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THE ANALYTIC SVD:
ON THE NON-GENERIC POINTS ON THE PATH *

DASA JANOVSKAT AND VLADIMIR JANOVSK Y

Abstract. A new technique for computing the Analytic SVD is proposetie Tdea is to follow a branch of just
one simple singular value and the corresponding left/rgingular vector. Numerical computation may collapse at
non-generic points; we will consider the case when the noation gets stuck due to a nonzero multiple singular
value. We interpret such a point as a singularity of the bdrakée employ singularity theory in order to describe and
classify this point. Since its codimension is one, we meehsupoint “rarely.”
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1. Introduction. A singular value decomposition (SVD) of a real matdxe R™*",
m > n, is a factorizationd = UXV”, whereU € R™*™ andV € R"*" are orthogonal
matrices and = diag(sy, ..., s,) € R™*". The values;,i = 1,...,n, are called singular
values. They may be defined to be nonnegative and to be agd@&mgenincreasing order.

Let A depend smoothly on a parametef R, ¢ € [a,b]. The aim is to construct a path
of SVDs

(1.1) Alt) =U®SHV®),

whereU (t), X(t) andV (t) depend smoothly on € [a,b]. If A is a real analytic matrix
function on|a, b], then there exists afinalytic Singular Value Decompositi¢gASVD) [1], a
factorization (.1) thatinterpolateshe classical SVD defined at= q, i.e.
e the factordJ(¢), V(¢) andX(t) are real analytic ofu, b],
e for eacht € [a, b], bothU (t) € R™*™ andV (t) € R™*" are orthogonal matrices,
andX(t) = diag(s1(t),...,sn(t)) € R™*™ is a diagonal matrix,
e att = a, the matriced/(a), X(a) andV (a) are the factors of the classical SVD of
the matrixA(a).
The diagonal entries;(¢) € R of ¥(¢) are calledsingular values Due to the requirement
of smoothness, singular values may be negative, and tragriaog may by arbitrary. Under
certain assumptions, the ASVD may be uniquely determinethbyfactors at = a. For
theoretical background, seé]|[ As far as the computation is concerned, an incremental
technique is proposed ii]. Given a point on the path, one computes a classical SVD for
a neighboring parameter value. Next, one computes perimutatatrices which link the
classical SVD to the next point on the path. The procedurppsaximative with a local error
of orderO(h?), whereh is the step size.

An alternative technique for computing the ASVD is presdiig13]. A non-autonomous
vector fieldH : R x RV — RY of large dimensiorlV = n 4+ n? + m? can be constructed in
such a way that the solution of the initial value problem far systemx’ = H (¢, z) is linked
to the path of the ASVD. Moreover] B contributes to the analysis @fon-generic points
of the ASVD path; seel]. These points could be, in fact, interpreted as singudsrivf the
vector fieldR” . In [12], both approaches are compared.
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A continuation algorithm for computing the ASVD is presehite[7]. It follows a path of
a fewselectedsingular values and left/right singular vectors. It is ayprate for large sparse
matrices. The continuation algorithm is of predictor-eator type. The relevant predictor is
based on the Euler method, hence on an ODE solver. In thiscggpere is a link to1J].
Nevertheless, the Newton-type corrector guarantees théwowith prescribed precision.

The continuation may get stuck at points where a nonsimplguar values, (t) appears
for a particular parameterand index. In [1, 13], such points are called non-generic points
of the path. They are related to branching of the singulamesglaths. The code V]
incorporates extrapolation strategies in order to “jumerbguch points.

In this paper, we investigate non-generic points. In Secjove give an example that
motivated our research. Then we introduce a path-follomeghod for continuation of a
simple singular value and the corresponding left/righgslar vector. In Sectiod, we define
and analyze a singularity on the path. Next, we perturb thiguarity; see Sectiob. We
summarize our conclusions in SectiénFinally, in AppendixA, we provide details of the
expansions used in our asymptotic analysis.

2. Motivation. Let

Alt) = Fat 1?%];

see [L, Example 2]. The relevant ASVD4(t) = U(t)S(t)V (t)T, —0.5 < t < 0.5, can be
computed explicitly:

U(t)—V(t)—[_é (1)] St =1—t, sat)=1+1.

Obviously,s; (0) = s2(0) = 1 is a nonsimple (multiple) singular value df0).
We will ask the following question: does the ASVD-path pstréor an arbitrary suffi-
ciently small perturbation? Let

2.1) A(t):[lat 134%{_% _”

Consider the relevant ASVD. This time, we compute it nunaljausing the techniques de-
scribed in [/]. We show the results for the unperturbed and perturbedeeatn Figure®.1
and2.2, respectively. Notice that the branches in Figlieand in Figure?.2are qualitatively
different. We observe sensitive dependence on the initial conditiofighe branches.

3. Continuation of a simple singular value.

3.1. Preliminaries. Let us recall the notion of a singular value of a matfixc R™*",
m > n.

DEFINITION 3.1. Lets € R. We say that is a singular value of the matrid if there
existu € R™ andv € R™ such that

(3.1) Av—su=0, ATu—sv=0, [ull=]v|=1.

