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Abstract

In this paper, we will obtain the strong type and weak type estimates for
vector-valued analogs of intrinsic square functions in the generalized weighted
Morrey spaces Mo? (). We study the boundedness of intrinsic square functions
including the Lusin area integral, the Littlewood-Paley g-function and g} -function,
and their multilinear commutators on vector-valued generalized weighted Morrey
spaces M2#(15). In all the cases the conditions for the boundedness are given eitherin
terms of Zygmund-type integral inequalities on ¢ (x, r) without assuming any
monotonicity property of @(x,r) onr.
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1 Introduction

It is well known that the commutator is an important integral operator and it plays a key
role in harmonic analysis. In 1965, Calderon [1, 2] studied a kind of commutators, ap-
pearing in Cauchy integral problems of Lip-line. Let K be a Calderén-Zygmund singular
integral operator and b € BMO(R"). A well-known result of Coifman et al. [3] states that
the commutator operator [b, K|f = K(bf) — bKf is bounded on L?(R") for 1 < p < co. The
commutator of Calderén-Zygmund operators plays an important role in studying the reg-
ularity of solutions of elliptic partial differential equations of second order (see, for exam-
ple, [4-8]).

The classical Morrey spaces were originally introduced by Morrey in [9] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the readers to [7-10]. Re-
cently, Komori and Shirai [11] first defined the weighted Morrey spaces L (w) and studied
the boundedness of some classical operators such as the Hardy-Littlewood maximal oper-
ator, the Calderén-Zygmund operator on these spaces. Also, Guliyev [12, 13] introduced
the generalized weighted Morrey spaces M%* and studied the boundedness of the sub-
linear operators and their higher order commutators generated by Calderén-Zygmund
operators and Riesz potentials in these spaces (see, also [14-16]).

The intrinsic square functions were first introduced by Wilson in [17, 18]. They are de-
fined as follows. For 0 < « <1, let C, be the family of functions ¢ : R” — R such that ¢’s
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support is contained in {x : |x| <1}, fR“ ¢(x)dx = 0, and for x,x" € R”,
|6@) - o()] =[x -x[".

For (y,£) € R™! and f € LM°¢(R"), set

’

Aqf(t,y) = sup [f * Py (y)
¢eCy

where ¢(y) = t7"¢(%). Then we define the varying-aperture intrinsic square (intrinsic
Lusin) function of f by the formula

dydi\?
Go,p(f)(x) = < / fr ﬂ(x)(Aqf(t,y))z tyn+1t> ,

where I'g(x) = {(y,£) € R™!: |x — y| < Bt}. Denote G 1(f) = G, (f).
This function is independent of any particular kernel, such as Poisson kernel. It dom-

inates pointwise the classical square function (Lusin area integral) and its real-variable
generalizations. Although the function G, g(f) depends on kernels with uniform compact
support, there is pointwise relation between G, 4(f) with different g:

Gap()(x) < BT *Go(f) ().

We can see details in [17].
The intrinsic Littlewood-Paley g-function and the intrinsic g} function are defined, re-
spectively, by

(S

w0 = ([ (00 7))

. B t " ) dydt\?
g of (%) = <//Rl<m) (Af (3,0)) tn+l> :

When we say that f maps into /;, we mean that}(x) = (f)%1, where each f; is Lebesgue

measurable and, for almost every x € R”

o 12
e, - (ZW) -
]

j=1

Let]’ = (i,f2,-..) be a sequence of locally integrable functions on R”. For any x € R”,
Wilson [18] also defined the vector-valued intrinsic square functions off by |Gof )1,
and proved the following result.

Theorem A Let1<p<o0,0<a <1,and w e A,. Then the operators G, and g;a are
bounded from L(1,) into itself for p > 1 and from L} (l,) to WL (L,).

Moreover, in [19], Lerner showed sharp L, norm inequalities for the intrinsic square
functions in terms of the A, characteristic constant of w for all 1 < p < co. Also Huang and
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Liu [20] studied the boundedness of intrinsic square functions on weighted Hardy spaces.
Moreover, they characterized the weighted Hardy spaces by intrinsic square functions.
In [21] and [22], Wang and Liu obtained some weak type estimates on weighted Hardy
spaces. In [23], Wang considered intrinsic functions and the commutators generated with
BMO functions on weighted Morrey spaces. Let b= (by,...,by) and bj, j=1,...,m be lo-
cally integrable function on R”. Setting

’

A, pf(ty) = sup
$eCy

/ 5@ - b@]60 - 2)f (2) dz
j=1

the multilinear commutators are defined by

. dydt\?
[b’ Got]f(x) = (/‘/ri( )(Aa,izf(t’y))Z tyn+1t> ?

1
2

bl ([ e’ F)

and

> t M dydt\?
[b’ g;,alf(x) = (//le <m> (Aa,Zf(t’y))Z t)’;l ) :

In [23], Wang proved the following result.

