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This study presents a new method for modeling an adaptive neuro-fuzzy inference system (ANFIS) 
based on vibration for predicting surface roughness in the CNC turning process. The input parameters 
of the model are insert nose radius, cutting speed, feed rate, depth of cut and vibration amplitude, 
which determine the output parameter of the surface roughness. A Gauss type membership function 
was used to train on ANFIS. The predicted values derived from ANFIS were compared with experimental 
data. The obtained prediction accuracy of 97.52% demonstrates that the developed system’s improved 
performance over other models available in the literature. The resulting ANFIS model based on 
vibration efficiently uses the fuzzy inference system for predicting surface roughness in turning of AISI 
1040 steel. 
 
Key words: Adaptive neuro-fuzzy inference system (ANFIS), CNC turning, surface roughness, prediction 
model. 

 
 
INTRODUCTION 
 
Surface roughness is important due to increased 
consumer demands for quality, less costly products, 
minimum friction, maximum lubrication, and minimum 
wear. It is a characteristic that could influence the 
performance of mechanical parts and the production 
costs. 

Modeling of surface roughness is difficult because it is 
affected by different variables.  On the other  hand,  fuzzy 
 
 
 
Abbreviations: FLIS, Fuzzy logic inference system; ANFIS, 
adaptive neuro-fuzzy inference system; PEEK, polyether ether 
ketone; PCD, Poly-Crystalline Diamond; ANN, artificial neural 
network; MANFIS, multi adaptive Network based fuzzy 
inference system; RSM, response surface methodology; SVR, 
support vector regression; MF, membership function. 

logic inference system (FLIS) is an effective technique for 
the identification and control of complex non-linear 
systems. fuzzy logic is particularly attractive due to its 
ability to solve problems in the absence of accurate 
mathematical models. Thus, these techniques appear to 
be suitable for modeling and simulating the complex and 
highly time-variable turning process. Recently, many 
surface roughness modeling, simulation and optimization 
systems were designed using different cutting 
parameters and methods. 

Dejparvar and Akbari (2008) argued that surface 
roughness is not only an indication of metal quality but 
also an important factor impacting machining efficiency 
and cost. Cutting parameters, tool geometry, built-up 
edge, workpiece material, chatter, and cutting fluids etc. 
are among the parameters that affect surface  roughness. 
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A robust and reliable model depends on identifying the 
parameters as well as their weights on the surface 
roughness (Lela et al., 2009). 

The effect of the length and diameter of working piece, 
cutting depth and feed were also investigated by Ay and 
Turhan (2011). They ignored cutting speed, which is an 
important machining parameter, which was kept constant 
in this study. Taguchi method was used to obtain more 
reliable and optimum results. The regression analysis 
was used to model relation between the dependent and 
independent variables modelled by. They explained that 
cutting force, surface roughness, cylindricity and vibration 
were minimised in machining process and production 
quality was improved. 

Palanikumar (2010) carried out to model the 
delamination factor and surface roughness in machining 
of GFRP composites through response surface 
methodology. Three-factor five-level central composite 
design was employed in his study. The results of analysis 
of variance indicated that the developed models were 
adequate at 95% confidence level within the limits of 
factors being considered. 

The cutting force model was proposed to predict the 
tool wear and surface roughness in end milling by Sarhan 
and El-Zahry (2011). By comparing the simulated and 
measured cutting force at different values of surface 
roughness, the maximum deviation was found to be less 
than 9.6%. 

El-Hossainy (2010) aimed to enhance the surface finish 
quality by investigating a new method depending on the 
pattern left by the cutting tool. His technique improved 
surface roughness, straightness error, and roundness 
error by more than 50, 51, and 42%, respectively, at the 
proposed cutting condition for all used workpiece 
materials. 