The vectors andu are called the right and the left singular vectors of the matt. Note
that s is defined up to its sign: if the tripldts, u, v) satisfies 8.1) then at least three more
triplets

(s,—u,—v), (—=s,—u,v), (—s,u,—v),
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1.l

FIGURE 2.1. Perturbatione = 0. Left: Branches of singular values; (¢t) and s2(t) in red and blue as
functions oft. Right: The relevant right singular vectors in red and blue.
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FIGURE 2.2. Perturbatione = 0.1. Left: Branches of singular values; (¢) and s2(¢) in red and blue as
functions oft. Right: The relevant right singular vectors in red and blue.

can be interpreted as singular values and left and rightiingectors ofA.
DEFINITION 3.2. Lets € R. We say that is a simple singular value of a matriA if
there existu € R™, u # 0, andv € R"™, v # 0, where

(s,u,v), (s,—u,—v), (—=s,—u,v), (—s,u,—v)

are the only solutions t¢3.1). A singular values which is not simple is called a nonsimple
(multiple) singular value.

REMARK 3.3. Lets # 0. Thens is a simple singular value of if and only if 52 is a
simple eigenvalue ofi” A. In particularp € R™ andu € R™ such that

1
ATAv = 5%, v =1, u=-Av
s

are the relevant right and left singular vectorsdof

REMARK 3.4. s = 0 is a simple singular value ofl if and only if m = n and
dimKer A = 1.

REMARK 3.5. Lets;, s; be simple singular values of with i # j. Thens; # s; and
S; 7§ —Sj.

Let us recall the idea of7]. The branches o$electedsingular valuess;(t) and the
corresponding left/right singular vectai’s(¢) € R™, V;(t) € R™ are considered, i.e.,

(3.2) AWVi(t) = s:i()Us(t),  A@)TUi(t) = si(t)Vi(2),

(3.3) Uit)TUi(t) = Vi) Vi(t) = 1,

for t € [a,b]. The natural orthogonality conditio (t)7U; (t) = Vi()TV;(t) = 0,4 # j,
t € [a,b], are added. Far < n, the selected singular valug$t) = (s1(t),...,sp(t)) € R?

and the corresponding left/right singular vectdt&) = [Ui(t),...,Uy(t)] € R™*P and
V(t) =[Vi(t),...,V,(t)] € R"*P are followed fort € [a, b].
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3.2. The path of simple singular values.In this section, we consider the idea of path-
following for onesingular value and the corresponding left/right singuktars. We expect
the path to be locally a branch ef(t), U;(t) € R™, V;(t) € R", satisfying conditions3.2
and @.3 for ¢ € [a, b].

We consider theth branch,l < i < n, namely, the branch which is initialized By(a),
U;(a) € R™, V;(a) € R™, computed by the classical SVB][ Note that the SVD algorithm
orders all singular values in descending orglg) > -+ > s;(a) > -+ > s,(a) > 0. We
assume that; (a) is simple see Remark8.3and3.4

DEFINITION 3.6. For a givent € [a,b] ands € R, let us set

—slpy, A(t)} 7

(3.4) M(t,s) = [AT(t) sl

wherel,, € R™*™ andI,, € R™"*™ are identities.
REMARK 3.7. Lets # 0, t € [a, b].
1. sis asingular value ofi(¢) if and only if dim Ker M(¢, s) > 1.
2. sis asimple singular value of(¢) if and only if dim Ker M(¢, s) = 1.
REMARK 3.8. Lets # 0, ¢ € [a, b].

1. 1f M(t,s) {Z] = 0 thenuTu = vTv.

2. Ifin additionM(t, s) m = 0 thenuTd = v74.

Note that ifs;(¢) # 0 then due to Remark.8 one of the scaling condition8() is
redundant This motivates the following definition.
DEFINITION 3.9. Consider the mapping

f . R % Rl+m+n N ]Rl-l-rn-ﬁ-n7

t€R7 IZ(S’””U)GRlXRmXRn'_)f(t,ZC)ER1+m+n,

where

—su+ A(t)v
(3.5 ft,z) = | AT (H)u — sv

vy —1

As an alternative to3.5 we will also use

—su+ A(t)v
(3.6) fit,z)= | AT(t)u — sv

uwlu+0vTv—2

The equation
3.7) ft,x) =0, x=(s,u,v),

may locally define a branch(t) = (s(t), u(t),v(t)) € R+ of singular values(t) and
left/right singular vectors,(t) andwv(t). The branch is initialized af, which plays the role
of t = a. Itis assumed that there exist$ € R!*™" such thatf(t°, 2°) = 0. The initial
conditionz? = (s, u% v%) € RIT™*" plays the role of already computed SVD factors
si(a) € RY, U;(a) € R™ andV;(a) € R™.

We solve B8.7) on an open interval’ of parameters such that® ¢ 7.

