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CONVERGENCE OF V-CYCLE AND F-CYCLE MULTIGRID METHODS FOR
THE BIHARMONIC PROBLEM USING THE MORLEY ELEMENT

�
JIE ZHAO

�
Abstract. Multigrid V-cycle and F-cycle algorithms for the biharmonic problem using the Morley element are

studied in this paper. We show that the contraction numbers can be uniformly improved by increasing the number of
smoothing steps.
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1. Introduction. Let ������� be a bounded polygonal domain. Consider the follow-
ing variational problem for the biharmonic equation with homogeneous Dirichlet boundary
conditions: Find 	�
��
���� ��� such that

(1.1) � � 	���������� � ����� �!
"� ���� ���#�
where

� � 	�������� $&%(' � 	
) ' � �+*-,
).� $�% �/021 3547698 �:	8 , 0 8 , 3<; 8 �#�8 , 0 8 , 3 *=,>�
and ��
��@? � � ���A�CB �D�� � ���FEHGJI

The elliptic regularity of the biharmonic equation (cf. [17], [18]) implies that there existsK 
 � 6� �ML#E such that the solution 	 of (1.1) belongs to � �5N7O � ���APQ� �� � ��� whenever �R
�S?T�5N>O � ��� and

(1.2) UV	�U:WYXFZ=[�\ %^]+_a` % U:�bU#Wdc-XJZe[&\ %^] �
where

` %
depends only on the shape of �fI

The problem (1.1) can be solved numerically using the Bogner-Fox-Schmit element (cf.
[4]), the Argyris element (cf. [1]), the Hsieh-Clough-Tocher element (cf. [16]), the Morley
element (cf. [24]) and the incomplete biquadratic element (cf. [27]). In this paper we will
concentrate on the Morley element, which is the simplest among all the finite element meth-
ods for the biharmonic problem. But of course, the analysis of the Morley element is more
complicated.

Multigrid methods for the Morley element, which is nonconforming, have been studied
in [8], [9], [10], [20], [26], [25] and [28]. It was shown in [10] that the W-cycle multigrid
method converges uniformly if the number of smoothing steps is large enough and that the
symmetric variable V-cycle algorithm is an optimal preconditioner, without assuming full
elliptic regularity.

In [11] and [13], an additive theory was developed to study the asymptotic behavior, with
respect to the number of smoothing steps, of the contraction numbers of V-cycle and F-cycle
methods for conforming and nonconforming finite elements for second order problems, with-
out assuming full elliptic regularity. In this paper we will apply this theory to the biharmonicg
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problem. We use the Morley element to illustrate the theory, which can also be applied to
other elements (cf. [33]).

Let ��� 1 � be the contraction number of the � -th level symmetric V-cycle algorithm with� pre-smoothing and � post-smoothing steps. Our main result states that, there exists a
constant

` � independent of � and � � such that

��� 1 � _ `
� O�� � for �
	�� � �

where the positive integer � � is also independent of �TI A similar result also holds for the
F-cycle algorithm.

The rest of the paper is organized as follows. We discuss the Morley element and its
relation with the Hsieh-Clough-Tocher element in Section 2. The relation is important for the
analysis of the multigrid methods. We describe multigrid V-cycle and F-cycle algorithms in
Section 3. In Section 4 we discuss mesh dependent norms and their properties. Some known
results concerning the additive theory are summarized in Section 5. Convergence analysis is
then carried out in Section 6. Numerical results are presented in Section 7.

2. The Morley element and the Hsieh-Clough-Tocher element. The Morley finite
element is defined on a triangle. Its shape functions are quadratic polynomials on the triangle.
Its nodal variables include the evaluations of the shape functions at the vertices of the triangles
and the evaluations of the normal derivatives at the midpoints of the edges of the triangles (cf.
Figure 2.1(a)).

� 
 




 



 


�

� �
� �
�
� �

�
�� �

�

� ���

�� 
 




 



 


��

� �
� �
�
� �

��

�� �

�

� ���

� � � � �

��
���

����

(a) Morley (b) H-C-T

FIG. 2.1. The Morley element and the H-C-T element

The Hsieh-Clough-Tocher macro element is also defined on a triangle. The shape func-
tions are those

` 6
functions on the triangle whose restriction to each smaller triangle formed

by connecting the centroid and two vertices of the triangle is a cubic polynomial. The nodal
variables include the evaluations of the shape functions at the vertices of the triangle, the
evaluations of the gradients at the vertices and of the normal derivatives at the midpoints of
the edges of the triangle (cf. Figure 2.1(b)).

Since the shape functions and the nodal variables of the Morley element are also shape
functions and nodal variables of the Hsieh-Clough-Tocher element, we call the Hsieh-Clough-
Tocher element a “relative” of the Morley element (cf. [10]).

Let ����������� 6 be a family of triangulations of �f� where � � N 6 is obtained by connecting
the midpoints of the edges of the triangles in � � . We denote the mesh size of �!� by "#���$&%�' � diam ( ))(�
*���+�=I Note that

(2.1) "#� ? 6 �-,�" �eI
Let . � be the Morley finite element space associated with � ��I Then � 
/.#� if and only if

it has the following three properties:
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1. ���<� � � � is a quadratic polynomial for all ( 
/� � ,
2. � is continuous at the vertices of � � and vanishes at the vertices along 8 � ,
3. The normal derivative 8 ��� 8 � is continuous at the midpoints of interelement bound-

aries and vanishes at the midpoints along 8 � .
Note that the Morley finite element spaces are nonconforming (i.e., . ���� �D�� � ��� ) and
nonnested (i.e., .#� ? 6 �� . � ).