Mata et al. (2009) proposed regression model for the 
different roughness parameters characterizing machining 
of PEEK (Polyether Ether Ketone) composites when 
using PCD (Poly-Crystalline Diamond) and K10 tools. 
Experimental and regression model results have revealed 
that feed is the main cutting factor that influences surface 
roughness. Kohli and Dixit (2004) used speed, feed rate, 
depth of cut, and tool holder as inputs for an Artificial 
Neural Network (ANN) and predicted surface roughness 
with an accuracy of 74.3%. Gupta (2010) undertook a 
study to calculate surface roughness, tool wear and the 
required power depending on cutting speed, feed rate 
and cutting time. The obtained data was used to develop 
models using Response Surface Methodology (RSM), 
ANN and Support Vector Regression (SVR) methods. 
The results showed that ANN and SVR models yielded 
higher accuracy than the RSM model. 

Reddy et al. (2009) developed  the  surface  roughness 

 
 
 
 
prediction model for machining of aluminum alloys, using 
ANFIS. The experimental validation runs were conducted 
for validating the model. To judge the accuracy and ability 
of the model percentage deviation, an average 
percentage deviation had been used. The RSM was also 
applied to model the same data. Comparison of results 
showed that the ANFIS results were superior to the RSM 
results. 

Suhail et al. (2011) proposed a method for cutting 
parameters identification using multi adaptive network 
based fuzzy inference system (MANFIS). They identified 
the initial values for the cutting parameters (cutting 
speed, feed rate, and depth of cut) using surface 
roughness as a single input. These parameters were 
modified and verified using another set of ANFIS models. 
Then, workpiece surface temperature was used as input 
for another set of ANFIS models to amend the final 
values of the cutting parameters. The test results showed 
that the proposed MANFIS model can be used 
successfully for machinability data selection. 

A machine vision-based non-contact measurement of 
surface roughness of turned AISI 1045 steel workpiece 
was proposed by Shome et al. (2009). They developed 
ANFIS models, each of which utilizes a particular 
combination of image features for accomplishing non-
contact prediction of surface roughness. Modeling and 
prediction of surface roughness of a workpiece by a 
computer vision in turning operations plays an important 
role in the manufacturing industry. Ho et al. (2002) 
proposed a method using an ANFIS to accurately 
establish the relationship between the features of surface 
image and the actual surface roughness. The proposed 
ANFIS-based method outperformed the existing 
polynomial network-based method in terms of modeling 
and prediction accuracy. The experimental results show 
that the optimal prediction error of the presented system 
is 4.06%. 

Roy (2007) presented a method using an ANFIS to 
establish the relationship between cutting parameters 
and surface roughness in turning, and consequently to 
predict surface roughness of the work piece using input 
cutting parameters, namely cutting speed, feed rate and 
depth of cut. The comparison indicated that, the bell-
shaped membership function (MF) in ANFIS achieves 
slightly higher prediction accuracy than other MF. 

In the literature, researchers have measured sound 
emission, vibration signals, or electric current for 
monitoring. Unfortunately, these were not used for 
studies for modeling surface roughness. For this reason, 
our methodology was developed and is based on the 
monitoring of the vibration signals and their correlation 
between surface roughness.  

The objectives of this  work  are  as  follows:  Firstly,  to 



 

 

 

 
 
 
 
Table 1. Levels of the variables. 
 

Parameter Level 1 Level 2 Level 3 

Cutting speed (m/min) 150 219 320 
Feed rate (mm/rev) 0.12 0.2 0.35 
Depth of cut (mm)  1 2 4 
Nose radius of tool (mm) 0.4 0.8 1.2 

 
 
 
develop a model for real time prediction of surface 
roughness using vibration in the turning process. 
Secondly, to conduct real time monitoring and process 
control via the accelerate sensor. 
 