THEOREM 3.10. Consider(3.5). Let(t%,2%) € J x R ™m+n 20 = (5049 v9), be
a root of (¢, 2°) = 0. Assume that® # 0 is a simple singular value ofi(¢"). Then
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there exists an open subinterval C J containingt’ and a unique function € Z ——
x(t) € RY™* such thatf(¢,x(t)) = 0 for all t € Z and thatz(t°) = z". Moreover,
if A € CKHZ,R™*™), k > 1, thenz € CFZ, R+ If A € C¥(Z,R™*") then
x € C¥(Z,RItmtn),

Proof. We will show that the assumptions imply that the partidiadiéntial f,, at the point
(t°,2%) is aregular(l + m + n) x (1 4+ m + n) matrix. Letéz = (ds, du, dv) € RITm+7

—u® —=s,,  A@°) ] [6s
(3.8) fo(@0,2%) 62 = | =00 AT -5, | |[6u| =0¢€ RV
0 or 27| | v

This is equivalent to the system

ou ud
(3.9 M(t°, 5% {61}} =Js [UO:| , ()T v =0.
Projecting the first equation ofu®,+%), and using the symmetry of the matcix((¢°, s°),
yields

(3.10) [zg]TM(tO,so) [gﬂ = BZ]TM(tO,SO) [zq = 8s(||u®]|” + [|o°||)-

0
By definition 3.5), M (°, %) [ZO] =0 € R™*" Thereforegs = 0.

0
gu =c {uo}. The second
v v

condition in 8.9 implies thatc = 0. Hencedz = (ds, du, dv) = 0, which proves the claim.

Assuming thatd € C*(Z,R™*"), k > 1, the statement is a consequence of the Implicit
Function Theorem; see, e.5][In case thatl € C*(Z,R™*™), i.e., whend is real analytic,
the result again follows from the Implicit Function Theoresae [L(]. O

REMARK 3.11. The above statement also holds for the alternatiiingo@.6). The
argument is similar.

The practical advantage 08.(/) is that we can use standard packages for continuation
of an implicitly defined curve. In particular, we use the MAAR toolbox MATCONT [3].
Path-following of the solution set 08(7) via MATCONT is very robust. However, one has
to be careful when interpreting the results. In particulag, lower bound for the step size,
MinStepsize, should be chosen sufficiently small. We will comment on tdhbiservation in
Section6.

In order to illustrate the performance, we consider the sprablem as in ], namely,
the homotopy

(3.11) Aty =tA2+ (1 -t)Al, t€][0,1],

Due to Remarlk3.7 (2), there exists a constansuch that

where the matriceal = well1033.mtx, A2 = 111c1033.mtx are taken from the Ma-
trix Market [11]. Note thatA1, A2 € R1933x320 gre sparse and1, A2 are well- and ill-
conditioned, respectively. The aim is to continue the tealkst singular values and cor-
responding left/right singular vectors df(¢). The continuation is initialized at= 0. The
initial decomposition ofA1 is computed viasvds; see the MATLAB Function Reference.

The results of continuation are displayed in Fig@r& We run MATCONT ten times,
once for each singular value. The branches do not cross. din@utation complies with
Theorem3.1Q Each curve is computed as a sequence of isolated pointethbykcircles;
see the zoom on the right. The adaptive stepsize controbesefire stepsize individually for
each branch.
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FIGURE 3.1. Branches of singular valuessao (t), . . ., s310(t) as functions of. On the right: The relevant
zooms.

4. Singular point on the path. Let f(t°,2°) = 0, 2° = (s°,u% %), s # 0. Let
us discuss the case when the assumptions of The8r&fhdo not hold; namely, assume
that s # 0 is a nonsimple (multiple) singular value of(t"). Then we conclude that
dim Ker M(t, s) > 2; see Remari.7.

In particular, we will assume thalim Ker M (¢°, s%) = 2. Then, there exisiu € R™,
||0ul| = 1, anddv € R™, ||év|| = 1, such that

ou

M(t°, s°) [51}} =0, (W)Tsv=0.
Note that this impliegu®)” 6u = 0. ComputingKer f, (¢, 2°), see 8.8—(3.10, we con-

clude thatdim Ker f,.(t°, s°) = 1 and

0
(4.1) Ker f,.(t°,2°) = span ¢ |du
o

4.1. Dimensional reduction. Our aim is to analyze the singular ro@?, 2°) of the pa-
rameter dependent equatidh®). A standard technique lsyapunov-Schmidt reductidi].
We apply a version based on bordered matrisgsWe assume thatim Ker f,. (¢, 2°) = 1,
i.e., the corank of the matrig, (t°, 2°) is one. Using the proper terminology, we deal with a
corank = 1 singularity.

The algorithm of the reduction is as follows. Let us fix vest®;, C' ¢ R*™+", Find
£eR, T €R, Ar € R+ andyp € R such that

(4.2) f(t°+7,2° + Az) + ¢B =0,

(4.3) CT Az =¢.

