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This paper proposes new delay-dependent synchronization criteria for complex dynamical networks 
with time-varying delays. By constructing a suitable Lyapunov-Krasovskii's functional and utilizing 
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matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. 
Numerical examples were given to illustrate the effectiveness of the proposed methods. 
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INTRODUCTION 
 
During the last few years, complex dynamic networks 
(CDNs), which are a set of interconnected nodes with 
specific dynamics, have received increasing attention 
from the real world such as the internet, the world wide 
web (WWW), social networks, electrical power grids, 
global economic markets, and so on. Many mathematical 
models were proposed to describe various complex 
networks, small-world networks and scale-free networks 
(Watts et al., 1998; Strogatz, 2001; Boccaletti et al., 2006). 
In the implementation of many practical CDNs, there 
exists time-delay because of the finite information 
processing speed. It is well known that time-delay often 
causes undesirable dynamic behaviors such as 
oscillation, performance degradation, and instability of the 
network. Therefore, various approaches to 
synchronization analysis for CDNs with time-delay has 
been investigated in the literature (Li et al.,  2004,  2008;  
 
 
 
*Corresponding author. E-mail: madwind@chungbuk.ac.kr.  

Gao et al., 2006; Koo et al., 2010). By using network 
modeling with coupling delays, Li et al. (2004) proposed 
the synchronization criteria for the CDNs with time-delay, 
expressed in the form of LMIs for the first time. In Gao et 
al. (2006), new delay-dependent synchronization criteria 
were derived for continuous- and discrete-time delayed 
networks. In Li et al. (2008), based on free-weighting 
matrix method, the problem of synchronization for CDNs 
with time-varying delay was considered. Koo et al. (2010) 
presented a synchronization criterion for singular CDNs 
with time-varying delays. 

The stability criterion for time-delay system can be 
classified into two; delay-dependent and delay-
independent. Since delays-dependent stability criteria 
include the information on the size of delay, delays-
dependent stability criteria are generally less 
conservative than delay-independent. Therefore, a great 
number of results on delay-dependent stability conditions 
for time-delay systems have been reported in the 
literature (Niculescu, 2002; Richard, 2003; Gu, 2000; 
Suplin et al., 2006; Xu and lam, 2007; Kwon et al., 2010). 
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On the other hand, among various methods of 
synchronization for CDNs with time-varying delays, a 
remarkable one is the free-weighting matrix method used 
in Li et al. (2008), which is very effective jn tackling the 
delay-dependent stability analysis for time-delay systems 
since both bounding techniques and model transformations 
are not involved. However, the free-weighting matrix 
method often needs to introduce many decision variables 
in the stability conditions and leads to a significant 
increase in the computational burden and time-
consuming. Here, one natural question is how to obtain 
an upper bound of time-delay for guaranteeing 
synchronization of CDNs with time-varying delays as 
possible as large by employing fewer decision variables. 
With this motivation, we propose improved delay-
dependent synchronization criteria for CDNs with time-
varying delays. Both time varying delays in network 
coupling and dynamical nodes have been considered. By 
constructing a suitable Lyapunov-Krasovskii's (L-K) 
functional and utilizing Finsler's lemma without free-
weighting matrices, new stability criterion were derived in 
terms of LMIs, which can be solved efficiently by using 
the interior-point algorithms (Boyd et al., 1994). Two 
numerical examples are included to show the 
effectiveness of the proposed method. 
 

Notation: 
n

R  is the n -dimensional Euclidean space, 
nm×

R  

denotes the set of nm ×  real matrix. For symmetric matrices X  

and Y ; YX >  (respectively, YX ≥ ) means that the matrix 

YX −  is positive definite (respectively, nonnegative). 
nn

nI
×∈ R  

and nn

n

×∈R0  denote the n -dimensional identity matrix and zero 

matrix, respectively. nm

nm

×

× ∈ R0  denotes the nm ×  zero matrix. 

|||| ⋅  refers to the Euclidean vector norm and the induced matrix 

norm. }{Ldiag  denotes the block diagonal matrix. ∗  

represents the elements below the main diagonal of a symmetric 

matrix. For a given matrix nm
X

×∈R , such that rXrank =)( , we 

define 
)( rnn

X
−×⊥ ∈R  as the right orthogonal complement of X ; 

that is, 0=⊥XX . nm

thX
×∈ R

)]([
 means that the elements of the 

matrix 
)]([ thX  includes the value of )(th ; for example, 

])([][ UU hthh XX =≡ .  