 
MODELING OF SURFACE ROUGHNESS 
 
Based on the ISO 4287 norm, average surface 
roughness, Ra, can be defined as the arithmetical mean 
of the deviations of the roughness profile from the central 
line, lm, along the measurement (Stephenson and 
Agapiou, 2005; Nalbant et al., 2007; Sahin and Motorcu, 
2002). This definition is given in Equation 1. 
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Where, L is the sampling length of the profile, and y is the 
coordinate of the profile curve. The relationship between 
surface roughness and cutting parameters can be 
defined in Equation 2: 
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where, Ra is the arithmetic average surface roughness 
(µm). and V, f, ap, D and az are the cutting speed (m/min), 
feed rate (mm/rev.), depth of cut (mm), tool nose radius 
(mm) and vibration amplitude (mV/g), respectively. C, n, 
m, p, s and l are constants, and ε is a random error. In 
order to distinguish constants and parameters in the 
equation, Equation 1 is expressed as in Equations 3 and 
4. The surface roughness of turned surfaces defined by 
Ra and Rt can be computed as follows (Nalbant et al., 
2007; Sahin and Motorcu, 2002; Asilturk and Unuvar, 
2009): 
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Equations 3 and 4 show that while surface roughness 
proportionally increases with the feed rate, a large tool 
nose radius reduces the surface roughness of a turned 
workpiece. Imperfections caused by tool vibration and 
chip adhesion are not considered in this model. 
 
 
EXPERIMENTAL SETUP AND PROCEDURE 
 
An AISI 1040 working specimen was selected in this study because 
it is the most widely used work piece material in the industry. The 
specimen with a diameter and length of 100 and 500 mm, 
respectively, was hardened at 880°C and then normalized at 350°C 
to bring its hardness to 35 HRC. 

Machining experiments were carried out on a Moriseiki 
NL2500MC/700 lathe. The cutting tool (MWLNR 25X25) which was 
used to carry out the cutting tests, this is a commercial product 
available from the Iscar Company. Carbide inserts with product 
number Tips WNMG 0804-04-08-12 TF MTCVD TiCN and a thick 
alpha Al2O3 CVD coating were used. Cutting parameters, that is, 
cutting speed, cutting depth, nose radius, and feed rate, were 
suggested by the cutting tool supplier and finally selected, as 
shown in Table 1. Three different levels were considered for each 
of the four parameters and a total of 81 experimental runs were 
carried out, one for each possible combination of parameter values. 

The vibration signals were acquired using a Kistler 8692C50 
sensor, which was mounted on the grinding wheel axis. 
(Acceleration range ±50 g, sensitivity 100 mV/g, frequency 
response ±5%). The sensor was connected to a Kistler (type 
5134B) coupler, which provides a DC power and a signal 
processing with adjustable gains and cut-off frequencies. A data 
acquisition card from National Instruments (portable E Series NI 
DAQCard-6036E) was used. The card has a maximum acquisition 
rate of 200,000 samples per second and 16 channels. Software 
developed using Matlab 7, provided an interface to enter the 
constants and cutting parameters (Asilturk and Unuvar, 2009). The 
outputs were measured at a rate of 2500 samples/sec and their 
average values were recorded. A Mitotoyo (SJ-201) surface 
Roughness Tester was used to measure surface roughness (Ra) 
after each grinding operation. For each sample, three readings, 
120° apart, were taken. The average is used as a measure of 
roughness of the surface resulting from turning. In order to 
eliminate the effect of tool wear, each experiment was performed 
with a new cutting tool. The experimental set up is shown in Figure 
1. 
 
 
PREDICTION OF SURFACE ROUGHNESS USING ANFIS 
 
The field of fuzzy logic has been making great strides motivated by 
its practical success in modeling and control of industrial process 
(Chi and Teng, 2008; Parlak et al., 2006; Tinkir et al., 2010). Fuzzy 
systems can be used as modeling tools. Fuzzy modeling provides 
appropriate outputs based on real experimental data sets. Fuzzy 
logic models use a form of quantification of imprecise information 
(input fuzzy sets) to generate outputs by an inference scheme. The 
latter is based on a knowledge base. The advantage of this quanti- 
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Figure 1. Experimental set-up. 
 
 

 

 
 
Figure 2. The basic configuration of the fuzzy system. 
 
 
 

fication is that fuzzy sets can be represented by a unique linguistic 
expression, such as small, medium and large. The linguistic 
representation of a fuzzy set is known as a term, and a collection of 
such terms defines a term-set, or library of fuzzy sets. Fuzzy logic 
provides a means of converting a linguistic modeling strategy based 
on expert knowledge into an automatic control strategy. 