We define an operator related to the above equation:
F:R xR xR xR — R R

(@.4) Firebng) = [[OTTE FADH R,

Let us assume that

0 0
(4.5) det {fw(g;ﬁ” ) ﬂ £0.
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It can be shown, sed], that this assumption is satisfied for a generic choicbarfiering
vectorsB andC'. Nevertheless, later on we speciyandC'.

Obviously, (&, 7, Az, @) = (0,0,0,0) € R x R x R*™+n »x R is a root of F, i.e.,
F(0,0,0,0) = 0. The partial differential ofF with respect to the variablesz, ¢, namely,
the matrixFa ,(0,0,0,0) € RE+m+n)x(2+m+n) g regular at the origirf0, 0,0,0) by
the assumption4(5). Due to the Implicit Function Theoren®], the solution manifold of
F (&, 1, Az, p) = 0 can be locally parameterized byand¢; that is, there exist functions

(4.6) o =p(1,8) €R, Az = Ax(r,§) € RIFT™,

such thatF (7, &, Ax(T, ), o(7,€)) = 0 for all 7 and¢ being small. From4.2) and the fact
that B # 0 due to ¢.5), we conclude that

4.7) FA0+7,2% + Ax(r,£)) =0
if and only if
(4.8) o(1,€) =0.

The scalar equation}(8) is called thebifurcation equation There is a one-to-one link be-
tween the solutior{r,£) € R? of the bifurcation equation4(8) and the solutior(t,z) €
R x R'*™*" of the equation3.?):

(4.9) t=t"+7, x=2"+Ax(r,8).

The statement has an obvious local meaning: it describesa of 3.7) in a neighborhood
of (t°, 29).
As arule, the solutions of the bifurcation equation can lr@ximated only numerically.

The usual technique is

1. approximate the mappirg, {) — »(7, ) via its Taylor expansion at the origin,

2. solve aruncated bifurcation equatign.e., the equation with truncated higher order

terms.

The Taylor expansion reads

1 1
(4.10) P18 =@+ or T+ e+ 5o T2 + per €T + 5 Pee £ +hot.,

where the partial derivatives of = (7, £) are understood to be evaluated at the origin, e.g.,
v = ¢(0,0) or per = @¢-(0,0). Note thatp(0,0) = 0. The symboh.o.t. denotes higher
order terms.

We also need to expand

(4.11) Ax(T,€) = Av+Ax, T+Axe §+%Ax” T+ Awe, §T+%A.’L‘55 & +h.o.t..
The partial derivatives oAz = Axz(r, ) are understood to be evaluated at the origin. This
expansion is needed to approximate the lihlo between 4.8) and (3.7).

Computing the coefficients of both expansiofsl() and @.17) is a routine procedure;
see p, Section 6.2]. For example, the coefficielis,, ¢, satisfy a linear system with the

matrix from @.5),
e -1
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The coefficients\z¢¢, ¢¢ are defined via a linear system with the same matrix,

f-(t°,2%) B Azee| —fmm(to,xO)Ang:rg
Ct 0f [ wee | 0 ’

etc.
We considered the particular functigrdefined in 8.6). In our computation, we specified

B andC as
0
oul .
ov

Note that condition4.5) is satisfied. Moreover, the computations are simplified. A3
pendixA, we list Taylor coefficients 0f4.10 and @.11) up to the second order. The coef-
ficients are computed by using the specific data of the prabt€m:?, 6u°, 5v°, A(t) and
higher derivatives ofi(¢) att°.

, O=

ou
(4.12) B = |dv
0

4.2. Bifurcation analysis. Let us analyze the bifurcation equatich&) in a neighbor-
hood of the origin. Let us start with a heuristic. Due £01), the bifurcation equation can be
factored as

1
(4.13) p(r&) =70(1,6) =0, n(r.€) = ¢r + 50rr T +per E+hoit,
where h.o.t. are of second order. The solutiéng) of (4.13 are linked to the solutions
(t,x) of (3.7) via the transformatior4(9), where the increment&z(r, £) are expanded as

1
(4.14) As(1,&) =As, 7+ §A3TT 7% 4+ Asg, €7+ hooot.

(4.15) Au(r,&) = Au, 7+ %51;5 — éuo £+ %Auﬂ. 7% + Aug, €7 +hoot.,

(4.16) Av(r,&) = Av, 7+ %51}{ — évo £+ %Avﬂ. 2 + Avg, €7+ hooot..

Note that we exploitedX.12), (A.6), and A.9). The h.o.t. are of third order.

Obviously,r = 0 is a trivial solution of ¢.13. In casep, # 0, this is the only solution
locally available. In what follows, let us consider the case= 0. We solve .13 on an
open interval7 of parameters assuming that’ € 7.

THEOREM4.1.Let(t,2%) € 7 x RUF™mHn 20 = (50 40 40) be a root of f (t°, 2°) =
0. Letdim Ker £, (t°,2°) = 1; thatis, letdu € R™, ||du| = 1, dv € R, ||6v|| = 1, be such
that(4.1) holds. Assume that

(4.17) 0r =0, ¢, = %(6u)TA’(tO)UO + %(uO)TA'(tO)év,
(4.18) orr # 0.