Theorem B Let1<p<o0,0<a <1, weA, and b € BMO(R"). Then the commutator
operators [b, G,] and [b, g} ,] are bounded from L5(1y) into itself.

Analogously the following result may be proved.

Theorem B’

Letl<p<oo,0<a <1, weAp.Letalsol;= (by,...,bm) and by e BMO(R"),j=1,...,m.
Then the multilinear commutator operators [1;, G and [l;, g5 o] are bounded from L5(1)
into itself.

In this paper, we will consider the boundedness of the operators Gy, g« g5, and
their multilinear commutators on vector-valued generalized weighted Morrey spaces. Let
@(x,r) be a positive measurable function on R” x R, and w be non-negative measurable
function on R”. For anyf € Lﬂ,’loc(lz), we denote by M%? () the vector-valued generalized
weighted Morrey spaces, if

S 1a
WFllaee ) = xesup o) w(Bx, )7 | |Lf(')”12 HL’V’,(B(x,r)) < o0.

R”,r>0

When w = 1, then M%? (I,) coincide the vector-valued generalized Morrey spaces M?#(1,).
There are many papers discussed the conditions on ¢(x,7) to obtain the boundedness
of operators on the generalized Morrey spaces. For example, in [24] (see, also [10]), by
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Guliyev the following condition was imposed on the pair (¢, ¢7):

o0 d
/ 00 % < Conten), w1

where C > 0 does not depend on x and r. Under the above condition, they obtained
the boundedness of Calderén-Zygmund singular integral operators from MP#(R") to
MP#2(R"). Also, in [25] and [26], Guliyev et al. introduced a weaker condition: If 1 < p <
00, there exists a constant C > 0, such that, for any x € R” and r > 0,

] dt < Cey(x,r). (1.2)

n
/ * essinf g0 @1 (%, 5)s?
r 194

If the pair (¢, ;) satisfies condition (1.1), then (¢y, ¢,) satisfied condition (1.2). But the
opposite is not true. We can see Remark 4.7 in [26] for details.

Recently, in [12, 13] (see, also [14-16]), Guliyev introduced a weighted condition: If 1 <
p < 00, there exists a constant C > 0, such that, for anyx € R” and ¢ > 0,

1
f * essinfy g0 1 (%, S)W(B(x, 5)) 7 % < Corlar). (1.3)

w(B(x, )

In this paper, we will obtain the boundedness of the vector-valued intrinsic function,
the intrinsic Littlewood-Paley g function, the intrinsic g function and their multilinear
commutators on vector-valued generalized weighted Morrey spaces when w € A, and the
pair (g1, ¢;) satisfies condition (1.3) or the following inequalities:

r

— =< C(pZ(x? V), (14)

/°° m( t) esSinfyseo0 1 (¥, )W(B(x,))7 dt
In”| e+ T
: w(B(x, 1)) t

where C does not depend on x and r. Our main results in this paper are stated as follows.

Theorem 1.1 Let1 <p <00, 0<a <1, we Ay, and (¢1,¢,) satisfy condition (1.3). Then

the operator G, is bounded from M. (L) to ML (L) for p > 1 and from M (L) to
Ly

WM, > (Ip).

Theorem 1.2 Let 1 <p<oo,0<a <1, weA, A>3+ %, and (¢1,¢2) satisfy condi-
tion (1.3). Then the operator g} , is bounded from ML (L) to ME () for p > 1 and from
M (L) to WM (L)

Theorem 1.3 Letl<p<oo,0<a <1, we A, and (¢, ¢2) satisfy condition (1.4). Let also
b=(by,...,b,) and by e BUO(R"), j = 1,...,m. Then [b,G,] is bounded from M5 (I,) to
M7 ().

Theorem 1.4 Letl<p<o0,0<a <1, weA, and (¢1,¢,) satisfy condition (1.4). Let also
b=(by,...,by) and by e BMO(R"),j = 1,...,m. Then for . >3 + , [b, g} | is bounded from
M (1) to MEP (1),

In [17], the author proved that the functions G,f and g,f are pointwise comparable. Thus,
as a consequence of Theorem 1.1 and Theorem 1.3, we have the following results.
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Corollary1.5 Letl <p<o0,0<a <1, weA,, and (¢1,¢,) satisfy condition (1.3), then g,
is bounded from M5 (1) to ML (L) for p > 1 and from My (Iy) to WMy (1).

Corollary1.6 Letl<p<00,0<a <1,w € Ay, and (¢1,¢,) satisfy condition (1.4). Let also
b=(by,...,b,) and b; € BMOR"), j = 1,...,m. Then [b,g,) is bounded from M5 (L,) to
M (ly).