Fuzzy logic is made of four main components: (1) Fuzzifier; (2) 
Knowledge base containing fuzzy IF-THEN rules and membership 
functions; (3) Fuzzy reasoning, and (4) Defuzzifier interface. The 
basic configuration of the fuzzy system which is used in this study is 
shown in Figure 2. 

In this study, adaptive network based fuzzy inference system is 
used to predict the surface roughness using vibration in turning. 
Real data sets are obtained to create fuzzy logic model inputs and 
outputs. The number of inputs and outputs are determined from 
experiments of a turning workbench. Fuzzy logic model 
membership functions and rule bases are obtained based on actual  
Experimental data sets  results.  Figure  3,  depicts  the  fuzzy  logic 
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Figure 3.  The structure of adaptive network based fuzzy logic 
model. 

 
 
 
prediction modelling workbench for turning. 

In this configuration, the fuzzy logic model has five inputs (nose 
radius (mm), depth of cut (mm), feed rate (mm/rev), cutting speed 
(m/s), vibration (mV/g), and an output namely, surface roughness 
(µm). In this study, mean % error was used to compare 
experimental and prediction results. 

The comparison was based on 81 test cases. The formulation of 
mean % error (e) is described as Equation 5 (Yu and Tang, 2010; 
Magaji et al., 2010):  
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where alExperimentiX
 represent the experimental outputs, ModelingiX

  
also represent the outputs of fuzzy logic model, n is the number of 
test data, and m is the number of outputs of ANFIS model. Two of 
the difficulties with the design of any fuzzy logic model are the 
shape of the membership functions and the choice of the fuzzy 
rules. In fact, the decision-making logic is the way in which the 
model output is generated. It uses the input fuzzy sets and the 
decision is made according to the values of the inputs. Moreover, 
the knowledge base consists of knowledge of application domain 
and the attendant modeling goals. It includes a database and a 
fuzzy logic model rule base. The fuzzification uses membership 
functions to determine the degree of inputs.  

In this study, a sugeno-type inference is used to develop a fuzzy 
inference system. It provides efficient aggregation and 
defuzzification functions, which will be used to calculate the output 

(Singh et al., 2001). It applies a combination of least-square 
methods. Three  gauss  type  membership  functions  are   used   in 



 

 

 

 
 
 
 
fuzzification process for all inputs of the fuzzy logic model. Fuzzy 
logic rule base is made of 243 rules which are determined using the 
adaptive neural network based fuzzy inference system. ANFIS 
ensures an easy way to obtain optimum range of membership 
functions and rules which are based on experimental data. Neural 
networks are composed of simple elements operating in parallel. 
These elements are inspired by biological nervous systems. As in 
nature, the network function is determined largely by the 
connections between elements. We can train a neural network to 
perform a particular function by adjusting the values of the 
connections (weights) between elements. Commonly neural 
networks are adjusted, or trained, so that a particular input leads to 
a specific target output. 

The network is adjusted, based on a comparison of the output 
and the target, until the network output matches the target. 
Typically, a large number of input/target pairs are needed to train a 
neural network. Neural networks have been trained to perform 
complex functions in various fields, including pattern recognition, 
identification, classification, modeling, speech, vision, and control 
systems. 

ANFIS neural network architecture consists of five layers with 
output of nodes (Yu and Tang, 2010; Magaji et al., 2010), Oi,l, 
where i is the ith node of layer l. 
Layer 1: Generate the membership grades 
 

)(, xO
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                                                        (6) 
 
Or 
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                                                  (7) 
 
where x (or y) is the input to the node and Ai (or Bi-2) is the fuzzy set 
associated with this node. 
 
Layer 2: Generate the firing strengths by multiplying the incoming 
signals, and outputs the t-norm operator results, for example; 
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Layer 3: Normalize the firing strengths 
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Layer 4: Calculate rule outputs based on the consequent 

parameters { }iii rqp ,,  
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Layer 5: Compute the overall outputs as the summation of incoming 
signals 
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Based on the aforementioned, the ANFIS modeling was developed. 
More specifically,  
 
1. 300 training and 150 testing data was used for the ANFIS – 
based neural network. 
2. The number and type of membership functions were determined. 
3. Hybrid learning algorithm and 50 epochs was chosen to train 
network. 