For ¢,,, see(A.4). Let A = A(t) be smooth, i.eA € C¥(J,R!*™*+"). Then there exists
an open subinterval C 7 containingt’ and a unique function € Z — x(t) € R*m+n,
xr € C¥(Z,RM*™*m) such thatf (¢, z(t)) = 0 for all t € Z with z(t°) = 2.

Proof. By virtue of the factorization4.13 we have to solve(r, &) = 0 for 7 and€. The
assumption4.18 makes it possible to apply the Implicit Function Theoremrial analytic
functions [LO]. O



ETNA
Kent State University
http://etna.math.kent.edu

78 D. JANOVSKA AND V. JANOVSKY

In order to introduce required terminology, let us brieflyiesv Singularity Theory 3,
Chapter 6]. Le(t?,2°) € R x R1*™*" pe a root off, i.e., f(t°,2°) = 0; see 8.6) in this
particular context. If this roott’, 2°) satisfies the assumptions of Theor8riQ then we
say that it is aegular root If not, then(t°, 2°) is said to be &ingular root In other words,
(t°, 29) is asingular pointof the mappingf : R x R*m+n — Rl+mtn,

In Section4.1we have already mentioned thedimensiorf a singular point. Theorem
4.1classifiexzodim = 1 singular points. The codimension is not the only aspect®tthassi-
fication. In Theorend.1we require the equalityd(17) and the inequality4.18. The former
condition is called thaefining conditiorand the latter one is theondegeneracy condition
The number of defining conditions is called tbedimensionTheoren¥.1 deals with a sin-
gular point ofcodim = 1. The next item of the classification list, namely, a singylaint
of codim = 2, would be defined by the conditiogs = ¢, = 0 and the nondegeneracy
conditiony.,,, # 0, etc.

With some abuse of language, we note the following:

REMARK 4.2. Equation3.7) defines a path of parameter dependsémgular valueand
corresponding left/right singular vectors. Theresirgyular pointson this path. One of them
could be classified arank = 1, codim = 1 singular point. This particular poirft®, 2°),
20 = (s, u%, v0), is related to a nonsimple (multiple) singular vakie

PROPOSITION4.3. Let the assumptions of Theorehi be satisfied. Lett’, 2°) be a
singular point off of corank = 1 andcodim = 1. Letdu € R™, ||oul]| = 1, Jv € R",
|6v|| = 1, span the kerngl.1). Then the pointt®, y°) € R x R+ 0 = (0 §u, §v),
is also a singular point of of corank = 1 andcodim = 1. Moreover, the Taylor expansion
at (t°,y") can be obtained from that at the poift, 2°), i.e., from(4.13, (4.14—(4.16).
More precisely, let the coefficients of the Taylor expansioit’, 4°) be marked by tilde, i.e.,

e, Bra Pers Pers 262(0,0), and 222 (0,0). Then

agi
(4.19) Or =7, Per = —Per, Prr=Prr
and
S g

4.20 = == —20.0)=-.--=0
(4.20) Pe = Pee a7 ) :

i & As
forj=1,2,....

Proof. The statement concerning the singularity(#&t y°) follows from the properties
of the kernel of 8.4). The formulae 4.19—-(4.21) can be readily verified. Hence, the classi-
fication of (%, y°) follows from the assumptiong (17 and ¢.18. O

As mentioned in Sectiofi, the paper 13] contains a detailed analysis of non-generic
points on the path. It was noted thag[ attempts to trackll singular values, i.e., to construct
the path of2(¢), U (¢) andV (¢); see (.1). Nevertheless, on the analytical level, one can speak
about paths of singular valueg(t) andsy ().

REMARK 4.4. In [13, Section 3], the author investigates “simple cross ovehepiaths.”
He proposed a set of defining conditions for this phenomeNewnertheless, he does not re-
solve this systenexplicitly. It is intuitively clear that this “simple cross over of thatps”
should be the singular point treated in Theor&rh In our analysis, we can point out com-
putable constantg\(2) and (A.4) to decide about the case.
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4.3. Example. We consider 13, Example 2]; see alsdlp, Example 1]. LetA(t) =
U)St)U(t), t € R, where

S(t) = diag (0.5+t,2 —t,1 —t,t),

a(t) sit) 0 0o 0 0 0]fo 0o o 0
U(t) — —Sl(t) Cl(t) 0 0 0 Cg(t) Sg(t) 0 0 0 0 0
(t) = 0 0 0 0|0 —s2(t) ca(t) Of |0 O  c3(t) s3(t)|’

0 0 0 0/|0 o0 0 0| [0 0 —ss(t) es(t)

with ¢1 () = cos(t), s1(t) = sin(t), ca(t) = cos(1+t), s2(t) = sin(1+t), c3(t) = cos(2+t),
s3(t) = sin(2 + t). There are five singular points of all pathstat 0.25,0.5,0.75,1, 1.5.
These are manifested as “simple cross over of the pathsimpfs cross overs” (in terms of
[13]) related to particular pairs of paths; see Figdrgon the left. Note that if = 1.5, then
s1(t) = —s2(t) = 0.5. Due to Remarld.5, eithers; (¢) or s2(t) is nonsimple (actually, both
of them are nonsimple).

