem (1.3):ÉRÊMË7��,¯
� ��� Æ �²�#t�¯M�������#t�¯M� Æ Ç�È ��ú ¥ � © 7 &'±�&�
 Ó � © 7 § �
where


C�\S1�%] ��S%��&'±V�
and constant

ú
is independent of

�
or
/
,
�

and
±

.
REMARK 4.9. In the case of the parabolic reaction-diffusion problem (4.2), Theorem 4.8

holds true on the log-mesh (3.12) with an arbitrary fixed constant ! T E instead of
ù S � in

the transition points.

5. Numerical experiments. It is found that in all the numerical experiments the basic
feature of monotone convergence of the upper and lower sequences is observed. In fact, the
monotone property of the sequences holds at every mesh point in the domain. This is, of
course, to be expected from the analytical consideration.

5.1. The elliptic problems. The stopping criterion for the monotone iterative method
(3.2) is defined by ÍÍÍ ¢ ½lÓ � 7 ¾ � ¢ ½lÓM¾ ÍÍÍ Ç È �#")�
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In our numerical experiments we use
"R��J%E ©%$

and
�G$��\�G(

.
The reaction-diffusion problem. Consider the problem (1.1) with

�A�r���
,
	��é�#���è���]��'&¨�3�,�

and
`d�éJ

. We mention that
�)(M��¤��Y��è

is the solution to the reduced problem.
This problem gives

S � ��J+]M­�&
,
S%�
��J

,¢ ½ � ¾ ��¤����rJ|��¤�= ? � � ¢ ½ � ¾ ��¤���� � èa��¤�=�? � �J:��¤�=µ[a? � �(5.1)

where
¢ ½ � ¾ ��¤��

and
¢ ½ � ¾ ��¤��

are the lower and upper solutions to (2.2).
All the discrete linear systems are solved by GMRES-solver [1].
Introduce the notation: ä and ä are numbers of iterative steps required for the monotone

iterative method (3.2) to reach the prescribed accuracy
"

with the initial guesses
¢ ½ � ¾ �w¤��

and¢ ½ � ¾ ��¤��
, respectively.

TABLE 5.1
Numbers of iterations for method (3.2) on the piecewise uniform mesh (3.8).� ä � äJ1E © 7

20; 15 20; 15 20; 15 20; 15�KJ%E © !
20; 15 20; 15 20; 15 20; 14��$

64 128 256
Q*&�J+­

In Tables 5.1 and 5.2, for various numbers of
�G$

and
�

, we give the numbers of iterationsä and ä , required to satisfy the stopping criterion, for the monotone method (3.2) on the
piecewise uniform mesh (3.8) and on the log-mesh (3.12), respectively. From the data, we
conclude that the numbers of iterations are independent of the perturbation parameter

�
.

These numerical results confirm our theoretical results stated in Theorems 3.6 and 3.7.

TABLE 5.2
Numbers of iterations for method (3.2) on the log-mesh (3.12).� ä � äJ%E © !

20; 15 20; 15 20; 14 20; 15 20; 15 20; 15J%E © í
20; 15 20; 15 20; 15 20; 14 20; 14 20; 14J%E © ì
20; 14 20; 15 20; 15 20; 15 20; 14 20; 15��$

64 128 256 512 1024 2048

TABLE 5.3
Numbers of iterations for the Newton method on the piecewise uniform mesh (3.8).� ä Ó,+� � ä Ó,+! � ä Ó,+ìJ%E © 7

38; 10; 13 36; 68; 18 58; 187; * *; *; * *; *; * *; *; *J%E © !
8; 8; 8 7; 15; 7 15; 14; 6 10; 23; 6 13; 35; * 13; *; *J%E © í
8; 8; 8 7; 11; 7 7; 9; 6 7; 11; 6 7; 10; 8 8; 15; *J%E © ì
6; 8; 8 6; 8; 7 6; 8; 6 6; 9; 6 7; 8; 6 7; 9; *� $

64 128 256 512 1024 2048

Table 5.3 presents the number of iterations ä Ó-+ for solving the test problem by the
Newton iterative method with the initial guesses

¢ ½ � ¾ �w¤��R�mE<�8­���èa�>¤Â=\? �
. We denote

by an ‘*’ if more then 200 iterations is needed to satisfy the stopping criterion, or if the
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Newton method diverge. The experimental results show that the Newton method cannot be
successfully used for this test problem.

The convection-diffusion problem. Consider the problem (1.1) with
�r�é� -

,
5 7.b ! �E<�qJ

,
	A� �#�d�Hè���]��'&��H�,�

and
`3� J

. We mention that
� ( �w¤��N� è

is the solution to the
reduced problem. This problem gives

S � � J+]|­-&
,
S � � J

, and the initial lower and upper
solutions are defined by (5.1).

All the discrete linear systems are solved by GMRES-solver [1] with the diagonal pre-
conditioner as in [14].