Let �. � be the Hsieh-Clough-Tocher macro element space associated with � � . Then a
function ��

	�. � is

` 6
on �f� its restriction to each ( 
 � � is a piecewise cubic polynomial

function, and its nodal values along 8 � are zero. Note that �. � � �D�� � ��� (i.e., conforming).
We now discuss the relation between the Morley space and the Hsieh-Clough-Tocher

space. We can define an operator 
 �<)�.#����
��.#��I For each �"
 .#��� the function 
 � �"
��.#�
is defined as follows. For any internal vertex � and internal midpoint � �� 
 � ��� � � �A� � � � �#�

8 � 
 � ���8 � � � ��� 8 �8 � �
� �#�� 8 � � 
 � ���5� � � �A� average of � 8 � � 0 � � � �V�

where �
� ��� �:L � or � L=� � �#� and � 0 � � � ��� for ( 0 with � as a vertex.
We can also define an operator � �!)��.#����
 .#� as follows. For each ��"
��.#����� � �� is the

function in .#� satisfying

� � � ��&� � �T��� �� � �T� and 8 � � � ����8 � � � �A� 8 ��8 � �
� �

for every internal vertex � and midpoint � of � � I
The operators 
 � and � � satisfy the following two properties (cf. [10]):

� � � 
 � �"!=* � �(2.2) U#� � �� U%$ X \
%^] & U ���U%$ X \

%^]
and U#� � �� U('%) & � �� � W X \

% ] � ��!
*�.#���(2.3)

where !e* � is the identity operator on . � �
(2.4) U#�TU ' ) � � � � � �5��� 6 � � � �<
"� �� � ���,+�. � �
and the bilinear form � � � ; � ; � on �D�� � ���,+�. � is defined by

��� � 	7�5���+) � /�,-/. ) $ � ' � 	D) ' � �Y*=,>I
Note that the constructions of 
 � and � � and the properties (2.2) and (2.3) rely on the fact

that the Morley element and the Hsieh-Clough-Tocher element are relatives. These operators
are important for the multigrid analysis (cf. Lemmas 4.2 and 4.3).

We now define the Morley element method and the modified Morley element method for
(1.1).

If � � ���Y�10 %32 �+*-, for a function

2 
54 � � ���V� then the Morley finite element method for
(1.1) is: Find 	 � 
*. � such that

(2.5) ��� � 	����5���A� $ % 2 �A*=, �T�<
*.#��I
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In the case where �Q

�@? � � ���V� the modified Morley finite element method for (1.1) is:
Find 	TG � 
*. � such that

(2.6) ��� � 	 G � ��������� � 
 � ��� � � 
/.#��I
The properties of these methods are discussed in [10]. The results of this paper can be

applied to both of these methods.

3. V-cycle and F-cycle Multigrid methods. In this section we describe the V-cycle and
F-cycle multigrid methods for the Morley finite element.

Let the discrete inner product � ; � ; � � on .#� be defined by

(3.1) � � 6 ��� � � � ) � " � � �� /� -�� ) � � �T� � 6 � � � � � � � � + /� -�� ) � $ � 8 � 68 � *	��
 � $ � 8 � �8 � *���
�
�D�
where � � is the set of internal vertices of �!������� is the set of internal edges of � � and � � �T���6��� (the number of triangles sharing the node � as a vertex). We can represent the bilinear
form ��� � ; � ; � by the operator � � )�.#� ��
 . � defined by

(3.2) � � � � 6 �5� � � �(� ��� � � 6 ��� � � � � 6 �5� � 
 . ��I
Then equations (2.5) and (2.6) can both be rewritten as

(3.3) � � 	��(� 2 ���
where

2
�S
-.#� is defined by � 2 ���5��� �
� 0

% 2 �Y*=, for all � 
 .#� for the standard Morley
method, and � 2 � ����� � ��� � 
 � ��� for all � 
*. � for the modified Morley method.

In order to describe multigrid methods, we need to define the intergrid transfer operators.
We first define ! �� ? 6 ) . � ? 6 � 
 . � � the coarse-to-fine intergrid transfer operator. The
properties of this operator can be found in [9].

Let � 
*. � ? 6 . We define ! �� ? 6 �!
 . � by an averaging technique as follows:
1. If � is an internal vertex of � � , then

(3.4) � ! �� ? 6 ��� � � �A� L� � � 1 � ? 6 � /� -������ ) c	� ��� � � �#�
where

� � 1 � ? 6 ) � ��(�
/��� ? 6 )%��
 8 ( � .2. If � is an internal edge of �!� , which means that � � 8 ( 6 P 8 ( � for some ( 6 � ( � 
 ��� ,
then

(3.5)
$ � 8 � ! �� ? 6 ���8 � *��f� L

,
� $ � 8 � � �8 � *	� + $ � 8 � � X8 � *���
@I

We can then define the fine-to-coarse operator ! � ? 6� )�. � ��
 . � ? 6 and the nonconform-
ing Ritz “projection” operator  � ? 6� )�. � ��
 .#� ? 6 as follows:� ! �� ? 6 � �"! � � � � � � ! � ? 6� ! � � ? 6 � �<
*. � ? 6 �#!R
 . � �� � � ! �� ? 6 � �#! �A� � � ? 6 � � �" � ? 6� ! � � �<
*. � ? 6 �#!R
 . � I

Symmetric V-cycle Multigrid Method (cf. [5], [8], [14], [22], [19], [30] and [32]). The
symmetric V-cycle multigrid algorithm is an iterative solver for equations of the form (3.3).
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Given �"
 . � and an initial guess � � 
 . � , the output ��� � � �����T��� � � � � of the algorithm is
an approximate solution for the equation

(3.6) � ��� ��� �
where � is the number of pre-smoothing and post-smoothing steps.

For �<�RL-� we define

��� � � L-�	� �
� � � � �A� � ? 66 � I
For � 	 , , we obtain ��� � � �T���T��� � � � � in three steps.

1. (Pre-Smoothing) For � � L-� ,&� ;M;:; � � , compute � 3 by

� 3 ��� 3 ? 6 + L
 � � � � � � � 3 ? 6 �V�
where


 � is a constant dominating the spectral radius of � ��I
2. (Coarse Grid Correction) Compute � � N 6 by

� � N 6 ��� � + ! �� ? 6 ��� � � � �aL-� ! � ? 6� � � � � � � � �#� � � � �VI
3. (Post-Smoothing) For � � � +�,�� ;:;M; � , � + L , compute � 3 by

� 3 ��� 3 ? 6 + L
 � � � � � ��� 3 ? 6 �VI
Finally we set ��� � � �T���T��� � � � � to be � � � N 6 .
In this algorithm we use Richardson relaxation as the smoother for simplicity. Other

smoothers can also be used (cf. [2], [6] and [12]).

F-cycle Multigrid Method (cf. [23], [32], and [30]). The � -th level F-cycle algo-
rithm (associated with the symmetric V-cycle algorithm) produces an approximate solution
����� � �T���T��� � � � � for (3.6). For � �CL-� we define

��� � � L-���T��� � � � ��� � ? 66 �TI
For � 	 , , we obtain ����� � �T�	� �
� � � � � in three steps.