 
 
Problem statements 

 
Consider the following CDNs with both time-varying delays in 
network coupling and in nodes for Ni ,...,1=  

 ,))(()))((),(()(
1

∑
=

−+−=
N

j

jijiii thtAygcthtytyfty&     (1) 

 
Where N  is the number of couple nodes, 

nT

inii
tytyty R∈= )](),...,([)(

1
 is the state vector of the i th 

node, 
n

f R∈⋅)(  is a continuous differentiable vector function, the  

 
 
 
 
constant c  is the coupling strength, and )(th  is a time-varying 

coupling delay satisfying; 
 

 ,)(,)(0
DM

hthhth ≤≤≤ &                                 (2) 

 

Where 
M

h  is a positive scalar and 
D

h  is any constant one. 
nn

nnij
aA

×

× ∈= R][ is the constant inner-coupling matrix of nodes, 

of some pairs ),( ji , nji ≤≤ ,1 , with 0≠
ij

a , which means two 

coupled nodes are linked through their i th and j th state 

variables, otherwise 0=
ij

a , and 
nn

nnij
gG

×

× ∈= R][  is the 

outer-coupling matrix of the network, in which 
ij

g  is defined as 

follows: if there is a connection between i th and j th node 

)( ij ≠ , then 1==
jiij

gg ; otherwise, 0==
jiij

gg  )( ij ≠ , 

and the diagonal elements of matrix G  are defined by; 

 

 .,...,1,
,1,1

Niggg
N

jij

ji

N

jij

ijii
=−=−= ∑∑

≠=≠=

                    (3) 

 
It is assumed that the network (1) is connected in a way that there 

is no isolated cluster, that is, G  is an irreducible matrix. 

 
The goal of this paper is to investigate the delay-dependent 
synchronization analysis (in other words, stability analysis) of CDNs 
with time-varying delays (1). In order to do this, we introduce the 
following definition and lemmas. 
 
Definition 1  

 
According to Li et al. (2004) the delayed dynamical networks (1) is 
said to achieve asymptotic synchronization if; 
  

 ,)()(...)()(
21

∞→==== taststytyty
N

               (4) 

 

Where n
ts R∈)(  is a solution of an isolated node, 

satisfying )))((),(()( thtstsfts −=& . 

 
Lemma 1  

 
(Li et al., 2004) considered the network (1). Let 

N
λλλ ≥≥>= ...0

21
 be the eigenvalues of the outer-coupling 

matrix G . If the following 1−N linear time varying delayed, 

differential equations are; 
  

( ) ( ) ( ) ( ( ) ) ( ( )),k k d k kx t J t x t J t c A x t h tλ= + + −&          (5) 

 

Where nn
tJ

×∈R)(  and nn

d
tJ

×∈R)(  are the Jacobian of 

)))((),(( thtstsf −  at )(ts  and ))(( thts − , respectively. Then the 

synchronized states (4) are asymptotically stable. 
 
Proof: Follow the proof of Theorem 1 in Li et al. (2004). 

 
From definition 1 and lemma 1, the problem of synchronization for 
system (1) can be considered as asymptotic stability analysis of 
system (5). The following lemmas will be used to obtain our 
proposed synchronization criteria. 



 

 
 
 
 

Lemma 2: (Finsler’s Lemma (de Oliveira et al., 2001)) Let
n

R∈ζ , 

nnT ×∈Φ=Φ R , and nm
B

×∈ R  such that nBrank <)( . The 

following statements are equivalent: 

 

(i) ,0,0,0 ≠=∀<Φ ζζζζ B
T

 

 

(ii) ,0)()( <Φ ⊥⊥
BB

T
 

 

(iii) .0: <++Φ∈∃ × TTmn
XBXBX R  

 
Lemma 3: (Köse et al., 1998).  

 
Let )(hM  be affinely dependent 

on },...,2,1,)(:)({ sihthhthHh iii =∀≤≤=∈ ; Then there 

exist parameters k
a , where 0>

k
a  for all s

k 2,...,2,1=  and 

1
2

1
=∑ =

s

k k
a  such that )(hM  can be expressed as a convex 

combination of the vertex value as follows: 

 

 .)()(
2

1

∑
=

=

s

k

k

k
hMahM                               (6) 

 

Where 
kh  are vertex values of ( )h t  in the set H . 