In Tables 5.4 and 5.5, for various numbers of
� $

and
/
, we present the numbers of

iterations ä and ä for the monotone method (3.2) on the piecewise uniform mesh (3.10)
and on the log-mesh (3.13), respectively. From the data, we conclude that the numbers of
iterations are independent of the perturbation parameter

/
. These numerical results confirm

our theoretical results stated in Theorems 3.6 and 3.7.

TABLE 5.4
Numbers of iterations for method (3.2) on the piecewise uniform mesh (3.10)./ ä � äJ1E © 7

16; 13 16; 16 16; 16 16; 16 16; 16 16; 16J1E © !
22; 20 22; 20 22; 20 22; 20 22; 20 22; 20J1E © í
20; 19 19; 18 18; 18 17; 18 17; 17 17 ; 17J1E © ì
19; 19 18; 18 17; 17 16; 17 16; 17 16 ; 16� $

64 128 256 512 1024 2048

TABLE 5.5
Numbers of iterations for method (3.2) on the log-mesh (3.13)./ ä � äJ1E © 7

16; 16 16; 16 16; 16 16; 16 16; 16 16; 16J1E © !
23; 20 22; 20 22; 20 22; 20 22; 20 22; 20J1E © í
20; 20 19; 19 18; 18 17; 18 17; 17 17 ; 17J1E © ì
19; 19 18; 18 17; 17 16; 17 16; 17 16 ; 16� $

64 128 256 512 1024 2048

Similar to Table 5.3, the numerical results presented in Table 5.6 indicate that the Newton
method cannot be successfully used for this test problem.

TABLE 5.6
Numbers of iterations for the Newton method on the piecewise uniform mesh (3.10)./ ä Ó,+� � ä Ó,+! � ä Ó-+ìJ1E © 7

4; 3; 5 4; 3; 5 4; 4; 5 4; 4; 5 5; 4; 6 6; 5; 7J1E�© !
9; 6; 6 8; 6; 6 9; 7; 5 42; *; * *; *; * *; *; *J1E © í
9; 8; 6 9; 11; 6 13; 13; 7 10; 24; 16 39; 34; 31 *; *; *J1E © ì
7; 9; 6 9; 12; 6 13; 9; 6 8; 12; 7 30; 20; * 27; *; *� $

64 128 256 512 1024 2048

5.2. The parabolic problems. On each time level
t�¯

, the stopping criterion is chosen
in the form ÍÍÍ � ½lÓM¾ �#t�¯:���.� ½lÓ © 7 ¾ ��t�¯M� ÍÍÍ Ç È �#"��
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where
"�� J%E ©%$

. All the discrete linear systems (
�N$\� �G(

) in the algorithm (4.2) are
solved by GMRES-solver [1] for the reaction-diffusion problem and by GMRES-solver with
the diagonal preconditioner as in [14] for the convection-diffusion problem.

The reaction-diffusion problem. Consider the problem (1.3) with
�����f�

,
	9�ñJU�/ Ë�0���� ��� , `C��J

and
� � ��J

. This problem gives
S1�2�rJ

.
In Table 5.7, for

± 7 ��J1E © 7
,
± ! ��& B J%E © ! and

± í �rJ%E © !
and for various values of

�
and� $

, we give the average (over ten time levels) numbers of iterations ä ®�1 � ä ®32 � ä ®34 , required
to satisfy the stopping criterion, for the monotone method (4.2) on the piecewise uniform
mesh (3.8). From the data, we conclude that the numbers of iterations are independent of
the perturbation parameter

�
. We mention that the numerical experiments with the monotone

method (4.2) on the log-mesh (3.12) give the same numerical results as in Table 5.7. These
numerical results confirm our theoretical results stated in Theorems 4.6 and 4.8.

TABLE 5.7
Numbers of iterations for method (4.2) on the piecewise uniform mesh (3.8).� ä �65 74� ä �75 � $ � ä �65 � 7J1E © 7

4; 4; 3 4.1; 4; 3�OJ1E © !
4.1; 4; 3 4.1; 4; 3� $

64
QKJ1­-8

The convection-diffusion problem. Consider the problem (1.3) with
�'�\� -

,
5 7.b ! �rJ

,	µ��J � / Ë�0��j� �,� , `C��J
and

� � �rJ
. This problem gives

S � ��J
.

TABLE 5.8
Numbers of iterations for method (4.2) on the piecewise uniform mesh (3.8)./ ä �65 7 � ä �75 � $ � ä �65 � 7J1E © 7

4; 3.8; 3 4; 3.9; 3�OJ1E © !
4; 4; 3 4; 4; 3��$

64
QKJ1­-8

Similar to Table 5.7, Table 5.8 presents the numerical results for the monotone method
(4.2) on the piecewise uniform mesh (3.8). From the data, we conclude that the numbers of
iterations are independent of the perturbation parameter

/
. We mention that the numerical

experiments with the monotone method (4.2) on the log-mesh (3.12) give the same numerical
results as in Table 5.8. These numerical results confirm our theoretical results stated in
Theorems 4.6 and 4.8.
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