1. (Pre-Smoothing) For � � L-� ,&� ;M;:; � � , compute � 3 by

� 3 ��� 3 ? 6 + L
 � � � � � ��� 3 ? 6 �VI
2. (Coarse Grid Correction) Compute � � N �X and � � N 6 by

� � N �X ����� � � � �aL-� ! � ? 6� � � � � ��� � �V� � � � �V�
� � N 6 ��� � + ! � ? 6� ��� � � � �aL-� ! � ? 6� � � � � � � � �V�
� � N �X � � �VI

3. (Post-Smoothing) For � � � +�,�� ;:;M; � , � + L , compute � 3 by

� 3 ��� 3 ? 6 + L
 � � � � � ��� 3 ? 6 �VI
Finally we set ����� � �T�	� �
� � � � � to be � � � N 6 .
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4. Mesh Dependent Norms. One of the main tools for the convergence analysis of
multigrid methods is the mesh-dependent norm

� � � ; � � ��� 1 � (cf. [3]). For each �!
 . � we define

(4.1)
� � � � � � � � 1 � � � � � � �5�� � ����� ��I

It is easy to see that � � � � � � � �� 1 � � � � �5��� � � �!
*. ���(4.2) � � � � � � � � 1 � � U#�TU '%) & " ? �� U#�TU#$ X \
%^] �T�!
/. � I(4.3)

To avoid the proliferation of constants we use two notations
&

and � . The statement� &��
means that � is bounded by

�
multiplied by a constant which is independent of

mesh sizes, mesh levels and all arguments in � and
� � and ��� � means � &��

as well as� & � I
We can also easily see that (cf. [3] and [10])� � � � � � � � 1 � & "�� ? �� � � � � � � � � 1 � where �

_
	+_ � _�� I(4.4)

The following smoothing properties of 
 � can also be easily verified (cf. [19] and [14])
: � � � 
 � � � � � � 1 � _ � � � � � � � � 1 � � �<
 .#��� � 
 �+�(4.5) � � � 
 �� � � � � � 1 � & " \ � ? �

]
� � \ � ? �

]
��� � � � � � � � � 1 � � �<
 .#��� ��� 	 � � � � �(4.6)

where 
 � �1!e* � � 
 ? 6� � � I
The following lemmas relate the mesh-dependent norms with the Sobolev norms.
LEMMA 4.1. The following relation holds:

(4.7)
� � � � � � � � 1 ��� UV��U%$ X \

%^] � �!
*.#��I
Proof. Let �( be a triangle with

� �( ��� L-I Then, for all quadratic polynomials � on �( � we
have

(4.8) U#�TU �$ X \���
] � �/ 0 4�6 � � � 0 � � + �/ 0 4�6 � $ � � 8 �8 � *�� 


� I
Using a scaling argument on (4.8), and by definition (3.1) of the inner product � ; � ; � � , we have

(4.9) � � ����� � � UV��U �$ X \
%^] � �<
 .#��I

The lemma follows from (4.2) and (4.9).
LEMMA 4.2. Let 
 � ) .#�"� 
 �. � be the operator defined in Section , . Then, the

following relation holds:

(4.10)
� 
 � � � W � \ %^] � � � � � � � � 6V1 � � �<
 .#��I

Proof. It is known from [10] that the operator 
 � is a bounded operator from � . ��� U ;U%$ X \
%^] � to � 4 � � ���V� U ; U%$ X \

%^] �#� and from � .#��� U ; U('%) � to � �D�� � ���V� � ; � W+X#\
% ] � , i.e.,

(4.11) U#
 � �TU#$ X \
% ] & UV��U%$ X \

%^] � � 
/.#���
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or equivalently

(4.12) U%
 � ��U%$ X \
%^] & � � � � � � � � 1 � � �!
*. �

and

(4.13)
� 
 � � � W X \ %^] & U#�TU('%) �T�!
*. ���

or equivalently

(4.14)
� 
 � � � W X \ % ] & � � � � � � � � 1 � � �<
 .#��I

By interpolations of Sobolev spaces and Hilbert scales(cf. [5] and [29]), we have

(4.15)
� 
 � � � W � \ % ] & � � � � � � � 6V1 � � �<
 .#��I

Conversely, let � ��) 4 � � ��� � 
 �.#� be the 4 � projection operator on �.#��� i.e., for each� 
54 � � ���V� the function � � � 
*�. � satisfies� � � � � ��&� $ X \
%^] � � � � ��&� $ X \

%^] � ��<
 �. � I
It is known that (cf. [7]) U�� � � U%$ X \

% ] & U � U%$ X \
%^] � � 
54 � � ���V�(4.16) � � � � � W X \ % ] & � � � W X \ %^] � � 
"� �� � ���#I(4.17)

We define �+� )�4 � � ��� � 
 .#� by ���(�"� ��� �eI Then from (2.3), (4.16) and (4.17) we have� � � ��� � � � � � 1 � � U%� ��� � � U%$ X \
%^] & U�� � � U#$ X \

%^] & U � U%$ X \
%^] � � 
 4 � � ���#�� � � ��� � � � � � 1 � � U%� ��� � � U#'%) & � � � � � W X \ %^] & � � � W X \ %^] � � 
�� �� � ���#I

By interpolations of Sobolev spaces and Hilbert scales, we have

(4.18)
� � � �+� � � � � 6V1 � & � � � W � \ % ] � � 
�� 6� � ���VI

For each �!
*.#��� we have 
 � �!
 �� ��I Then, by (2.2) and the definition of � �e� we have

(4.19) �+� 
 � � � � ��� ��
 � � �"� ��
 � � � � I
From equations (4.18) and (4.19) we have� � � � � � � 6V1 � � � � � � � 
 � � � � � 6 1 � & � 
 � � � W X \ %^] � �<
 . � I

LEMMA 4.3. The following relation holds:

(4.20)
/�,-/. ) � � � �W � \ �

] � � � � � � � � � 6V1 � � �!
*.#��I
Proof. It is known that (cf. (E) of [10])

(4.21) UV�3� 
 � �TU#$ X \
%^] & " � � UV��U#'#) �T�<
*.#��I
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From (2.4), (4.4), Lemma 4.2, (4.21) and a standard inverse estimate (cf. [14], [15]) we have/� -/. ) � � � �W � \ �
] _ /� -/. ) � � � � 
 � � � W � \ �

]
+ � 
 � � � W � \ � ] � �

& /� -/. ) � � � 
 � � � �W �V\ �
]
+ /� -/. ) � 
 � � � �W��#\ �

]
& " ?T�� U#�3� 
 � �TU �$ X \

%^]
+ � 
 � � � �W��V\ %^]& /� -/. ) " � � � � � �W+XM\ �

]
+ � 
 � � � �W � \ %^]