Remark 1.7 Note that, in the scalar valued case and for m = 1, w = 1 Theorems 1.1-1.4 and

Corollaries 1.5-1.6 was proved in [27]. Also, in the scalar valued caseand m =1, w=A,,
and ¢;(x,7) = @a(x, r) = w(B(x, r))%, 0 < k¥ <1 Theorems 1.1-1.4 and Corollaries 1.5-1.6
were proved by Wang in [23, 28]. If ¢(x,r) = w(B(x, r))'%, then the vector-valued gen-
eralized weighed Morrey space M4 (l,) coincides with the vector-valued weighed Mor-
rey space %" (I,) and the pair (w(B(x, r)) T , w(B(x, r))%) satisfies the two conditions (1.3)
and (1.4). Indeed, by Lemma 3.1 there exist C > 0 and § > O such thatforallx € R” and ¢ > r:

né
w(B(x, t)) > C(;) w(B(x, r)).
Then

essinf, ;.00 W(B(x, s))I% dt

+> e L
)

/°° essinf ;.00 W(B(x, s))I% dt /°° "
— < In
r w(B(x, 1))P ¢ r

~

1]
<
—
hoc]
8
3
SN— ®
[T +
‘\ ~N o~
i
5 7N
3 N~
o~ S—
o 5
+ <
\| —_
=
/~ R
~
=
N~
5|
| &

w(B(x, ;"))KT_1 / In"(e + r)r"'s%l dr
1
~ w(B(x,1)) T

Throughout this paper, we use the notation A < B to express that there is a positive
constant C independent of all essential variables such that A < CB. Moreover, C may be
different from place to place.

2 Vector-valued generalized weighted Morrey spaces

The classical Morrey spaces MP* were originally introduced by Morrey in [9] to study the

local behavior of solutions to second order elliptic partial differential equations. For the

properties and applications of classical Morrey spaces, we refer the readers to [29, 30].
We denote by MP*(l,) = MP*(R", 1,) the vector-valued Morrey space, the space of all

vector-valued functionsf € LP'°¢(l,) with finite quasinorm

- _& -
W lawrayy = sup 7 2 If e e,
xeR",r>0

wherel <p<ocoand 0 <X <n.
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Note that MP°(l,) = L7(l;) and MP"(ly) = L*®(l;). If > < 0 or A > n, then MP*(l;) = ©,
where @ is the set of all vector-valued functions equivalent to 0 on R”.

We define the vector-valued generalized weighed Morrey spaces as follows.

Definition 2.1 Let 1 < p < 00, ¢ be a positive measurable vector-valued function on
R” x (0,00) and w be non-negative measurable function on R”. We denote by M%* (l,)
the vector-valued generalized weighted Morrey space, the space of all vector-valued func-
tionsf IS Lf.,’loc(lz) with finite norm

- 1
W llazeay = sup @@ r) " w(Ber)) 2 If 112 ey i)

x€R,r>0

where L%,(B(x, r), l) denotes the vector-valued weighted L”-space of measurable functions
f for which

Hf”L{’V(B(x,r»E”fXB(x,y)”L{V(Rn): B(xr)”fO’)”zzWO’)dy :

Furthermore, by WM. (l,) we denote the vector-valued weak generalized weighted
Morrey space of all functions f € Wijloc(lz) for which

- _1 5
”f” WM’:/‘“’(IZ) = Sup (p(xr }")_IW(B(JC, V)) d ”f“ WLﬁ,(B(x,r),lz) <00,
xeR”,r>0

where WL (B(x,7), l;) denotes the weak L -space of measurable functions f for which

- - p
W vt sty = W X Nt i) = St‘:g’t ( /{ , w(y) dy) .

B If ) 1y >0)
Remark 2.2
(1) If w=1, then MY¥(l,) = MP#(l,) is the vector-valued generalized Morrey space.
(2) If p(x,r) = w(B(x, r))%, then M5% (I,) = L5 (1) is the vector-valued weighted
Morrey space.
3) If p(x, ) = v(B(x, 1)) ? w(B(x, r))_ll’, then M%? (Iy) = L1, (1) is the vector-valued two
weighted Morrey space.
(4) fw=1land p(x,r) = rk;fn with 0 < A < i, then M5 (Iy) = LP*(1,) is the vector-valued
Morrey space and WML (I,) = WLP*(1,) is the vector-valued weak Morrey space.
(5) If p(x,r) = w(B(x, r))_ll’, then M%¥ () = L4(l,) is the vector-valued weighted
Lebesgue space.

3 Preliminaries and some lemmas

By a weight function, briefly weight, we mean a locally integrable function on R” which
takes values in (0, 00) almost everywhere. For a weight w and a measurable set E, we define
w(E) = fE w(x) dx, and denote the Lebesgue measure of E by |E| and the characteristic
function of E by x,. Given a weight w, we say that w satisfies the doubling condition if
there exists a constant D > 0 such that for any ball B, we have w(2B) < Dw(B). When w
satisfies this condition, we write for brevity w € A,.
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If w is a weight function, we denote by I5() = I5,(R", ;) the vector-valued weighted
Lebesgue space defined by finiteness of the norm

1
|U?||L1;V(12) = </Rn IF x) ||1;2w(x) dx>p <00, ifl<p<oo

and by I[f |5 () = €55 SUP,en IIf (@) 15, w() if p = 00.
We recall that a weight function w is in the Muckenhoupt class A, [31], 1 < p < 00, if

[wla, = sup[wla,m)
B

B 1 1 o\
= sgp(E/Bw(x)dx> (E/;w(x) P dx) < 00,

where the sup is taken with respect to all the balls B and 117 + 1% = 1. Note that, for all balls
B, by Holder’s inequality
/ - / _
(Wl amiey = 1B WL [ gy > 1.