We are able to continugeparatebranches of singular values and left/right singular vec-
tors. Let us set = 0.1, compute the classical SVD of(t) = U(t)X(¢)V ()T and initial-
ize the continuation atss(t), Us(t), V3(t)), which are the third singular value and the third
columns ofU(¢) and V' (t) att = 0.1. We actually continue a curve iR x R1*4+4. In
Figure4.1land Figuret.2 s(t) andvs(t) are depicted in green. On this curve there are just
two singular points, one at= 0.25 and the other at= 0.75.

Let us perform an asymptotic analysis of the former pointintyshe notation of Theo-
rem4.1,

t? = 0.25, 5% = 0.7500,
u® = [0.9689; —0.2474; 0.0000; —0.0000] , v? = [0.9689;0.0780; —0.1475; 0.1827] ,
du = [—0.1475; —0.5776; —0.1981; —0.7781], dv = [0; —0.9490; —0.1981;0.2453].

The leading Taylor coefficients ¢f(r, &) andAs(r, &) are

orr = —1.6871, ¢y =1,
As; =1, Ase; =0, Asyr=-1.2751x1075.

Similarly, we can compute the leading coefficients¥f(7, £) € R* andAwv(r, ¢) € R%.

Neglecting quadratic terms id (13, (4.14—(4.16, we get a local approximation of the
green branch being parameterizedsyin particular, we set = —0.1 : 0.05 : 0.15 (regu-
larly spaced points on the interviah0.1, 0.15] with increment0.05) and mark the resulting
points by black diamonds; see the zooms in Figufeand Figuret.2. Due to Propositiod.3,
we can get an asymptotic expansion of the blue branch for free

5. Anunfolding. Let

f R x RUF™HR R 5 RIFmAN,
teR, z=(s,u,v) ER' xR™ xR", ¢€R+— f(t,z,e)cRF™",

—su+ (A(t) +eZ(t))v
(5.1) ft,z,e) = | (A(t) +eZ(t))Tu— sv
uTu+ovTv -2

The mapping%.1) is an example of annfoldingof the mappingd.6). It is required that
f(t,z,0) via (5.1) complies withf (¢, z) via (3.6), which is obvious. For a fixed value ef
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FIGURE 4.1. Branches of singular values; (¢), . .., s4(t) in red, blue, green, and yellow as functionstof
Zoomed: The singular point, marked as square, on the greandbr The approximations via asymptotic analysis
are marked by diamonds.

"blue" “yellow"
it yellow” blue s Y

FIGURE4.2.Red, blue, green, and yellow branches of the ninth solutinponent, i.eys = v4(t). Zoomed:
The relevant asymptotic analysis of the green branch.

we consider the equation
(52) f(t,l',&) = 01 T = (Sa U,U),

fort € R andz € R'*™*+", The unfolding may also model amperfectionof the original
mappingy (¢, x).

Let (t°,2°,0) be a singular point of the above Let this point satisfy the assumptions
of Theorem4.1 Our aim is to study solutions 05(2) for a small fixeck.

5.1. Dimensional reduction revisited. We adapt the dimensional reduction from Sec-
tion 4.1to the unfolding 6.1). Let us fix vectorsB € R1T™+n O € R*F™" Find¢ € R,
T €R, e € R, Az € R**™* andyp € R such that

(5.3) Ft°+7,2° + Az,e) + pB =0,
(5.4) ct Az =¢.

Under the assumptiont(5), the solutionsy and Az of (5.3 and 6.4) can be locally
parameterized by, &, ande, i.e.,

(5.5) o =p(1,&,6) €R, Az = Ax(r,& ) € RIFT™
Using the same argument as in Sectiofy we conclude that

(5.6) f+ 72" + Az(r,€,¢), ) =0

if and only if

(5.7) o(1,€,e) =0
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for smallr, ¢ ande.

The aim is to compute Taylor expansions of the functigts &, ec) andAx(r, &, €) at
the origin in order to approximate solutions & 1) and 6£.6). In AppendixA, we list the
relevant Taylor coefficients up to second order. The bonggs chosen as in(12).