& " � � � � � � � � � �� 1 � + � 
 � � � �W��#\ % ] & � � � � � � � � 6V1 �
for all �!
 .#��I

Conversely from Lemma 4.2, (4.21) and a standard inverse estimate we have

� � � � � � � � 6V1 � & � 
 � � � �W � \ %^] � /� -/. ) � 
 � � � �W � \ �
]

_ /�,-/. ) � � � � 
 � � � W � \ �
]
+ � � � W � \ � ] � �

& /�,-/. ) � � � 
 � � � �W � \ �
]
+ /�,-/. ) � � � �W � \ �

]
& " ? �� UV�3� 
 � ��U �$ X \

%^]
+ /� -/. ) � � � �W � \ �

]
& " � � UV��U � ' ) + /� -/. ) � � � �W��V\ �

]
& /�,-/. ) � � � �W � \ �

]
for all �!
 .#��I

5. Some known results for the additive theory. Let � � 1 � ) .#� ��
 . � be the error
propagation operator of the symmetric V-cycle algorithm applied to the equation (3.6), i.e.,

� � 1 � � � � � � ����� � ��� � � �T�	� �
� � � � �V�
where � is the exact solution of (3.6). The following relations (cf. [5] and [19]) are well-
known:

� � 1 � � 
 �� B � !e* � � ! �� ? 6  � ? 6� � + ! �� ? 6 � � ? 6V1 �  � ? 6� E 
 �� for � 	 ,��(5.1)

� 6V1 � � � I(5.2)

From (5.1) and (5.2) the following additive expression for � � 1 � can be derived that is the
starting point of the additive theory (cf. [13]):

� � 1 � � �/354 � 

�� ! �� ? 6 ;:;:; 
 �3 N 6 ! 3 N 63 
 �3 � !e* 3 � ! 33 ? 6  3 ? 63 � 
 �3(5.3) �  33 N 6 
 �3 N 6 ;M;:;  � ? 6� 
 �� I
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Let �� � 1 � )��. � ��
 �. � be the error propagation operator of the symmetric F-cycle algo-
rithm applied to the equation (3.6), i.e.,

�� � 1 � � � � � � ����� � ��� � � �T�	� �
� � � � �V�
where � is the exact solution of (3.6). The following relations are also well-known (cf. [30]):

�� 6 1 � � � �(5.4)

�� � 1 � � 
 �� B � !e*+� � ! �� ? 6  � ? 6� �,+ ! �� ? 6 � � ? 6 1 � �� � ? 6 1 �  � ? 6� E 
 �� � � 	 ,�I(5.5)

An additive theory for the convergence analysis of V-cycle and F-cycle multigrid algo-
rithms is developed in [13] based on the expressions (5.3) � (5.5). It is shown there that, to
complete the convergence analysis, we only need to verify the following assumptions.

Assumptions on .#� : � � �5��� � � U#�TU �$ X \
% ] � �!
*.#���UV��U '%) & " ? �� UV��U%$ X \

%^] � �!
*. � I
Assumptions on ! �� ? 6 and  � ? 6� :

� � � ! �� ? 6 � � � � �� 1 �
_ � L +�� � � � � � � � � � �� 1 � ? 6 +

` 6 � ?T� " � O� � � � � � � � ��5N>O 1 � ? 6 � �<
 . � ? 6 ��� 
 ��� �ML �#�� � � ! �� ? 6 � � � � ��#?�O 1 �
_ � L +�� � � � � � � � � � ��#?�O 1 � ? 6 +

`
� � ?T� " � O� � � � � � � � �� 1 � ? 6 � �<
 . � ? 6 ��� 
 ��� �ML �#�� � �  � ? 6� � � � � ��#?�O 1 � ? 6

_ � L +�� � � � � � � � � � ��#?�O 1 � +
`
� � ?T� " � O� � � � � � � � �� 1 � � �<
 . � ��� 
 ��� �ML �#I

Assumptions on ! �� ? 6  � ? 6� and  � ? 6� ! �� ? 6 :� � � � !e*�� � ! �� ? 6  � ? 6� � � � � � �#?�O 1 � & " � O� � � � � � � � � N>O 1 � � �!
*. �&�� � � � !e*�� ? 6 �  � ? 6� ! �� ? 6 � � � � � �#?�O 1 � ? 6 & " O� � � � � � � � � 1 � ? 6 � �!
*. �&I
It is also shown in [13] that these assumptions can be verified for a specific nonconform-

ing multigrid method by the use of the following framework.
First, we should establish a relation between the nonconforming finite element space . �

and its conforming relative �. � I In addition to (2.2) and (2.3), the two spaces are also assumed
to satisfy the following properties, which have been established in [10].

Let
� 
"�D� N>O � ��� P �D�� � ���V� � � 
*. � and

� � ? 6 
 . � ? 6 be related by� � � � 
 � ����� �+� � � ���5��� � �<
*. �&�� � � � 
 � ? 6 ����� �+� ? 6 � � � ? 6 �5����� �<
*. � ? 6 I
Then the following estimates hold: U � � � �&U('%) & " O� U � U#W XJZe[ \ %^] �(5.6) � � � � � � � � � � � � �:?TO 1 � & " � O� U � U W XFZe[ \ % ] �(5.7) � � � � � ? 6 �  � ? 6� � � � � � �:?TO 1 � ? 6 & " � O� U � U WYXFZe[�\ % ] �(5.8)
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where K is the index of elliptic regularity in (1.2) and
� � )��D�� � ��� � 
 . � is the Morley

interpolation operator defined as follows. For each
� 
 � �� � ���V� the function

� � � 
 . �
satisfies

(5.9) � � � ��� � � �A� � � � � and
$ � 8 � � � ���8 � *�� � $ � 8 �8 � *��=�where � and � range over the internal vertices and edges of �#��I

Secondly, we need the following estimates concerning ! �� ? 6 and
� � , which have also

been established in [10] : � � � ! �� ? 6 � � � � � 1 � & � � � � � � � � 1 � ? 6 �T�<
/. � ? 6 � �
_ � _ ,��(5.10) U � � � � � U%$ X \