11(B) -

Forp =1, the class A, is defined by the condition Mw(x) < Cw(x) with [w]a, = sup,cg» %f)‘),

and for p =00, Ay, = U1§p<ooAP and [Wla,, = infi<peco[Wla,

Lemma 3.1 ([32])
(1) Ifwe A, for somel < p < 0o, then w € Ay. Moreover, for all A > 1

w(AB) < A" [w]4,w(B).
(2) If we A, then w € Ay. Moreover, for all A > 1
w(rB) < 2" [w]a, w(B).

(3) If we A, for some 1 < p < oo, then there exist C > 0 and § > 0 such that for any ball
B and a measurable set S C B,

s
(3
w(B) |B]
We are going to use the following result on the boundedness of the Hardy operator:
1 t
(Hg)(t) := ;/ gr)du(r), 0<t<oo,
0

where u is a non-negative Borel measure on (0, 00).

Theorem 3.2 ([33]) The inequality

ess sup w(t)Hg(t) < cesssupv(t)g(t)
t>0 t>0
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holds for all functions g non-negative and non-increasing on (0, 00) if and only if

o) [* du(r)
Aw=sup— [ ——— ,
0 ¢ Jo esssupy.,., v(s)

andc~A.

We also need the following statement on the boundedness of the Hardy type operator:

(Hig)(t) = %/Otlnm(e+ ;)g(r) du(r), 0<t<oo,

where p is a non-negative Borel measure on (0, 00).

Theorem 3.3 The inequality

ess sup w(t)Hig(t) < cesssupv(t)g(t)
t>0 t>0

holds for all functions g non-negative and non-increasing on (0, 00) if and only if

Ay :=sup @ tlnm (e + E) dptr)

— <00,
0 t Jo 7] esssupg.., V(s)
and c =~ A;.
Note that Theorem 3.3 can be proved analogously to Theorem 4.3 in [34].

Definition 3.4 BMO(R") is the Banach space modulo constants with the norm || - ||, de-
fined by

1

6]l = sup —/ b(y) = bp(y) | dy < 00,
: x€R"r>0 |B(x,r)| B(?W)‘ ( )|

where b € L°°(R") and

1
bpy) = ——— b(y)dy.
Blwr) |B(x: r)l /t;(x,r) ()/) ’

Lemma 3.5 ([35], Theorem 5, p.236) Let w € Ay,. Then the norm || - ||, is equivalent to
the norm

1
1bllow = su —f b(3) — Baerron | W) dy,
b (B(x,r)) B(x,r)| (y Blor) | (y J

x€R™,r>0 w

where

1

- b dy.
WB ) Sy D

bB(x,r),w =

Remark 3.6 (1) The John-Nirenberg inequality: there are constants C;, C, > 0, such that
for all b € BMO(R") and 8 >0

|{x € B:|b(x) - bg| > B}| < C1|Ble”2P/1Pl+, VB C R".

Page 8 of 20
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(2) For 1 < p < oo the John-Nirenberg inequality implies that

1 b \?
161l ~ sup( — / 160) — bs|? dy (3.0)
“P 151 J,

andforl <p<ooand we Ay

1 ) ’
151l ~ sup( —— [ |b(y) - bs| ' w()dy | . (3:2)
B \wW(B) Jp
Note that by the John-Nirenberg inequality and Lemma 3.1 (part 3) it follows that
w({x €B: |b(x) - bB| > /3}) < wa(B)e‘CZﬁ‘S/"b”*
for some § > 0. Hence
/\b(y) —b3|pw(y)dy = p/ 5P_1w({x €B: |b(x) —bB| > ﬂ})dﬂ
B 0
(o]
< pCw(B) / prle Pl gg = Cw(B)|bII2,
0

where Cs > 0 depends only on Cf, C,, p, and 8, which implies (3.2).
Also (3.1) is a particular case of (3.2) with w=1.
The following lemma was proved in [13].

Lemma 3.7 (i) Let w € Ay, and b € BMO(R"). Let also 1 < p <00, x € R", k>0, and
1,1 > 0. Then

1 kp )1’ ( "
w(B(x, 1)) b) = barw| W) dy) < C(1+[In—
(w(B(x,rl)) ‘/,;(x‘rl)‘ ) = baxr) ’ (y) dy

k
b|%,
v ) 161,
where C > 0 is independent of f, w, x, r1, and rs.
(ii) Let we A, and b € BMO(R"). Let also 1 <p < 00, x € R", k>0, and r1,r, > 0. Then

k
k
) 161,
2

4

n
In —
7

1 / ’
( |b()’) - bB(x,rg),w|kp W(y)lip dy) g < C(l +

Wl_p, (B(x’ 7‘1)) B(x,r1)

where C > 0 is independent of f, w, x, r1, and r;.

