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Abstract

The aim of this paper is to present some new inequalities of Hermite-Hadamard type
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1 Introduction
Let f: [a,b] — R be a convex function, then the inequality

a+b ﬂ)+f(b)
f< 5 )_b a/f , a,beR, (1)

is known in the literature as the Hermite-Hadamard inequality (see [1, 2] for more infor-
mation).

Let X be a vector space, x,y € X, x # y and [x,y] = {(1 — t)x + ty, ¢ € [0,1]}. We consider
the function f : [x,5] — R and the associated function

gx,):[0,1] — R, glx,y)(2) ::f[(l —bx+ ty], t€[0,1].

Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1].
For any convex function defined on a segment [x,y] C X, we have the Hermite-
Hadamard integral inequality

f(x+y) /f 1 tx+ty]dt<f(x);f(y) 2)

which can be derived from the classical Hermite-Hadamard inequality (1) for the convex
function g(x,y) : [0,1] — R.

A real-valued continuous function f on an interval [ is said to be operator convex (op-
erator concave) if

F(M=21)A +1B) < (=) (1-1)f(A) + Af(B)
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in the operator order for all A € [0,1] and for every self-adjoint operator A and B on a
Hilbert space H whose spectra are contained in I. Notice that a function f is operator
concave if —f is operator convex.

In recent years, many authors have been interested in giving some refinements and ex-
tensions of the Hermite-Hadamard inequality in (1). For more about convex functions and
the Hermite-Hadamard inequality, see [3—6].

The author in [7] shows some new integral inequalities analogous to the well-known
Hermite-Hadamard inequality. We give a general form of the second of these inequalities
and show that the inequalities therein are satisfied for operator convex functions.

The author in [8] shows some new Hermite-Hadamard inequalities similar to Pach-
patte’s results.

Pachpatte (2003) gives some integral inequalities analogous to the well-known Hermite-
Hadamard inequality by using a fairly elementary analysis in [7].

Theorem 1 Let f and g be real-valued, nonnegative and convex functions on [a, b]. Then

(i)

b
= / SWetdx < L M(@b) + IN@b), 3)

b b b
Zf(”; )g(“; )5 hiﬂ,/a f(x)g(x)dx+éM(ﬂ,b)+%N(a,b), (4)

where M(a, b) = f(a)g(a) + f (b)g(b), N(a, b) = f (a)g(b) + f(b)g(a).
Tung (2012) gives an inequality for convex functions in [8] as follows.
Theorem 2 Letf,g: [a,b] — R be two convex functions. Then

1 b
b-ay / (b -%)(f(a)g(x) + gla)f (x)) dx
1

b
Y hoay /ﬂ (x—a)(f(b)gx) + g(b)f (x)) dx

M(a,b) N(a,b
< +
- 3 6

b
Lo g ©)
where M(a, b) = f(a)g(a) + f(b)g(b), N(a, b) = f(a)g(D) + f(b)g(a).
Tung (2012) gives another inequality for convex functions in [8], too.

Theorem 3 Letf,g: [a,b] — R be two convex functions. Then

1 b a+b a+b
e U557 Jeore(57 )

1 b 1 1 . ,
<55 |, s e s vwn o (50)e(57) @

where M(a, b) = f(a)g(a) + f(b)g(b), N(a, ) = f(a)g(b) + f (b)g(a).
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Ghazanfari (2012) gives an inequality for two operator convex functions in [9] as follows.

Theorem 4 Let f,g:1 —> R be operator convex functions on the interval 1. Then for any
self-adjoint operators A and B on a Hilbert space H with spectra in I, the inequality

()57

1
= % / (f (tA + (1= ) Bx,0))(g(tA + (1 - 1)) Bx, x)) dt
0

+ éM(A,B)(x) + éN(A,B)(x) 7)

holds for any x € H with ||x|| = 1, where

M(A, B)(x) = (f(A)x, x)(g(A)x, x) + (f (B)x, x)(g(B)x, x),
N(A,B)(x) = (f(A)x, x)(g(B)x, x) + {f (B)x, x){g(A)x, x).

For further inequalities, see [10-12].