% ] & " � � � � � W X \ %^] � � 
�� �� � ���#�(5.11) U � � � � � U ' ) & " O� U � U#W+XJZe[ � � 
�� � N>O � ��� P � �� � ���V�(5.12) � � � � � � � ! �� ? 6 � � ? 6 � � � � �#?�O 1 � & " � O� U � U W XFZ=[ \ %^] � � 
�� � N>O � ��� P � �� � ���VI(5.13)

Finally, the following new estimates are required for relating mesh-dependent norms
between two consecutive levels. First of all, we have

(5.14)
� � � ! �� ? 6 � � � � �� 1 �

_ � L + � � � � � � � � � � �� 1 � ? 6 +
` � � ? � " � O� � � � � � � � � O 1 � ? 6 � �<
*. �&� �<
 � � �:L �V�

where the positive constant

` � is mesh-independent. Moreover, the operator
� � ? 6 can be

extended to map � �� � ��� + . � to . � ? 6 (see the next section for details) and we haveU � � ? 6 ��U#'#) & UV��U#'%) � �<
�� �� � ���,+�. ���(5.15) U � � ? 6 � �Q��U%$ X \
% ] & " � � U#�TU('%) � �<
 . ���(5.16)

(5.17)
� � � � � ? 6 � � � � �� 1 � ? 6

_ � L + � � � � � � � � � � �� 1 � + ` G� � ? � " � O� � � � � � � � � O 1 � � �<
 . ��� � 
 � � �ML �V�
where the positive constant

` G� is mesh-independent.
The theory in [13] can be applied to V-cycle and F-cycle multigrid methods using the

Morley element once we have (2.2), (2.3), (5.6) � (5.8) and (5.10) � (5.17).
We will establish the new estimates (5.14) � (5.17) in the next section and complete the

convergence analysis.

6. Convergence Analysis. We first extend the definition of
� � to a larger space. In fact,

the definition (5.9) can be extended to �
�� � ���,+�. � +�. � N 6 I
Let �a
 �D�� � ��� + . � + . � N 6 I First of all, the value � � � � is well-defined for � 
 � ��I

Secondly, the integral 0 � ������ *�� is also well-defined for �D
 �!�eI In particular, if � 
 .#� N 6 �
then

(6.1)
$ � 8 �8 � *�� �

$ � � 8 �8 � *	� +
$ � X 8 �8 � *	�

where � 6 � � � 
 � � N 6 with � � � 6�� � � (cf. Figure 6.1). Therefore the linear operator� � is well-defined from the larger space � �� � ��� + . � + . � N 6 into . � I In particular,
� � )�D�� � ���,+�. � � 
 . � and

� � ? 6 )-�D�� � ���,+�. � � 
 . � ? 6 are both well-defined.
Before we prove the estimates (5.14) � (5.17), we give two lemmas.
LEMMA 6.1. The following estimate holds:

(6.2) UV� � � � ��U%$ X \
%^]
+�" � � U � � ��U#'#) & " � � UV��U#'%) � �<
"� �� � ���,+�. �&I
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FIG. 6.1. An edge �����	��
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Proof. Let ( 
 �!��� � 
S�D� � ( � and the quadratic polynomial
� � � on ( be the Morley

nodal interpolant of
�
, i.e.,

(6.3) � � � � � � � 0 �A� � � � 0 � and
$ � � 8 � � � � �8 � *	�f� $ � � 8 �8 � *��=�

for ��� L-�), and �&� where � 6 � � � and � � are the vertices of ( � and � 6 � � � and � � are the edges
of ( I It is well-known that (cf. [14] and [15])

(6.4) U � � � � � U%$ X \ �
]
+�" � � � � � � � WYXM\ � ] & " � � � � � WYX:\ � ] I

Let � 
 � �� � ���,+�. � and ( 
 � � I Then ��� 
 � � � ( � and
� � � � � ����� on ( I Therefore

(6.5) UV� � � � ��U%$ X \ �
]
+�" � � � � � � � W+X:\ � ] & " � � � � � WYXM\ � ] I

The estimate (6.2) holds because (6.5) is valid for all ( 
/�!��I
LEMMA 6.2. The following equality holds:

(6.6)
� � ? 6 � � � � � � ? 6 � �T�!
 � �� � ��� + . � I

Proof. Let �D
 �D�� � ��� +�.#� be arbitrary. The functions
� � ? 6 � � � and

� � ? 6 � are both
in .#� ? 6 I Moreover, we have � � � ? 6 � � ��� � � �A� � � � ? 6 ��� � �T�
for all ��
 � � ? 6 � and$ � 8 � � � ? 6 � � ���8 � *��f� $ � � 8 � � � ���8 � *�� + $ � X 8 � � � ���8 � *��

� $ � � 8 �8 � *	� +
$ � X 8 �8 � *��� $ � 8 �8 � *�� �
$ � 8 � � � ? 6 ���8 � *	�

for all �(
 � � ? 6 � where � 6 � � � 
 � � with � � � 6 � � � (cf. Figure 6.1). Therefore
� � ? 6 � � � �� � ? 6 � I

LEMMA 6.3. The estimate � 5.16 � holds. That is,U � � ? 6 �3�Q��U%$ X \
% ] & " � � UV��U#'%) � �<
*. �&I
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FIG. 6.2. A reference triangle 
� divided into 4 triangles 
� �
� 
� � � 
� � and 
� �

Proof. Let ( 
 � � ? 6 be divided into 4 triangles ( 6 � ( � � ( � and ( � in � � and �( �
( � " � ? 6 I Then

� �( � � L (cf. Figure 6.2).
For each �@
 .#��� define �� � �,�� ��� � "#� ? 6 �,�� for �, 
 �((I Note that �, 
 �( if and only if

" � ? 6 �,�
 ( I If ! � � � ? 6 � � then we define �� � ? 6 �� to be �! I
Let . � �(d� be the Morley finite element space associated with �( 6 � �( � � �( � and �( � I Note that

. � �(d� is the space of functions �� 
 4 � � �(d� such that �� ���� � is a quadratic polynomial on �( 0 for
��� L=�!,�� � and

�
, �� is continuous at � 6 ��� � and � � � and 8 ���� 8 � is continuous at � 6 � � � and� � I We can see that . � �(d� is a finite dimensional linear space and

U ���U � � � �/ 0 476 � �� � �W+X:\ �� �
]�� 6 � �

defines a norm on the quotient space . � �(d� �  6 � �( � , where  6 � �(d� is the space of linear func-
tions on �((I On the other hand,

� ��
 U �� � ? 6 �� � ���U $ X \ ��
]

defines a semi-norm on . � �(d� �  6 � �(f�VI Therefore

(6.7) U �� � ? 6 �� � ��TU $ X \ ��
] & � �/ 0 476 � �� � �W X \ ����

]�� 6 � � I
A scaling argument on (6.7) yields

(6.8) U � � ? 6 � �Q��U%$ X \ �
] & " � � � �/ 0 476 � � � �W X \ ���

] � 6 � � I
The estimate (5.16) follows.