 
In this study, forward hybrid learning algorithm is used for the 
neural network part of ANFIS modeling. Nearly 50 epochs later 
mean errorrateis close to 10-2.  In the forward pass of the hybrid 
learning algorithm, node outputs go until layer 4 and the 
consequent parameters are identified by the least-squares method. 

When the values of the promise parameters are fixed, the overall 
output can be expressed as a linear combination: 
 

212122111111

2211

2

21

2
1

21

1

.......... rwqywpxwrwqywpxw

fwfw

f
ww

w
f

ww

w
f

+++++=

+=

+
+

+
=

        (12)

  

 
 

The above relation is linear in terms of 22111 ,,,, qprqp  and  2r , 

 
XWf =                                                                                        (13)                      

 
If matrix X is invertible then,  
 

fXW 1−=                                                                                     (14) 
 
Otherwise a pseudo-inverse is used to solve for W. 
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Due to the adaptive capability of ANFIS, its application to adaptive 
and learning control is natural/straightforward. The most common 
design techniques for ANFIS modeling are derived directly from 
counterpart neural network methodologies. However, certain design 
techniques apply exclusively to ANFIS. Once the fuzzy controller is 
activated, rule evaluation is performed and all the rules are true and 
fired. Utilizing the true output membership functions, defuzzification 
is then applied to determine a crisp control action. The 
defuzzification is to transform the fuzzy output into an exact model 
output. For Sugeno-style inference, we have to choose between the 
wtaver (weighted average) or wtsum (weighted sum) defuzzification 
methods. In the defuzzification process of fuzzy logic modeling, the 
method of weighted average (wtaver) was used, which is expressed 
as follows: 

 

∑

∑

=

==
N

i

i

N

i

ii

w

zw

u

1

1

              

16 



 

 

 

5358          Int. J. Phys. Sci. 
 
 
 

 
 
Figure 4. Effects of feed rate and depth of cut on surface 
roughness. 

 
 

 

 
Figure 5. Effects of cutting speed and feed rate on surface 
roughness. 
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Figure 6. Effects of cutting speed and nose radius on 
surface roughness. 

 
 
 
RESULTS AND DISCUSSION 
 
Here, the results obtained from the experiments and 
ANFIS are shown and discussed. Figure 4 shows the 
effect of feed rate and depth of cut on the average 
roughness   when  the  effects  of  cutting  speed  and  no  
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Figure 7.  Time series plots of surface roughness and vibration. 
 
 
 
radius are not considered. The results suggest that the 
larger the feed rate, the larger the average roughness 
value obtained after turning. Among the studies of the 
three feed rates, the feed rate of 0.12 mm/rev achieves 
the biggest drop in the average surface roughness value. 

As shown in Figure 5, under the same feed rate and 
without considering the effects of the depth of cut and 
nose radius, the increase in cutting speed does not 
significantly reduce the average roughness. 

As shown in Figure 6, the average roughness 
decreases as the nose radius increases. At the nose 
radius of 12 mm and the cutting speed of 219 m/min, the 
average roughness obtained is the lowest at around 0.95 
micron (for f=0.2 mm/rev and a=2 mm). 

The above analysis indicates that among the four 
turning process parameters discussed in this study, that 
is, nose radius, cutting speed, feed rate and depth of cut, 
changes in the feed rate have the most impact on surface 
roughness. These results agree with earlier literature 
(Nalbant et al., 2007; Sahin and Motorcu, 2002; Asilturk 
and Unuvar, 2009; Kuttolamadom et al., 2010; Abhang 
and Hameedullah, 2010; Fnides et al., 2008; Kopac and 
Bahor, 1999). In general, it is found that surface 
roughness increases with an increase in the feed rate 
and depth of cut and a decrease in nose radius and 
cutting speed. Roughness was drastically reduced up to 
a particular critical value of surface speed, which is 
attributed to the reduction in size of the built up edge 
(Kuttolamadom et al., 2010). With the increase in feed 
rate, section of chip increases and consequently friction 
increases as reported by Abhang and Hameedullah 
(2010), and Fnides et al. (2008). Surface roughness was 
also found to decrease with increasing cutting speed. It is 
known that the type of chip produced during the machining 
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Figure 8. Comparison of the predicted and the experimental 
surface roughness.    
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Figure 9.  Scatter plot of the measured Ra and the predicted 
Ra of the ANFIS model for testing.   