2 Main results
In this section, we give some new Hermite-Hadamard type inequalities for operator con-
vex functions and mention the differences related to the results in recent papers. We em-
phasize the difference by giving an example.

The following theorem is a generalization for the product of two operator convex func-
tions.

Theorem 5 Let f,g:1 —> R be operator convex, nonnegative functions on the interval I.
Then for any self-adjoint operators A and B with spectra in I, we have the inequality

P57
< % /0 1(f(tA +(1-£)B)x,x))(g(tA + (1 - £)B)x, x)) dt

k-1

Z [(f (Z1)x, x)(g( T1)x, x) + (f (Zy)x, x)(g(Tg)x, x)
i=0

+{f (T, x)(g(Z1)x, x) + (f (T2)x, x)(g(Z2)%, %)

k-1

+ %{ Z[{f (Z0)%, %)\g(Z)x, x) + {f (T2 )%, x)(g(T1 ), x)

i=0

" 24k

+{f (T, %)\ g(Ta)x, x) + {f (Zo)x, x)(g(Z1)%, %) (8)

where
(k—i);&+iB 7 (i+1)A+(ll:—(i+1))B 7 o)
iA + (11:— 9B _, (k=i 1))];4 +(+ DB _ (10)

and k is the number of steps.
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Proof Let x € H, ||x|| =1 and A, B be two self-adjoint operators with spectra in I. Using

the convexity of f, g and the change of variable u = kt, we have

(F((1 = DA + tB)x, x) = <f<<1 - %)A ¥ %B)x,x>

= <f<(1 —u)A + u%)x,%

<(1- u)(f(A)x, x> + u<j((k_l#>x, x> (11)

and

{ftA+ (1 -t)B)x,x <f Z (1——>B>x,x>

(
<f<uA+(k D3 (1—u)B)x,x>

< u<f<w>x, x> +(1- u)(f(B)x, x) (12)

k

By the change of variable u = kt — 1, we have

(F((1- DA + tB)x,x) = <f<<1 - M/: 1)A " ”; lB>x,x>

_ <f((1—u)(k_1)A+B +u(k_2)A+2B>x,x>

k k

<@1- u)<f<%)x,x> + u<f((k_2)¥>x,x>

and

F(tA + (1 - O)B)x,x) = <f<”; LAy (1 - ”Z 1)B>x,x>

, <f(uw . (l_u)w)x,x>
k k

< u(/(izA * (//i — 2)B>x, x> +(1- u)(/(Ai+ (l;(_ 1)B>x, x>

Similarly, by using the change of variables u = kt —2,u = kt - 3,...,u = kt — (k — 2), we have

some inequalities. By the change of variable u = kt — (k — 1), we get
k-1 k-1
(f((l—t)A+tB)x,x)=<f<<1—u+k >A+ u+k B)x,x>

= <f<(1 - u)A7+ (I;(_ LB + uB)x, x>

<(1- u)<f<1#(_l)3>x, x> + u(f(B)x, x)

Page 4 of 12


http://www.journalofinequalitiesandapplications.com/content/2013/1/190

Bacak and Turkmen Journal of Inequalities and Applications 2013, 2013:190
http://www.journalofinequalitiesandapplications.com/content/2013/1/190

and

{f(tA+ (l—t)B)x,x) = <f<u+/]:_1A+ <1— u+lk<_1>B>x,x>
= <f(uA+(1—u)Wx,x)>
< u(f(A)x,x) +(1- u)Q(W)x,x)

Using the convexity of f, g, we have

<f<A+B) > < (tA+(1—t)B (1—t)A+tB> >
xx)={f + X%
2 2 2

- (fEA + Q- )B)x,x) + (f(1 — £)A + tB)x, x)
- 2

and

< (A+B> > < (tA+(1—t)B (1—t)A+tB> >
g xX)=(g + X, X
2 2 2

- (g(tA + A - t)B)x,x) + (g((1 — £)A + tB)x, x)
— 2 .