LEMMA 6.4. The estimate � 5.15 � holds. That is,

U � � ? 6 ��U#'%) & UV��U#'%) � �<
�� �� � ���,+�. ��I
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Proof. From (6.2), (6.6), Lemma 6.3 and an inverse estimate we have that, for all � 
�D�� � ���,+�. � � U � � ? 6 ��U '%) � U � � ? 6 � � ��U '%)_ U � � ? 6 � � �3� � � �TU '%) + U � � ��U '%)& " ?T�� U � � ? 6 � � � � � � ��U%$ X \
%^]
+�U � � �TU('%)& U � � ��U '#) & UV��U '%) I

Before we prove the estimates (5.14) and (5.17), we state an elementary inequality:

(6.9) � � +��#� � _ � L + � � � � � + � L +�� ? � ��� � �T� ���d
 �+� � 
 ��� �:L �VI
In the rest of the section, we use

`
for a mesh-independent constant. The values of

`
at

different appearances are not necessarily identical.
LEMMA 6.5. The estimate � 5.14 � holds. That is,

(6.10)
� � � ! �� ? 6 � � � � �� 1 �

_ � L + � � � � � � � � � � �� 1 � ? 6 +
`
� ?T� " � O� � � � � � � � � O 1 � ? 6

for all �!
 .#� ? 6 and � 
 ��� �:L �#I
Proof. Let � 
/.#� ? 6 be arbitrary and !��"! �� ? 6 � . Then by (3.1) we have

(6.11)
� � � ! �� ? 6 � � � � �� 1 � � � ! �#! � � � " � � �� /� -�� ) � � �T� ! � � � � + /� -�� ) � $ � 8 !8 � *�� 
 � 
�

and

(6.12)
� � � � � � � �� 1 � ? 6 � " � � �� /� -�� ) c	� � � �T� � � �T� � + /� -�� ) c	� � $ � 8 �8 � *	��


� 
� �
where � � �T�+� � � � � ��� and

� � is the set of triangles sharing � as a common vertex. Note that� � �T� is independent of �TI
If � 
 � � ? 6 , then the value � � � � is well-defined, i.e., � � � �T� ��� � � � �T� ��� � �T� for all

( 
 ��� ? 6 sharing � as a common vertex. From (3.4) in the definition of ! �� ? 6 we have! � � � � � � �T� . If � 
 � ��� � � ? 6 . Then � is the midpoint of some �

 �!� ? 6 , which is the
common edge of two triangles (d� (fG 
 ��� ? 6 (cf. Figure 6.3). After subdivision, � is the
common vertex of � triangles in �!� and therefore � � �T��� L=I Hence we can write

(6.13)
/� -�� ) � � �T� ! � � � � � /� -�� ) c	� � � � � � � � � � + /� -�� )	� � ) c	� ! � � � � I

Suppose � 6 and � � are the endpoints of � (cf. Figure 6.3). We have! � � � � � 
 L
, � ��� � �T� +@����� � � ����
 � _ L

, � ��� � � ��� � + L
, � ����� � � ��� � I(6.14)

Then from (6.9) we can writeL
, � ��� � � ��� � � L

, B � � � 6 � + � ��� � � � �Q� � � 6 ��� E �_ L
, � L +�� � � � � � 6 � � +

`
� ?T� B ��� � � � �S� � � 6 �FE � I
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FIG. 6.3. A vertex � ��� ����� ��

�

Note that the Mean-Value Theorem and a standard inverse estimate imply thatB ��� � � � � � � � 6 �FE � _ � ��� � 6 � � U�� �TU �$
	 \ � ] _ ` � � � �W �#\ � ] I
Therefore we have

(6.15)
L
, � � � � �T��� �

_ L
, � L +�� � � � � � 6 � � +

`
� ? � � � � �W��#\ � ] �

and similarly

(6.16)
L
, � � � � � �T��� �

_ L
, � L +�� � � � � � � � � +

`
� ? � � � � �W � \ � � ] I

Thus from (6.14), (6.15), and (6.16) we have

(6.17) ! � � � � _ L
, � L +�� � �#B � � � 6 � � + � � � � � � E +

`
� ? � B � � � �W � \ � ] + � � � �W �V\ � � ] EFI

Taking summation of (6.17) over ��
 � � � � � ? 6 gives/� -�� ) � � ) c	� ! � � � �
_ L
, � L +�� � � /� -�� ) c	� � � � � � � � � � +

`
� ?T� /�,-/. ) c	� � � � �W��#\ �

]
� � � L +�� � � /� -�� ) c	� � � � � � � � � � +

`
� ? � /�,-/. ) c	� � � � �W��#\ �

] I
Therefore it follows from (6.13) that

(6.18)
/� -�� ) � � �T� ! � � � �

_
� � L +�� � � /� -�� ) c	� � � � � � � � � � +
`
� ? � /�,-/. ) c	� � � � �W �V\ �

] I
By the definition of ! �� ? 6 (cf. (3.5)), we have/� -�� ) � $ � 8 !8 � *���
 � _a` /�,-/. )

� $
� � 8 � �8 � *���
 � I(6.19)

From the Mean-Value Theorem and a standard inverse estimate we have

(6.20)

� $
� � 8 � �8 � *���
 � _ � 8 ( � � U�� ��U �$ 	d\ �

] _ ` � � � �W �#\ � ]
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for all ( 
/� � . Therefore from (6.19) and (6.20) we have

(6.21)
/� -�� ) � $ � 8 !8 � *	� 
 � _ ` /� -/. ) c	� � � � �W �#\ �

] I
By (2.1), (4.4), Lemma 4.3, (6.11), (6.12), (6.18) and (6.21), we have� � � ! �� ? 6 � � � � �� 1 �_
" � � �� � � L +�� � � /� -�� ) c	� � � � � � � � � � +

`
� ? � /�,-/. ) c	� � � � �W��#\ �

]
+
` /�,-/. ) c	� � � � �W��V\ �

] 
�_ � L +�� � � " � � ? 6 /� -�� ) c	� � � � � � � � � � +
`
� ?T� " � � /� -/. ) c	� � � � �W � \ �

]
_ � L +�� � � � � � � � � � �� 1 � ? 6 +

`
� ?T� " � � � � � � � � � � 6V1 � ? 6_ � L +�� � � � � � � � � � �� 1 � ? 6 +

`
� ?T� " � O� � � � � � � � � O 1 � ? 6 I

LEMMA 6.6. The estimate � 5.17 � holds. That is,

(6.22)
� � � � � ? 6 � � � � �� 1 � ? 6

_ � L +�� � � � � � � � � � �� 1 � + `
� ?T� " � O� � � � � � � � � O 1 �

for all �!
 .#� and � 
 ��� �:L �#I
Proof. Let �"
 .#� be arbitrary. It is easy to see from (3.1) that

� � � � � � � �� 1 � can be expressed
as follows:

(6.23)
� � � � � � � �� 1 � � " � � �� L� /�,-/. ) /� -�� � � � � � � + /� -�� ) � $ � 8 �8 � *���


� 
� �
where � � is the set of the vertices of the triangle ( I

Let !�� � � ? 6 � I Then

(6.24)
� � � ! � � � �� 1 � ? 6 � " � � ? 6

�� L� /� -/. ) c	� /� -�� � ! � � � � + /� -�� ) c	� � $ � 8 !8 � *���
 � 
�DI
By the definition (5.9) of

� � ? 6 and (6.1), we have ! � �T�A� � � �T� for all ��
 � � ? 6 and� $ � 8 !8 � *	��
 � � � $ � � 8 �8 � *�� +
$ � X 8 �8 � *���


�_
,
� $ � � 8 �8 � *���


� +�,
� $ � X 8 �8 � *���


�
for all � 
 � � ? 6 , where � 6 � � � 
 � � with �f� � 6 � � � (cf. Figure 6.1). Therefore

(6.25)
� � � � � ? 6 � � � � �� 1 � ? 6

_
" � � ? 6� /� -/. ) c	� /� -�� � � � �T� � +

`
" � � /� -�� ) � $ � 8 �8 � *�� 


� I
Let ( 
 ��� ? 6 be divided into four triangles ( 6 � ( � � ( � and ( � in ����� whose vertices are

labeled as in Figure 6.4. Then we have
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FIG. 6.4. A Triangle

� � � � 
 � divided into four triangles in � �
.

� /� -�� � � � �T� � � �/ 0 476 � � � 0 � � + � �/ 0 476 B � � � 0 � + � � � � 0 � �Q� � � 0 �5�FE �_ �/ 0 476 � � � 0 � � + � �/ 0 476 B � L + � � � � � � 0 � � + � L +�� ? � � � � � � 0 � � � � � 0 ��� � E(6.26) _ � L +�� � � �/ 0 476 /� -�� � � � � �T� � +
`
� ?T� �/ 0 476 � � � �W � \ � � ] I

From (2.1) and (6.26) we have

(6.27) " � � ? 6 /� -�� � � � � � �
_ � L + � � � " � � �/ 0 476 /� -�� � � � � � � � +

`
� ?T� " � � �/ 0 476 � � � �W �#\ � � ] I

Summing up over all ( 
 �!� ? 6 gives

" � � ? 6 /� -/. ) c	� /� -�� � � � �T� �(6.28) _
" � � � L + � � � /�,-/. ) /� -�� � � � � � � +

`
� ?T� " � � /� -/. ) � � � �W��V\ �

] I
Using a similar argument as in (6.19) � (6.21) we have

(6.29)
/� -�� ) � $ � 8 �8 � *	��


� _ ` /� -/. ) � � � �W � \ �
] I

Therefore from (4.4), Lemma 4.3, (6.23), (6.25), (6.28) and (6.29) we have

� � � � � ? 6 � � � � �� 1 � ? 6
_
"^� � ? 6� /�,-/. ) c	� /� -�� � � � � � � +

`
" � � /� -�� ) � $ � 8 �8 � *	� 


�_
"^� �� � L +�� � � /� -/. ) /� -�� � � � � � � +

`
� ? � " � � /�,-/. ) � � � �W �V\ �

]
_ � L +�� � � � � � � � � � �� 1 � + `

� ?T� " � � � � � � � � � � 6V1 �_ � L +�� � � � � � � � � � �� 1 � + `
� ?T� " � O� � � � � � � � � O 1 � I
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(b) L-shaped domain

FIG. 7.1. The triangulation � � for ����� �

We have proved the required estimates (5.14) � (5.17) in Lemmas 6.3–6.6. The following
theorems are then established by the additive theory (cf. [13]).

THEOREM 6.7. There exist a positive constant

`
and a positive integer � � � both inde-

pendent of �T� such that for all � 	 � � and � � 
*. � ,

(6.30) U � � ��� � � �T�	� �
� � � � �:U('%) _a`
� ?TO��5� U � � � � U('%)e�

where � is the exact solution of � 3.6 � .
THEOREM 6.8. There exist a positive constant

`
and a positive integer � � � both inde-

pendent of �T� such that for all � 	 � � and � � 
*. � ,

(6.31) U � � ��� � � �T���T��� � � � �:U#'#) _ `
� ?�O�� � U � � � � U#'%)e�

where � is the exact solution of � 3.6 � .
7. Numerical Experiments. In this section we present some experimental results to

illustrate Theorem 6.7 and Theorem 6.8.
First, let � be the unit square ��� �:L � � ��� �:L � (cf. Figure 7.1(a)). Since the domain �

is convex, we have full elliptic regularity, i.e., the index K in (1.2) is L=I Let ��� 1 � be the
contraction number of the � th level V-cycle iteration with � pre-smoothing and � post-
smoothing steps. According to Theorem 6.7, there is a constant

` � independent of � and � �
such that

(7.1) � 6 � � ��� 1 � _ ` I
The numerical results in Table 7.1 are consistent with (7.1). In fact, they seem to indicate that
`

could be some number less than 10, and that (7.1) is valid for � 	�� � I
� 6 � � � � 1 � m=20 m=30 m=40 m=50 m=60 m=70 m=80
k=3 1.1347 1.0005 0.9075 0.8251 0.7454 0.6683 0.5948
k=4 1.5547 2.2969 2.1645 2.0767 2.0067 1.9455 1.8904
k=5 3.9972 3.5275 3.3043 3.1722 3.0803 3.0009 2.9491
k=6 5.3075 4.5923 4.2589 4.0665 3.9393 3.8459 3.7726
k=7 6.4352 5.4653 5.0207 4.7645 4.5984 4.4800 4.3898
k=8 7.3727 6.1637 5.6143 5.2982 5.0953 4.9528 4.8459

TABLE 7.1
V-cycle results on the unit square
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REMARK 7.1. Note that the condition number of the operator � � (cf. (3.2) and (4.3)) is
of order " ? �� while the condition number for second order problems is of order " ? �� I Therefore
the effect of � smoothing steps for fourth order problems is equivalent to the effect of � �
smoothing steps for second order problems.