 

 
 
operation has a significant  effect  on  the  surface finish 
(Kopac and Bahor, 1999).  

Figure 7 shows collected surface roughness and tool 
vibration data generated while turning the AISI 1040 mild 
carbon steel workpiece at different levels of cutting 
speed, feed rate, depth of cut, and nose radius. The 
correlation between surface roughness and vibration 
signals (az) revealed an efficient solution for on-line 
monitor of surface roughness in turning (Abouelatta and 
Ma, 2001). 

A total of 69 sets of data were selected from the total of 
81 sets obtained in the turning experiments for the 
purpose of training in ANFIS. The other 12 sets were 
then used for testing after the training was completed to 
verify the accuracy of the predicted values of surface 
roughness. 

During the testing and training validation period, the 
mean of percentage of error for the ANFIS model for pre-
dicted parameters found 2.48 and 1.52%, respectively. 
The   predicted   values   are   a    close    match    to   the  
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Table 2. Performance indices for training and testing of 
ANFIS. 
 

  e% R
2
 

ANFIS 
Training 1.52 0.9963 
Testing 2.48 0.9938 

 
 
 
experimental values, as shown in Figures 8 and 9. 

The error rates are considerably smaller than those of 
earlier studies for training and testing, as can be seen 
from the analysis of Figures 8 and 9. ANFIS model 
accurately proved capable of prediction of surface rough-
ness. The performance results of e and determination 
coefficient (R2) obtained using ANFIS are shown in Table 
2. 
 
 
Conclusions 
 
The present investigation has focused on surface 
roughness prediction and analysis during the turning of 
AISI 1040 steel using coated carbide inserts. An ANFIS 
predictive model based on vibration monitoring has been 
developed to predict surface roughness. The following 
conclusions can be drawn from this study: 

The minimum surface roughness in this process was 
obtained for 35 HRC AISI 1040 workpiece by turning at 
D=12mm, V=219 m/min, f=0.12 mm/rev, a=1 mm, and 
az=0.22601 mV/g with Ra=0.47 µm. 

The proposed ANFIS model produces results that 
parallel the experimental counterparts. The error of the 
surface roughness values predicted by ANFIS with the 
gauss type membership function is only 2.48%, reaching 
accuracy as high as 97.52%. 

Among the four turning parameters of nose radius, 
cutting speed, feed rate and depth of cut, changes to the 
feed rate have the most significant impact on workpiece 
surface roughness, followed by nose radius, cutting 
speed and the depth of cut.  

The most important difference between this 
experimental study and other research is the use of 
acceleration signals and four cutting parameters used in 
the model to present the effect of vibration values on 
surface roughness.  
 
 
FUTURE REMARKS 
 
According to our results, the fuzzy logic approach has a 
predictive ability, which makes fuzzy logic a powerful tool 
for solving complicated engineering problems. Monitoring  



 

 

 

5358          Int. J. Phys. Sci. 
 
 
 
turning is advantageous as it allows for optimizing 
process conditions, improving process control and 
producing high quality parts. In addition, these results 
may be further explored in other studies because they 
may give more information about the parallel of the 
vibration and surface roughness profile. Future research 
will focus on the feasibility of using ANFIS in a 
manufacturing facility to predict such characteristics as 
surface roughness, tool life, and wear, during the 
machining in terms of benefits, costs and real-time 
execution. 

In the next study, an adaptive control system and 
cutting parameters optimization based on vibration 
signals will develop and enable the integration of the 
CNC turning process for desired surface roughness. 
Dynamic model of systems will be established using 
signal processing and different controllers will be tested 
on the experimental setup. 
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