(14)

Firstly, if we write the values obtained from the change of variable « = k¢ in (13) and (14),
we get

A+B (fEA + (1 - )B)x,x) + (f(1 - £)A + tB)x, x)
(5o e omes

(f @G22 4 (1 w)B)x, x) + (F(1— A + u 1A E ) x)

= 5 (15)
and
A+B
(«(%57)=
- (g(tA + 1= t)B)x,x) + (g((1 — H)A + tB)x, x)
- 2
) (g(uA+ *=DB | (1 - u)B)x,x) + (g(Q-uA + u%)x,x) 16)

2

If we multiply (15) and (16) and suppose (1 —u)A + ykDAE DAJrB =X; and uA+ k=B |, (1 —y)B =
Y1, we get

()57

= 5 (FQ0x) + [ (1)) (g0, 1) + {g (Y1), %)

»;>|H

= — [{[f (X1, x){g (X)) + (f (X)), ) (g (Y1), %)

»-PIP—‘
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+{f (Y1), x)(g(X)x, ) + (£ (Y1), x){g (Y1), )]
< i[(f(Xl)x, g0t 2) + [ (V) 2V 2]]

- M/(L (’;(‘ D3 >x x> (- w)lf(B)x, x)]
x [(1 —u)(g(A)x, x) + u<g(%)x, x>:|
+ i |:(1 —u)(f(A)x,x) + u</<7(k — 1/)<A * B)x, ﬂ

x
x |:u<g<lw>x, x> +(1 - u)(g(B)x, x)]
_ i[(f()(l)x, A0, 2) + [F (XD g (Vo))
+ i [u(l - u)@(lw)x, x>(g(A)x, x)
2<f<A+(k_1)B> >< (k-1)A+B >
wif| = Js* g(—k )x,x

+ (1 - u)*{f (B)x, x)(g(A)x, x)
+(1- u)u(f(B)x, x)<g(W)x, x>j|

+l|:(1—u)u<f(A)xr <(A+(k : > >

+(1- u)z(f(A)x x)(g(B)x, )

y <f<(k 1)A+B> 9;< (A+ (k- l)B) ,x>
ull- W(W)x x>(g(B)x, x>:|.

If we integrate both sides of inequality (17) over [0, 1], we reach

()57

=< g [/(;I/k(f(tA +(1- t)B)x, x)(g(tA +(1- t)B)x, x) dt]

Lk |:/01/k<f((1 —1)A + tB)x,x)(g((1 - t)A + tB)x,x) dt]

e A R

A+B) >:|

1T A+ (k-1)B k—1)A+B
+ B _Q(%)x,xXg(%)x > B)x, g(A)x,
i A+(k-1)B k-1)A+B
+ 2—4_<f(A)x,x><g(7+(k ) )x,x>+<f(( l)< *
+ % _(f(A)x,xXg(B)x,x) + <f<W)x,x><g(A + k-1 > > .

|
]
|

17)
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If we continue the same operations as above until the change of variable u = kt — (k — 1),
we have some inequalities. And then, if we sum these obtained inequalities, we get the
desired inequality. O

Remark 6 In inequality (8), if we take k = 1, we get the inequality in (7).

Now, we show the comparison between Theorems 4 and 5 utilizing self-adjoint opera-
tors (Hermitian matrices) as follows.

Example7 LetA = [(1) g], B= [ _?'4 ;] Let our operator convex functions be f(X) = X2 and

g(X) = X. Since x € H and ||x|| = 1, then we can choose x as x = [é] From the information
given above, for k = 3, Theorem 5 gives

(A5 E(57))
= (A + (1= OB )g(eA + (1 — 0B} de
" 2i4 [(x*f(A)x) (x*g(A +B )x) + (¢ (B)x) (x*g(A ; B )x)
R @f(*%)x) (" F(A)x) + (x*f(A e x) (x*g(B)x)]
lermcam (52 )

+ (x*f (B)x) (x*g(A)x)] .

Putting the values of the functions in the above inequality, we get
0,102 < % /O 1(f(tA + (1 - £)B)x,x)(g(tA + (1 - t)B)x,x)dt + 0.1158
= /0 1(f(tA + (1-1)B)x, x)(g(tA + (1 - £)B)x,x)dt > —0.0276.
Theorem 4 gives

(x*f(A o2 )x) <x*g(A i )x) = (e + (1= OBy )g(eA + (L — 0B} ) de

+ %[(x*f (A)x) (x*g(A)x) + (x*f (B)x) (x*g(B)x) ]

+ %[(x*f (A)x) (x"g(B)x) + (xf (B)x) (x"g(A)x)].