5.2. Imperfect bifurcation. Consider the expansions

(5.8) o(1,§,¢) =T (cpT + %%T T+ Qer 6)

1
+e | e+ Pee 5 + ©re T+ 5(,055 e | + h.o.t.

and
(5.9) As(1,€,e) =7 (AST + %ASTT T+ Axer 5)
1
+ e (Asa + Asec &+ Asp e T+ §Asag 6) + h.o.t.,
1 L g, 1 2
(5.10) Au(r,€,e) =Au, 7+ §5u§ — g &+ EAUTTT + Augr ET
+ e (Au8 + Augc &+ Aure 7+ %Auga 5) + h.o.t.,
1 L g2, 1 2
(5.11) Av(T, &, €) =Av, T+ 551}5 —gY &+ §AUTTT + Avgr &7

1
+ e (AUE + Ave E+ Avpe T+ §Avga 5) + h.o.t..

The h.o.t. are of third order.
Instead of §.7), we solve théruncatedbifurcation equation

(5.12) T (% + %%T T+ @er 5) +e <905 + e+ preT+ %%s a> =0
for £ andr and fixedz. If p¢. # 0, the solutions to§.12) can be parameterized by

Hence, given a small value of we computel = £(7) as a solution of the truncated
bifurcation equationg.12). Then we substitute this pair, £(7)) into thetruncatedversion
of (5.9—(5.11). We get an approximation of the root d&f.().

Let us consider the functior2(1) from Section2 and set = 0.1. In Figure2.2, in fact,
the solution sets ofy(2) are depicted, namely, the solution components— x4 (t) = s(t),
t — x4(t) = v1(t) andt — z5(t) = va(t) as—0.5 < ¢t < 0.5, for both red and blue
branches. In FigurB.1, there are zooms of both red and blue branches showing théosol
components — s(t), on the left, and the components— v, (¢), on the right. These
solutions were computed numerically via path-followingesSectior8.2. Approximations
via (5.12 and the truncated versions ¢&.9)—(5.11) are marked by red and blue diamonds.
They are reasonably accurate for small

5.3. Example continued.Let us consideri(t) as in Examplet.3 We model an imper-
fection 6.1), n = m = 4. In particular, we set

1.0 -0.7 03 -06
0.9 0.3 —-0.7 0.8
0.1 04 -0.3 9.0
—0.6 0.1 0.7 —0.5
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-01 -005 0 005 01 015 02 025 -01 -0.05 ) 0.05 01

FIGURE 5.1. Analysis of motivating example from Sectigre = 0.1: zooms of both red and blue branches,
namely, the solution componerits— s(¢), t — wv1(t), compared with results of the truncated approximation
marked by diamonds.

-05 -05 "yellow"

-1 -1
02 04 06 08 1 12 14 16 18 2 02 04 06 08 1 12 14 16 18 2
t

FIGURE5.2. Example from Sectiof.3 ¢ = —0.1: Four perturbed branches of the analytic SMD-— s(t).
On the left: An illustration of the adaptive step length.

We compute solutions oB(2) for ¢t > 0.1.

In Figure 5.2, there are four solution branches, namely, the first four maments of
s parameterized by, 0.1 < t < 2, colored by red, blue, green, and yellow. The initial
conditions of these branches are the perturbations of tti@l iconditions from Examplé.3.
Observe that the blue branch is close to the red one, and ¢ea granch to the yellow one
fort ~ 1.5 andt = 0.5, respectively.

We should have in mind our motivation, as illustrated in Fe11and Figure2.2. The

simple cross over branchimpgenerateto a touching of different branches Iik# . As far

as the left/right singular vector paths are concerned, mgmEtion implies twisting.

Coming back to the perturbed Example3, namely, to the continuation of the blue and
the green branches, we observed twists of left/right sengegctors fort =~ 1.5 andt ~ 0.5,
respectively. In Figur&.3, on the left, the(u,, u2)-solution components of the blue and red
branches are shown nelarz 1.5. The particular components twist. Similarly, in Figire,
on the right, we depict théus, us3)-solution components of the green and yellow branches as
t ~ 0.5. Again, there is a twist. Note that a similar observationlsamade as the blue and
green branches nearly touch forz 0.25.

Comparing Figurel.1 and Figure5.2, we conclude that the global branching scenario
may change dramatically under a perturbation.

6. Conclusions.We introduced a new path-following technique to follow slegingu-
lar values and the corresponding left/right singular vectdVe investigated singularities on
the path; namely, we classified a singularity witirank = 1 andcodim = 1. This singu-
larity is related to “simple cross overs” (in terms df3). We also studied this singularity
subject to a perturbation (an imperfection).
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FIGURE 5.3. The solution components. Left: The blue and red branches ferl.5. Right: The green and
yellow branches fot ~ 0.5.

FIGURE 6.1.Branches of singular values; (t), . .., s10(t) as functions 06 < ¢ < 0.4. The branchesg (t)
and s7(t) are in magenta and cyan. They cross on the left while they tdemes on the right. For the zoom, see
Figure 6.2,

These investigations try to support the claim that the af@mtioned path-following tech-
nique works generically. Consider the homotofyl() again. Let us compute the path of
the ten largest singular values using MATCONSJ. [The result is summarized in Figuéel
The pathsss(t) ands7(t) intersect on the left. The Continuer was run under a defaslt p
rameter settingIhitStepsize = 0.01, MinStepsize = 10~°, MaxStepsize = 0.1).