 
Lemma 4: For any constant matrix 0>= T

MM , the following 

inequality holds: 

 

 

.
))((

)(

))((

)(

)()()(
)(










−









−∗

−









−
≤

− ∫−

thtx

tx

M

MM

thtx

tx

dssxMsxth

T

t

tht

T
&&

                (7) 

 
Proof: According to Jensen's inequality in Gu et al. (2000), one 
obtains: 

 

.)()()()()( 










−≤− ∫∫∫

a

b

T
a

b

a

b

T
dssxMdssxdssxMsxab &&&&          (8) 

 
If we choose ta =  and )(thtb −=  in (8), inequality (7) can 

be obtained.  

 
 
RESULTS 
 
In this section, new synchronization criteria for network 
(1) will be proposed. Before introducing our main results, 
the notations of several matrices are defined for 
simplicity: 
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   (9) 

 
 
Now, a delay-dependent synchronization criteria for 
system (1) is given as follows: 
 

Theorem: For given scalars 
M

h<0  and 
D

h , the 

network (1) is asymptotically synchronized for 

M
hth ≤≤ )(0  and 

D
hth ≤)(& , if there exist positive definite 

matrices nn

k
P

×∈R , nn

k
Q

×∈R
1

, nn

k
Q

×∈R
2

 and nn

kR ×∈R  

satisfying the following LMIs for Nk ,...,2= : 

 

 
,0)()(

,0)()(

][

]0[

<Φ

<Φ

⊥⊥

⊥⊥

khk

T

k

kk

T

k

BB

BB

M

                         (10) 

 

Where 
k

B  and 
)]([ thkΦ  are defined (9). 

 
Proof: Let us consider the following L-K functional 
candidate as; 

 

,
321 kkkk VVVV ++=                            (11) 

 
Where; 

 

 

.)()(

,)()()()(

),()(

3

)(
212

1

∫ ∫

∫∫

−

−−

=

+=

=

t

ht

t

s
kk

T

kMk

t

tht
kk

T

k

t

ht
kk

T

kk

kk

T

kk

M

M

dudsuxRuxhV

dssxQsxdssxQsxV

txPtxV

&&

 

 
The  time-derivative  of  

k
V   can  be  calculated  as; 
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.)()(
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)),(())(()1(

)()()())((
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∫
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=
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T
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MkkM

T
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M
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dssxRsxhtxRtxhV

thtxQthtxh

htxQhtxtxQQtxV

txPtxV

&&

&&&&&

&

&&

    (12) 

 
By using ))(()( thhthh

MM
−−−=−  and Lemma 4, an 

upper bound of the first integral term of 
k

V
3
&  can be 

obtained as; 

 

∫

∫
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∫

∫
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kk

T

k

M

M

t

tht
kk

T

k

t

tht
kk

T

kM

t

tht
kk

T

k

t

tht
kk

T

kM

dssxRsx
h

ththh

dssxRsxth

dssxRsxthh

dssxRsxth

dssxRsxh

)(

)(

)(

)(

)(

)()(
)())((

)()()(

)()())((

)()()(

)()(

&&

&&

&&

&&

&&

  

 

,
))((

)(

))((

)(

)()(
))((

)()(

1

11

)()(

)()(










−








−∗

−









−
=












−

−












−≤

∫∫

∫∫

−−

−−

thtx

tx

R

RR

thtx

tx

dssxRdssx
h

thh

dssxRdssx

k

k

k

kk
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M
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t
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t
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k

δ
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Where; )/)((2

1 M
hth−=δ . With the similar method 

introduced above, an upper bound of the second integral 

term of 
kV

3
&  can be estimated as; 

 
( )

( )

( ) ( )

( ) ( ) ( )

M

M

t h t
T

M k k k
t h

t h t
T

k k k
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h x s R x s ds

h t x s R x s ds

−
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−
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∫
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Where; )/)((1

2 M
hth+=δ . Then, an upper bound of 

k
V

3
&  

can be rewritten as; 
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Where; 
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From (11)-(15), the time-derivative of 
k

V  has a new 

upper bound as; 
 

 ),()(
)]([

ttV
kthk

T

kk
ζζ Φ≤&

                       (16) 

 

Where; 
)]([ thk

Φ  and )(tkζ  are defined in (9). Also, the 

network (1) with the augmented vector )(tkζ  can be 

rewritten as; 
 

,0)( =tB
kk

ζ                                     (17) 

 

Where 
k

B  is defined in (9). Therefore, a synchronization 

condition for network (1) is; 
 