Putting the values of the functions in the above inequality, we obtain

1
0,102 < % / (f(tA + 1 - t)B)x,x)(g(tA + (1 - t)B)x,x)dt + 0.1713
0

1
= / (f(tA + 1 - t)B)x,x)(g(tA + (1 - t)B)x,x)dt > —0.1386.
0

Page 7 of 12
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So, we can conclude that our result, Theorem 5, is more strict than Theorem 4 in this case.

The following theorem is a lower bound for the product of two operator convex func-
tions.

Theorem 8 Let f,g:1 —> R be operator convex, nonnegative functions on the interval I.
Then for any self-adjoint operators A and B with spectra in I, we have the inequality

(g(A)x, x) /1(1 - 0){f (1L - t)A + tB)x, x) dt
0

1
+(g(B)x, x)/ Hf (1 - 1A + tB)x,x)dt

0

+ (f(A)x,x)/l(l - t)(g((l — A+ tB)x,x) dt
0
1
+{f(B)x, x)/ tg(A - 1A + tB)x,x)dt
0

1
< / (f((l — DA+ tB)x, x)(g((l - DA+ tB)x, x) dt
0
1 1
+ ZM(A,B) + -N(4,B), (18)
where

M(A,B) = {f (A)x, x)(g(A)x, x) + (f (B)x, x)(g(B)x, x),

N(A,B) = {f(A)x, x)(g(B)x, x) + (f(B)x, x)(g(A)x,x).
Proof Let x € H, ||x|| =1 and A, B be two self-adjoint operators with spectra in I. Define
the real-valued functions @, 5 : [0,1] — R given by ¢, 4 5(2) = (f((1 — £)A + tB)x,x) and

Yuap : [0,1] — R given by ¥, 4 5(t) = (g((1 — £)A + tB)x,x). Since f and g are operator
convex functions, then for every ¢ € [0,1], we have

(f((l —bHA + tB)x, x) <(1- t)(f(A)x, x) + t(f(B)x, x), (19)
(g(0-1)A + B)x,x) < (1 - t){g(A)x, x) + t{g(B)x, x). (20)

Ifa<bandc <dfora,b,c,decR, wehave ad + bc < ac + bd. Using this inequality analo-
gous to (19) and (20), we get

(F((1 = )A + tB), x)((1 - D)g(A)x, 1) + £(g(B)x, x))
+{g(A - 1A + tB)x,x)((1 - O){f (A)x, x) + t{f (B)x, x))
<{f(@ - 1A + tB)x,x)(g((1 - t)A + tB)x, )
+ (@ - O{f (A, x) + L{f B)x, x)) (1 - ){g(A), x) + t{g(B)x, x)). (21)

Since @, 4,5(t) and ¥, 4 5(¢) are operator convex on [0,1], they are integrable on [0,1] and
consequently ¢, 4, 5(£) ¥ 4 5(¢) is also integrable on [0, 1]. Integrating both sides of inequal-
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ity (21) over [0, 1], we get

1 1
(g(A)x, x)/ A -0){f (A - DA + tB)x,x)dt + g(B)x, x)/ Hf (A - 1)A + tB)x,x)dt
0

0

+ (f(A)x,x)/l(l - t)(g((l — A+ tB)x,x) dt
0
1
+{f(B)x, x)/ tg(A - 1A + tB)x,x)dt
0
<[ (0= 04 + By n)g((L— DA + 1Bl de
0
1
+ (f(A)x, x)(g(A)x, x)/ (1-8)2dt
0
1
+ [(f (A)x, x)(g(B)x, x) + (f (B)x, x)(g(A)x, x)] /0 t(l-t)dt
1
+ (f (B)x,x)(g(B)x,x) / £ dt. (22)
0

It can be easily controlled that

1 1 1 1 1
/(1—t)2dt=/ £2dt=—, /t(l—t)dt:—.
0 0 3 0 6

When the above equalities are taken into account, the proof is complete. d

Remark 9 In inequality (18), if we take x = (1 — £)A + ¢B, a = 0 and b = 1, we get the in-

equality in (5). Our result is more general than (5).