If we increase the precision (settifqitStepsize = 0.001, MinStepsize = 107°
MaxStepsize = 0.01) the relevant branches do not intersect, as shown in FigLiren
the right. Figures.2 shows zooms of the mentioned branches computed with d€éauthe
left) and the increased (on the right) precisions. The figurthe left suggests that the “cross-
ing” is a numerical artifact. We refer to the magenta cune, the numerically computed
branchsg(t). The cyan branchz(¢) (not shown there) exhibits similar zig-zag oscillations.
The dotted cyan line is a trimmed curyg(t) with removed oscillations.

Generically, parameter-dependent singular values dohmenige the ordering except if
they change the sign. In a forthcoming paper we will invegggero singular values subject
to perturbations.

Appendix A. Details of Taylor expansions.

We review leading terms of the expansionslQ), (4.149—(4.16, and the imperfect ver-
sions 6.9), (5.9—(5.11).

Note that the computation of these terms follows a routingrchule procedure indi-
cated at the end of Sectighl. We take advantage of the structurefgfand higher partial
differentials of f.
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FIGURE 6.2.Zooms: The crossing of the branchegt¢) and s7(¢), shown in magenta and cyan, on the left of
Figure 6.1is actually a numerical artifact. If the precision is incieed, then the numerically computed branches do
not cross.

The Taylor coefficients depend on the following daté:, v°, 6u®, §v°, A(t), A'(t),
A”(t) and higher derivatives od(t), and onZ (t), Z'(t) and higher derivatives of (¢). Note
thatZ(t) is related to the unfoldings(1).

Concerning (4.13:

e 2P0 gy, i
(A2) r = —5 ()T A0 — 2 ()T A()ov,
(A3) per = (W) AR — ()" A()60)
(A4) orr = —% ((6u)T A" ()00 + (u®)T A" (£0)60)
— ((6u)" A" (%) Avr + (Au,)TA'(t%)6v)
where
Aur| _ L0 oy [ AE0)°
(A.5) [AUT] =-M"(t",s") [Al(tO)TuO ;
M(t°, s%) is defined in 8.4).
Concerning (4.14—(4.16:
(A.6) Asg =0, Aug = %51;, Avg = %51},
, A - A’ tO 0
(A.7) As, = (u")T A (1), [AZT} = -M*(t% ") |:A/(1(50)TUUO:| ,
_ 1 Augr| 140 oy [ A(°)0v
(A8) ASET = —5()07-, |:A’Uf7—:| = —5./\/1 (t y S ) |:AI(tO)T§u )

o Au55 o 1 uo
(Ag) ASgg = O, [A’l}55:| = —— |: ol >
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(A.10) Asrr = ()T A" (%)% + ()T A (t°) Av, + (Au, )T A (1°)0°,

A// (tO),UO
A// (tO)T’uO
A (t%)v,
A (t9T u,

_Q(UO)TA/(tO)UO (/\/l*(to, 80))2 {

A TT
{AZTT] = MU
_2M+(t0780) [

A/(tO),UO
A (tO)Tu0:| )

A
A.11 Aseee =0, fﬂ =0.
(A.11) gce [Av&f

Moreover,

J
(A.12) A35:A555:---:68—?;(0,0):...---:0, j=12,....

REMARK A.1. The formulaeA.1) and (A.12) can be verified by induction.
Concerning (5.9—(5.11:

(A.13) oo = —% ((6u)T Z(10° + ()T Z(t)60) ,
(A.14) pee = 5 (W) Z(E0 — (5u) Z()50),
(A.15) pee = —(5u)T Z (1) Av. — (Auc)TZ(t)ov,
(A.16) pre = = ((6u)" A'(t°) Ave + (5v)" (A'(t°)" Aue)

1
2
2 ()T 20 + (50) (2(1)) )
1

~3 ((6u)"Z(t") Av, + (5v)T(Z(tO))TAuT) ,

whereAuw., Av, are defined byA.5),

Au, _ Z(tO),UO
(A.17) [AUJ = - M*(ts°) |:ZT(tO)’UJO:| .
(A.18) As. = ()T Z(t9)2°,
(A.19) As¢e = i (W)TZ(t%)6v + (5u)" Z(t")°) ,
Aug.| 1 Z(t%)6v
(n.20) o R CRDI A
(A.21) As,e = uO)T A (1) Av, + (0°)T (A (#°))" Au,)

1
B ((
+% ((5u)TZ(t0)AvT + (vO)T(Z(tO))TAuT) + ()T Z/ (t9)0°,
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w22 | = -ares | SRR |- s | G
+As, M* (0, 5% [iZj + Asc M (10, 5%) [iiﬂ
M| )T
(A.23) As.c = ()T Z(t°) Ave + (Au)T Z(t°)°,
(A.24) ﬁ:ﬁ} — 2As. M (10, ) [ﬁﬂ — oM, 5°) [( ZZ(EE(;%%ZZJ .
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