4 Proofs of main theorems
Before proving the main theorems, we need the following lemmas.

Lemma 4.1 [23] Forj € Z,, denote

o dydt\?
Gapw=([" [ o) 2T

LetO<a<1,1<p<oo,andweA,. Then anyj € Z,, we have

[Gar )] S 2% [Gath)] -
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This lemma is easy by the following inequality, which is proved in [17]:

3n
Go,p(f)x) < B2 G (f)(x).
By a similar argument to [2], we can get the following lemma.

Lemma4.2 Letl<p<00,0<a <1,andw € A, then the multilinear commutator [Z), Gy]
is bounded from L%,(ly) to itself whenever b= (by,...,bm) and by e BMOR"),j=1,...,m

Now we are in a position to prove the theorems.

Lemma4.3 Letl<p<o0o,0<a=<1l,andweA,.
Then, for p > 1, the inequality

1 _1dt
1G5y S (W(B))? f V1t (B0, ) 7 &
2
holds for any ball B = B(xo,r) and for allf‘ € Lﬁ,’loc(lz).
Moreover, for p =1 the inequality
- 1 dt
1GeF vz 1) < WEB) / Ut i (B0, 1)) ™

holds for any ball B = B(x, r) and for allj? € L};loc(lg).
Proof The main ideas of these proofs come from [13]. For arbitrary x € R”, set B = B(xy, r),

2B = B(xy,2r). We decompose]‘ = fo + foor Where fo(y) = FD)x28(), foo() = F(3) —fo(}’)-
Then

1Gf 12500ty < 1Gedfoll 2 sisg ity + 1 Gefoo 22 B30 2= 1+ I1.

First, let us estimate I. By Theorem A, we obtain

1< ||Ga¢f0||L{j/(12) f<v ”fOHLfv(lz) = ”f”L{j/(ZBJZ)- (4'-1)
On the other hand,

© dt

VWit 1) 2 1BV Wit o /2 e

o dt
< |B|/ "f“L{f/(B(xo,t),lz) TSy
2r t
dt

1
oo
< WB W fz 22 000

< 1% - -/p at
< W(B)p i |V||Lﬁ,(3(x0,t):12)|lw ”Lp/(B(xo,t)) tnT

r

’uh—'

1 dt
SB[ 17z (4(B 50 0) 5 (4.2)

2r

Page 10 of 20
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Therefore from (4.1) and (4.2) we get

oo

(4.3)

S _1dt
|V||L€V<B(xo,t),12>(W(B(xo’t))) i 7

1< w(B)? /

2r

Then let us estimate II:

7 %0, - Ht /y _z|<t¢(y%z)f°°(2)dz < /|y _ZN\[;%Q(Z)H,2 dz.

)

Since x € B(xo,7), (,t) € T'(x), we have |z — x| < |z—y| + |y — x| < 2¢, and
r<lz—xol—lxo—xl < |lx—z| <|x -yl +[y—z| =2t

So, we obtain

2 1
2 n - dydt) 2
o0 < 00 d
ladel, = (f[ (e[ _Vol,a) B
2 1
- dydt)\?
= <-/t\>r/2 /I;c—y<t </;c—z<2t HfOO(Z) H b dz) 3+l )

2 2 gr \?
g(/bru(/‘lethHfoo(z)Hb dZ) t2”+1> :

By Minkowski’s and Holder’s inequalities and |z — x| > |z — xo| — |x0 — x| > %Iz — x|, we

have

1
- dt \2,-
ool = [ ([ ) Vetoll
>

”f(z) ” Iy ”f(Z) ”12
< <
< / dz < / = dz

zxols2r 12— %" 20|52 12— Xol"

N +00 gy

= —d
-/;—x0>2r “f(Z) ||12 \/Z—xo rrl z
+00 N dt
= d —_—
/2; -/2'r<|zx0|<t |Lf(z> le z tm'l

- 0o B dt
N/ ” Hf(z) ”12 ”LPW(B(xO,z)) ”W ”L 1 (Blxo ) g+l
2r P
o _ldt
S [ o (B0, 0)) 7 -
r
Thus,
N 1 [ . _ldt
||C'704fo<>||L11j/(13,12),S,W(B)pv/2 ”f”LpW(B(xo,t),lz)(W(B(xo’t))) r ? (4.4)
r
By combining (4.3) and (4.4), we have
N 1> o _Lldt
1Gef 1l 551y S WB)P /2 128, 501, (W (B0, D)) 7 = O
r
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Proof of Theorem 1.1 By Lemma 4.3 and Theorem 3.2 we have for p > 1