In Theorem 8, we give a lower bound. But now we give both lower and upper bounds

for the product of two operator convex functions.

Theorem 10 Letf,g:I —> R be operator convex, nonnegative functions on the interval I.

Then for any self-adjoint operators A and B with spectra in I, we have the inequality

k-1

1
[ (Z1)x,x / 1 (kt — z))(f((l — DA + tB)x,x) dt

i=0

+(g(To)x, x)/ (kt = i){f (1 - DA + tB)x,x) dt
0
1
+{f(Z1)x, x)/ (1- (ke —)(g(Q - 1A + tB)x,x)dt
0
1
+{f(T2)x, x)/ (kt - i){g((1 - t)A + tB)«, x) dt]
0
1
< / (f(A-1A + tB)x,x)(g((1 - t)A + tB)x,x) dt

ikW(A)x, Ng(A)x,2) + (f (B)x, x)[g(B)x, x)]
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+ — Y [{f (22, x)g(To)x, x) + {f (To)ax, x)g(Z1), x)], (23)

i=0
where Zy and T, are defined in (9) and (10) and k is the number of steps.

Proof Let x € H, ||x|| =1 and A, B be two self-adjoint operators with spectra in I. Using
the convexity of f, ¢ and the change of variable u = kt, we have (11) and (12). Using the
analogous condition that, if a < b and ¢ < d for a,b,c,d € R, we have ad + bc < ac + bd,
we obtain

a- u)<f<(1 —uA + MW)% x>(g(A)x, x)

+ u<f((1 —u)A + uW)meg(W)x,%

+(1—u)<g((1—u)A (k- 1)A+B> >

+u<g<(1_u) o k=DA+B 1)A+B) x><f<(/< 1A+B>x’x>
§<f<(1—u)A+ (k - 1A+B> ><g((1 oA+ 1/)(A+B)x’x>

+(1- u)z(f(A)x, x)(g(A)x, x)
u2<f<(k_l)A +B)x x>< ((k— 1)A +B)x x>
k *NE k ’
u(l—u) |:(f(A)x,x)<g<W)x,x>
+ <f(W)x, x>(g(A)x, x)i| (24)

If we continue the same operations as above until the change of variable u = kt — (k — 1),
we have some inequalities. And then, if we integrate the multiplication inequalities, we
get k inequalities. These inequalities are defined on [0, %) B k) (k 1], respectively.

The sum of the integration parts of these k inequalities yields fo (f(A-t)A+tB)x,x)(g((1-
t)A + tB)x, x) dt. Thus, the proof is complete. |

Remark 11 Inequality (23) is a general form of inequality (18). When & =1 in inequality
(23), we get inequality (18).

Theorem 12 Let f,g:1 —> R be operator convex, nonnegative functions on the interval I.
Then for any self-adjoint operators A and B with spectra in I, we have the inequality

<f(A+B>x, >/ g(tA + (1 - O)B)x,x)dt
+<g(A+B>x, >/ (f(tA + (1 - £)B)x,x)dt
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(55757

* % /l(f(tA + (1 - t)B)x, x)(g(tA + (1 - £)B)x, x) dt
0

k-1

+ Ek [(f(Zl)x, x)(g( Tl)x, x> + (f(Zz)x, x>(g( Tz)x’ x)
i=0

+{f (T, x)(g(Z1)x, %) + {f (T2)x, x)(g(Z2), %)
k-1

+ %{ Z[(f(Zﬂx, x)g(Za)x, x) + (f(Ta)x, x)(g(T1)x, %)

i=0

+{f(T0)x, x)(g(Ta)x, %) + (f (Z2)x, x)(g(Z1)x, %)), (25)
where Zy, Z,, Ty and T, are defined in (9) and (10) and k is the number of steps.
Proof The proof is obvious from the proofs of Theorem 3 and Theorem 5. d

Remark 13 In Theorem 12, if we take k = 1, we get (6). Theorem 12 is a generalization of
Theorem 3. If we take k as the largest number we can take in Theorem 12, we near the

exact solution.
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