 ,0)()(
)]([

<Φ tt
kthk

T

k
ζζ  subject to ,0)( =tB

kk
ζ        (18) 

 
Furthermore, from Lemma 2 (iii), Equation (18) is 
equivalent to the following condition; 
 

 ,0
)]([

<++Φ TT

kkthk
XBXB                        (19) 

 
Where X  is any matrix. Let us define; 
 

 ,
)(

)(,
)(

1)(
21

MM
h

th
ta

h

th
ta =−=                      (20) 

 

}.)(0:)({
M

hthtHH ≤≤=                         (21) 



 

 
 
 
 

Then, the vertex set 
vex

H  is defined as; 

 
1 2

{ : 0, }.
i

vex MH h= = =H H H                    (22) 

 

There are two elements in 
vex

H , and we can enumerate 

elements in 
vex

H  by i
H , where ,2,1=i  

  

.,0
11

M
h== HH                                 (23) 

 

By Lemma 3, 
)]([ thk

Φ , which is affinely dependent on 

Hth ∈)( , can be expressed as follows; 

 

 

,))(()0)((

])(0)([

])()([
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22211

2211
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1
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21)]([
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kkthk
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Φ⋅+⋅+Φ=

Φ++Φ=

Φ+Φ=Φ

HH
         (24) 

 

Where; )2,1( =Φ i
ik

 are defined in (9). Note that 

1)()(
21

=+ tata , and )2,1(0)( =≥ ita
i

. 

Therefore, by using Lemma 3 and convex-hull properties, 
inequalities (19) hold if the following LMIs are satisfied; 
 

 
.0

,0
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]0[
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kkk

XBXB

XBXB

M

                       (25) 

 
By utilizing Lemma 2 (ii), the inequalities (25) are 
equivalent to the LMIs (10), respectively, if the LMIs (10) 
satisfy, then stability condition (18) holds. This completes 
our proof. ■ As a special case, consider the following 
CDNs with only time-varying delays in nodes for 

Ni ,...,1= ;  

  

 .)()))((),(()(
1

∑
=

+−=
N

j

jijiii
tAygcthtytyfty&          (26) 

 

Theorem 2: For given scalars 
M

h<0  and 
D

h , the 

network (26) is asymptotically synchronized for 

M
hth ≤≤ )(0  and 

D
hth ≤)(& , if there exist positive definite 

matrices nn

k
P ×∈R , nn

k
Q ×∈ R

1
, nn

k
Q ×∈R

2
 and 

nn

k
R ×∈R  satisfying the following LMIs for Nk ,...,2= : 
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Where; 
)]([ thk

Φ  is defined (9), and; 

].,0),(),)([(ˆ
nndkk

ItJActJB −+= λ  
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Proof: The above criterion is derived in the similar 
method in the proof of Theorem 1, instead of the matrix 

k
B , using the matrix 

k
B̂ . ■ When the value of the time-

derivative of time-delay, )(th& , is unknown, then, by 

setting 0
2

=
k

Q  in (11), we can obtain the following 

corollaries for the networks (1) and (26), respectively. 
 

Corollary 1: For a given scalar 
M

h<0 , the network (1) 

is asymptotically synchronized for 
M

hth ≤≤ )(0 , if there 

exist positive definite matrices nn
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1
 and 
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R ×∈R  satisfying the following LMIs for Nk ,...,2= : 
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Where 
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B  is defined (9), and; 
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Corollary 2: For a given scalar 
M

h<0 , the network (26) 

is asymptotically synchronized for 
M

hth ≤≤ )(0 , if there 

exist positive definite matrices nn

k
P ×∈R , nn

k
Q ×∈ R

1
 and 

nn

k
R ×∈R  satisfying the following LMIs for Nk ,...,2= : 
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Where 
k

B̂  and 
)]([

ˆ
thk

Φ  are defined Theorem 2 and 

Corollary 1, respectively. 
 

Remark 1: Unlike the work of Li et al. (2008), the 
presented stability criteria used Finsler's lemma with no 
free-weighting matrices. Also, the convex properties of 

)(th  are utilized to derive main results in this work. From 

this point of view, the stability criteria are more efficient 
than the one in Li et al. (2008) since it involves the least 
number of variables while providing less conservative 
stability conditions. In other words, by employing fewer 
decision variables, the computation burden and time-
consuming will be decreased. 
 
 

Numerical examples 
 
In this section, we provide two  numerical  examples  to 
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Figure 1. The structure of CDNs with five nodes. 