- 1dt
||Go¢f”M1:;“’2(12) 5 sup <P2(xo,'")71/ ”f”Lp(B (x0,),2) ( (B(xO: t))) P —
x0€R”,r>0 r t
4 o -1 dt
= sup  @a(xo,7) / |lf||L{’V(B(x0,rl),12)(W(B(xo’t )7 —
x0€R",r>0 0 t
_1dt
= sup ¢ xo, / |lf||L1’ Blxg,t~ 12( (B(xo’t ))) P
x0€R™r>0 t
_ 1 -
< sup <p1(x0,r’1) 1(W(B(xo,r’l))) PN 2 8o 1))
x0€R",r>0
1 -7 7
= sup  @i(x0,7) (w(B(xo, 7)) PN 2 8wty = W a2 )
x0€R™r>0

and forp=1

oo
> _ > -1
”G(Xf”WMi;WZ ) 5 sup (pZ(xO’r) ! / |V‘||L£/(B(x0,t),lz)(W(B(xO’t))) -
r

x0 €R",r>0

L dt

sup a7 / 128 st -1y (B0, 7))

x0€R™,r>0

a1 [ - adt
sup (pz(xo,lfl) lr;/(; ”f”Llw(B(xo,t‘l),lz)(W(B(xo’fl))) =

x0€R”,r>0

A

sup 1 (x0,77) " (W(B(x0,77))) I a0

x0€R™,r>0

_ 1,2 v
sup @1 (xo, 1) I(W(B(xo,r))) ”f”L}”(B(xO,y),lz) = |V||M#w1(12)

x0€R”,r>0

Lemma4.4 Let1<p<00,0<a <1,A>3+ %, andw € Ay. Then, for p > 1, the inequality

"clv-

. 2 1™ dt
”gx,oz(f)HL{‘j,(B,zz)g(W(B))p /2r W”Lfv(B(xo,t),lz)(W(B(xo’t))) I

holds for any ball B = B(xo,r) and for allf‘ € Lﬁ,’loc(lz).
Moreover, for p =1 the inequality

- 1 d
et it aa S 9B [ iy (Bl 0) ™ 5
2r

holds for any ball B = B(x, r) and for all]‘ € L,ﬁ;"’c(lz).

Proof From the definition of g} ,(f), we readily see that

. B o t N\, 2, adyde\"
ng,a(f)(x)Hb-H(/o / (m) (Af 0,1)) tm) )

h ot N 2 alyalt)”2
= H (/O /|;Cy|<t(t + |x_y|> (Aﬂ(f(y’ t)) pras]

l

Page 12 of 20
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~ t . 2 dydt i
([ L. (Gam) wdoor )

=1 +1V.

143

First, let us estimate III:

N t N oy dydt)m
I < N o
= H (/0 /lxqu(t + |x_y|> ( Oéf(y )) il

Now, let us estimate I'V:

(Z/ A 1t<x_y|<m(t+ = y|> vy i{ﬁt>m

=16,

I
vd 12
Z/ ! 27 (Ao (1)) 2
V- lt<|x—y|<Vt e b
= - dydt\"” <N -
sy ([T TE) | =2 Gl
j=1 lx—y|<t ¢ 3 j=1
Thus,
%) HLIEV(B,IZ) = ”G‘X]?”Lﬁ,(B,lz) + ZZ_MTA |G () HLIV’V(B,ZZ)' (4.5)
j=1
By Lemma 4.3, we have
Y N _ldt
16 S BN [ 1l (9B, ) 7 . (4.6)
2r

In the following, we will estimate [|G, ]l 12,5, We divide ||Ga,7j(]_;)” 12(8,) DO two
parts,

”Ga,ﬂ(;)”Lﬁ,(B,lz) = ” Ga,?/(;b)||L{4’,(B,lz) + H Ga,ﬂ(foo)”L{'j,(B,zz)’ (4.7)
wherej?o () :j?(y) XZB()/):]?OO () :j?(y) —foo (y). For the first part, by Lemma 4.1,
|61y S 2F N Gat iy S2F W g

<o [ 17 -3 dt
< P+ y(B)p |[f||pr(B(x0,t),lz)(W(B(xo,t))) < (4.8)

2r

For the second part,

- %0 - dydt\"”
lsustioml, = ([ [ ooy 25
0 lx—y| <Vt I
R . 2 dydt\ ?
L o) 25
2 1
00 . dydt)2
— (/(; /I;cylg?/t (v/l;y5t|v (Z)”lz Z) t3n+l
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Since |x —z| < |y —z| + |x — y| < V*'t, we get

2 1
(f ” 7 dydt\?
lewdowl,= ([ ([ olda) 55)
00 R p 22jndt %
(UL ete) 5)
1
i }
52/</ CTh t) iz
o+l

52¥/ If )4, s
\

x0—2|>2r |x - Z|n

IA

For |z —x| > |xo —z| — |x —xg| > |x0 — 2| — %lxo -zl = %lxo — 2|, so by Fubini’s theorem and

Holder’s inequality, we obtain

|G F))], <2 / @l

X0 —z|>2r |x0 - Z|n

. © gt
/x O_Z‘ﬂrﬂf(z) I, /x . tanZ

&
N

I
o
o]