 
 
 
show the effectiveness of the presented stability criteria in 
this paper. 
 
 
We consider CDNs with 5 nodes (Figure 1) in which each 
node is an n -order system with the inner-coupling matrix 

}1,1,1{diagA =  and the outer-coupling matrix; 
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Example 1. Consider the network (1) with the structure in 
Figure 1 and the following 3-order system; 
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Which is asymptotically stable at the equilibrium 
point 0)( =ts , and its Jacobian matrices are 

}3,2,1{)( −−−= diagtJ  and
nd

tJ 0)( = . The results of the 

upper bound of time-delay with different 
D

h  and c  

provided by theorem 1 and corollary 1 are listed in Table 
1. From a computational point of view, the proposed 
stability criteria are more efficient than the conditions in Li 
et al. (2008), since it involves the least number of 
variables while providing the less conservative results. 
Figure 2 shows the simulation results for the 
synchronization errors of the network (1) with 

)38.0(sin292.1)(
2

tth = )5.0,292.1( ==
DM

hh . This figure 

shows that the errors between the synchronized states 
converge to zero under the time-delay )(th . 

 
Example 2. Consider the network (26) with the structure 
in Figure 1 and the following 3-order system; 
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Which is asymptotically stable at the equilibrium 
point 0)( =ts ,  and  its  Jacobian  matrices are 

}1.0,9.0,2{)( −−= diagtJ  and }1,0,0;0,1,1;0,0,1{)( −−−=tJ
d

. 

For the above system, the results of the upper bound of 

time-delay for different 
D

h  and c  are calculated in 

Table 2. When the value of the time-derivative of time- 



 

delay is unknown, then, by applying Corollary 2 to the above system (31), it can be obtained  that  the  upper 
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Table 1. The upper bound of time-delay with different 
D

h  and c  (example 1). 

 

c  
D

h  0 0.5 0.9 Unknown Numbers of variable 

0.3 

Li et al. (2008) 1.935 1.275 0.970 0.960 444 

Theorem 1 1.935 1.292 1.075 - 96 

Corollary 1 - - - 1.075 72 

       

0.4 

Li et al. (2008) 1.130 0.854 0.711 0.710 - 

Theorem 1 1.130 0.866 0.780 - - 

Corollary 1 - - - 0.780 - 

       

0.5 

Li et al. (2008) 0.813 0.646 0.562 0.562 - 

Theorem 1 0.813 0.655 0.611 - - 

Corollary 1 - - - 0.611 - 

       

0.6 

Li et al. (2008) 0.638 0.520 0.464 0.464 - 

Theorem 1 0.638 0.528 0.501 - - 

Corollary 1 - - - 0.501 - 
 
 
 

 
 

Figure 2. Synchronization errors with )38.0(sin292.1)(
2

tth =  (example 1). 

 
 
 

bound of time-delay is listed in Table 2. It can also be 
shown that the proposed stability criteria for system (31) 
improved the stability region. The simulation results for 
the synchronization errors of the network (31) with the 
following conditions are shown in Figures 3 and 4, 
respectively, 
 

Condition 1: )5.0,123.1,3.0( ===
DM

hhc  

: ),44.0(sin123.1)(
2

tth =  

 

Condition 2: ):204.1,5.0( unkwounhhc
DM

== : 

 

Figures 3 and 4 show that the system (31) with two 
modes responses converge to zero for given chosen 

.|)sin(|204.1)( tth =  initial values of the state and the 

above conditions. 
 
 

CONCLUSIONS 
 
In this paper, new delay-dependent synchronization 
criteria for the CDNs with time-varying delays are 
proposed. To obtain less conservative results, the 
suitable L-K functional is used to improve the feasible 
region of stability criteria. In addition, they showed that 



 

the presented results contained the least number of variables. Two numerical examples have been  given  to
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Table 2. The upper bound of time-delay with different 
D

h  and c  (example 2). 

 

c  
D

h  0 0.5 0.9 Unknown 

0.3 
Theorem 1 1.160 1.123 1.123 - 

Corollary 1 - - - 1.123 

      

0.5 
Theorem 1 1.286 1.204 1.204 - 

Corollary 1 - - - 1.204 
 

 
 
 

 
 
Figure 3: Synchronization errors with condition 1 (example 2). 

 
 
 

 
 
Figure 4: Synchronization errors with conditions 2 (example 2).  

 
 
 
show the effectiveness and usefulness of the presented 
criteria. 
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