<% / /
- 2r Jlxg z\<t Z) ”12 tn+1

. - dt

<2 [ IOl Lo

,3 - ~ dt
<2 2/ ” ”f(')”zz”L‘V’V(B(xo,t))”""IHLP,(B(xO,t))tnT

dt

2% [ g ({80 )

So,
1 _ldt
G ol 51 = 2 wiB)? /2 V122 1000 (# (B0, )7 == (4.9)
Combining (4.7), (4.8), and (4.9), we have
- '(3n+ot) 1 © -1 dt
|G D)2 1y S 2F T m(B)? /2 122 a1, ( (Bx0, 1)) 7 == (4.10)
Thus,
- - °° i -
”gi,a(f) HL’;,(BJZ) = ”GDJ”L’V’V(BJz) + ZZ_/T ” Gav?j(f)HLﬁ,(B,lz)' (4.11)
j=1

Since A >3 + %, by (4.6), (4.10), and (4.11), we have the desired lemma. O
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Proof of Theorem 1.2 From inequality (4.5) we have

oo
- - 7jn_)h -
||g§,a(f) HM{’V"”(IZ) < ||Gqf||M1:/.<ﬂz(12) + ZZ 2 ” Ga,y(f) ”szav,wz(lz). (4.12)
j=1
By Theorem 1.1, we have
”GO(f”Mf:/“pz([z) Sz |V||M1$¢1(12)~ (4'13)

In the following, we will estimate ||G,, » (/?) I M2 (1) Thus, by substitution of variables and
Theorem 3.2, we get

” Gy (/;) HM’Z;“’2 (l)

(3, I _ldt
< 27+ sup @z (xo, 1) 1/ ”f||LpW(B(x0,t),12)(W(B(xo’ t))) r—
x0€R",r>0 r t
< 3n _ldt
=T+ qup g, xo, / ILfIILp Blrg, -1 12)( (B(xo, ))) » =
x0€R™,r>0 t
i(3n -1
SYE sup o1(x0, 7)) " (w(B(x0,77)))” ’ ”f”L” Blxo,r1),lp)
x0€R",r>0
il M) (4.14)
Since A >3 + 7, by (4.12), (4.13), and (4.14), we have the desired theorem. O

Lemma 4.5 Let 1<p<oo, 0 <a <1, weA, b= (b1,...,by), and b; € BMOR"), i =
1,...,m. Then the inequality

dr

[o¢] t N
A In"™ <€+ ;)llf”LpW B(x0,7),l2) ( (B(xo’t))) T

r

=
'mh—‘

|8, Galf [ 1 5 S (WB))

holds for any ball B = B(xy,r) and for all f € 12°°(1,).

Proof We decomposef =}0 +]?OO, wherefo =f)(23 and]?OO =f —fo. Then
I [[;’G"‘l]?”Lp(Blz) < (b, Ge ]fOHLP @i T I [b, G 1f<>0 ”LP B)"

Denote by 15, = [T~ 15l By Lemma 4.2, we have

” [b: Galf()HLP (Bly) ~ ”b” ”f()”[}’ () ”b”*Hf”Lp(ZB,lz)

dr. (4.15)
T

ﬂ@m@ﬁ£|wfwawmemﬁ

For the term || [b Gy 1foo 12,8157 without loss of generality, we can assume m = 2. Thus,
the operator (6,G ]fOO can be divided into four parts:

|16, Ga oo )]

( / / sup
I'(x) pCq

30 = 2)(51(2) — (b1)5.0) (b2(2) = (b2) 5,0 )foc (2) d2

n+1

dydt)
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o b - (b1>3w|< / /F )
+ [ba) - <b2)3w|<//r( sup| [

dydt)

n+l

Zdydt 1/2
tn+1

~2)(ba(2) (b)) foo(2) d2

5= 2)(51(2) = (b)) foo(2) dz

- 2 gyde\Y?
<[(0r®) = b)) (b2() - <b2>3,w)1< / / sup | [ iy - 2)fc()dz y_f>
['(x) p€Cu t
= L(x) + L(%) + I3(x) + L(%).
For x € B we have
|5, Galfe @], < [1@)], + [L@)],, + @], + @],
|[f(Z ||12
= /C(zB)‘bl( (b1)s|[b2(2) ~ (b Bw| Z|n
+ ’bl(x)_(bl)B,a)‘/ |b2( (b2 Bw’ ”-f(z)”lil dz
cen) 2|
+[b2 x)_(bZ)Ba)‘/ |b1(2) = (B1)s,0 | |lf(2)£1|2” .
|(b1(x) (bl)Bw)||(b2(x) (b2)B,w |/ ﬁ

Then

” [7” Gal?oo ”Lﬁ,(B,lz)

H?:llb' Bw| ) )UP
= </I;( C(2B) %o ZI” ”f )”1 dz | o(x)dx
by(2) — (b2)Bwl 2 p Up
+ ( fB |61®) — (1) ( / " % 7|, dz) () dx)
|b1(2) — (1) Bl = p 1p
+ B‘bz(x)—(bz)B,w} Con) W’[/’(Z)Hl2 dz | w(x)dx

1_[?:1 1bi(x) = (bi)Bow| |2 )1’ )l/p
’ (/B( C(2B) |xo — z|™ |Lf(z) ”lz dz | w(x)dx

Ell +12 +13 +I4.

Let us estimate [;:

2
I = w(B)l/p/( ) Hi:l |bl(z) - (bi)B,w| “J}'(Z)”l2 dz
@

|0 — 2"

dt

2 (o]
Up bi(2) — b)) |f d
o [ e @i, [ S
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2
0o N d
~ w(B)'? / / [T162) - G 7@, d2 55
2r 2r<|xg—z|<t

i=1

d

00 2
Bl/pf / bi _bi w f d—r
) blmﬂg|w sl @], dz =

Applying Holder’s inequality and by Lemma 3.7, we get

2pr 1-2pr 2%/ dr
L = w(B)" . |bi(Z) — (b)Bo| " @@ dz ) 12 s e100) gy
(x0,T)

2 2
dr
1/p T ~1/p -
<[T15l.e®) fz i <1+1n r> 1™ 21 e 0,0 W 2, 0,01 e
i=1

1/p dr

swmmmwﬂ m{ )WM’WIQ(M%JD

Let us estimate I5:

1/p
[D2(2) = (b2)B,o
b ([l -@onfoas) [ B, b
y dt
swwwww{A [62(2) - %MMVML/ Mwﬂ4

“Wm“mwft/ W@—%MMWMMﬂj%
2r 2r<|xg—z|<t T

S . d
swmwﬁwf / 162(2) - 02| [F @), de 2o
2r B(xg,7) T

Applying Holder’s inequality and by Lemma 3.7, we get

L[ . dt
b= lo@? [ b - Gl o dz) Vg o1 o
2r B(xg,7)
- )P = -Up At
1_[ "b ”*w 1+ ll’l Hw HLp B(x0,7),l2) ”f”Lp B(x0,7):l2) Th+l
i-1 2r

o0 1/p dr

gwwwwf

2r

lnz( > “f”LI’ (B(xo,7) lz)w(B(xO, T))

In the same way, we shall get the result of I3:

N o0
ASMMM&W/

2r

/ dr
lnz( )”f”Lp(onr lz)a)(B(xo,r)) 1p?.

In order to estimate I; note that

2 1/p -,
I = (/Bl_“bi(x) — (b)p0| (%) dx) /;(23) % d.
i-1
2 1/2p 7
If @)l
b; ® dx —=
= 1:!(/1;‘ )= (®s, | () ) /;(23) [xo — z|" “
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By Lemma 3.7, we get

Lo oty [T,

c@p) Ixo —z|"

Applying Holder’s inequality, we get

IF @),
/ i
c@p) %o — Z|
*° dr
-1/p
S/zr ”f”L’Z/(B(xo,r)Jz) ||a) “L’j,’(B(xo,r),lz) n+l

1/p dr

<[w]1/p/; W 22, xg 01, 2 o(B(x0,7))”

Thus by (4.16)

p dr

o0
Iy < ||b||*w(B)1/p/ “f“pr(B(xo,r),lz)w(B(xo’t))

2r T

Summing up [; and I, for all p € [1, 00) we get

- Sy T
” [b Ga 1f°° ”Lp B(x0,7),2) = ”b”*w(B)l/p/ In? (e + ;) ”f”Lﬁ,(B(xo.r),lz)

2r

-1/p dr

w(B(x0, 7)) (B0, 7))
Finally, from (4.2), (4.15), and (4.17) we get
” [b Go VHL‘”(onr )lo)
< 16l (B)? f In? (e+ —) V1l 22, 3,102 (B0, 7))
2r

Proof of Theorem 1.3 By substitution of variables, we obtain

” [Z” GalfHMﬁ'“’Z (ly)

oo
S bl sup </Jz(xo,r)’1 In"™ <e+—>|[f||LP oy W(B@o, 7))

x0€R",r>0

SIBll. sup  @a(x0,r)” / (e+—)uf||L ror W (B0 7))

x0€R™,r>0

Bl sup gn(xo,r ) rn / e (
rJo

x€R™,r>0

HI\

’w\»—

SUbll. sup g (%0, 7)) w(B(x0, 7))

If1 |L1’ (Bxo,r L)1)
x0€R™r>0 0 2

EI»—

=[1bllx sup  @1(x0, ) W(Bx0, 7)) 7 I 1l 12 (5 r100)

x0€R”,r>0

= ||b||*|lf||M1:;‘/’l(12)

i de

S

dr
T

) 125 a1 (B0, 7))

(4.16)

(4.17)

dr
T
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By using an argument similar to the above proofs and that of Theorem 1.2, we can also
show the boundedness of [l;, g5 ol O
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