The key to the improvement of the performance of multigrid methods for fourth order
problems is in the design of new smoothing operators. Besides [2], [6] and [12], there are
also some new composite relaxation schemes that may also apply (cf. [21]).

Let ���� 1 � be the contraction number of the � th level F-cycle iteration with � pre-
smoothing and � post-smoothing steps. According to Theorem 6.8, there is a constant

` �
independent of � and � � such that

(7.2) � 6 � � ���� 1 �
_ ` I

The numerical results in Table 7.2 are consistent with (7.2) and seem to indicate that

` � ,
and (7.2) is valid as long as � 	 L � I

� 6 � � �� � 1 � m=10 m=11 m=12 m=13 m=14 m=15 m=16
k=3 1.2132 1.1890 1.1706 1.1524 1.1364 1.1231 1.1071
k=4 1.4359 1.4037 1.3764 1.4097 1.3907 1.3838 1.4097
k=5 1.4310 1.3909 1.4163 1.4140 1.4030 1.4000 1.3933
k=6 1.4057 1.4041 1.3989 1.4017 1.3924 1.3908 1.3905
k=7 1.7918 1.3958 1.4035 1.3841 1.3756 1.3949 1.3759
k=8 5.4706 3.5578 2.4361 1.7541 1.3662 1.3775 1.3700

TABLE 7.2
F-cycle results on the unit square

In the case of the L-shaped domain (cf. Figure 7.1(b)), the index of elliptic regularity isK � � � I � � � � � ��� � � � I Numerical results for V-cycle and F-cycle algorithms are reported in
Table 3 and Table 4, which are also consistent with (7.1) and (7.2).

� O�� � � � � 1 � m=30 m=40 m=50 m=60 m=70 m=80 m=90
k=3 0.2237 0.1404 0.0879 0.0546 0.0337 0.0208 0.0127
k=4 0.9099 0.7905 0.7137 0.6597 0.6173 0.6833 0.5561
k=5 1.5698 1.3924 1.2888 1.2124 1.1605 1.1192 1.0877
k=6 2.1111 1.8776 1.7316 1.6282 1.5592 1.5073 1.4635
k=7 2.5752 2.2753 2.0991 1.9814 1.8938 1.8276 1.7715
k=8 2.9648 2.6232 2.4243 2.2913 2.1894 2.1138 2.0517

TABLE 7.3
V-cycle results on an L-shaped domain

REMARK 7.2. Even though the asymptotic convergence rate for both algorithms is� � � ?TO�� � �#� the performance of the F-cycle algorithm is clearly superior, as demonstrated
by the numerical results in Table 7.5 and Table 7.6. Similar results also hold for the L-shaped
domain.

Compared with the W-cycle algorithm, the contraction numbers for F-cycle are larger
for small numbers of smoothing steps. In Table 7.7, the contraction numbers of W-cycle



ETNA
Kent State University 
etna@mcs.kent.edu

130 Jie Zhao

� O � �5� �� � 1 � m=11 m=12 m=13 m=14 m=15 m=16 m=17
k=3 0.5550 0.5266 0.5006 0.4762 0.4532 0.4313 0.4112
k=4 0.8529 0.8459 0.8126 0.8080 0.7965 0.7858 0.7743
k=5 0.8274 0.8092 0.7942 0.7701 0.7646 0.7303 0.7341
k=6 0.8134 0.7958 0.7830 0.7627 0.7515 0.7391 0.7192
k=7 0.8205 0.8038 0.7894 0.7759 0.7601 0.7381 0.7246
k=8 2.0406 1.4087 1.0198 0.7749 0.7449 0.7264 0.7140

TABLE 7.4
F-cycle results on an L-shaped domain

algorithm are given for �
_

�
_

� I In general F-cycle algorithm diverges for these � ’s.
However, for larger � (say, for � 	 L � ), the contraction numbers for both algorithms are
almost the same, and sometimes the F-cycle algorithm is even better (cf. Table 7.6 and Table
7.8). Considering the fact that the cost for W-cycle is higher, we could say that the F-cycle
algorithm is even more efficient then the W-cycle algorithm for � between 11 and 16.

It would be interesting to find a theoretical explanation for the superior performance of
the F-cycle algorithm (see also [31]).

� � 1 � m=34 m=35 m=36 m=37 m=38 m=39 m=40 m=41
k=3 0.1648 0.1609 0.1571 0.1535 0.1500 0.1467 0.1435 0.1404
k=4 0.3834 0.3756 0.3683 0.3613 0.3546 0.3483 0.3422 0.3365
k=5 0.5869 0.5746 0.5630 0.5521 0.5417 0.5318 0.5225 0.5135
k=6 0.7605 0.7438 0.7281 0.7133 0.6993 0.6860 0.6734 0.6614
k=7 0.9014 0.8807 0.8613 0.8430 0.8257 0.8093 0.7935 0.7791
k=8 1.0128 0.9887 0.9667 0.9448 0.9247 0.9057 0.8877 0.8707

TABLE 7.5
Contraction numbers for V-cycle algorithms on the unit square

�� � 1 � m=11 m=12 m=13 m=14 m=15 m=16
k=3 0.3580 0.3379 0.3196 0.3037 0.2900 0.2768
k=4 0.4232 0.3973 0.3910 0.3717 0.3573 0.3524
k=5 0.4194 0.4089 0.3922 0.3750 0.3615 0.3483
k=6 0.4234 0.4038 0.3888 0.3721 0.3591 0.3476
k=7 0.4208 0.4051 0.3839 0.3677 0.3602 0.3440
k=8 1.0727 0.7032 0.4865 0.3651 0.3557 0.3425

TABLE 7.6
Contraction numbers for F-cycle algorithms on the unit square
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� � 1 � 1 � m=3 m=4 m=5 m=6 k=7 m=8
k=3 0.7260 0.6620 0.5922 0.5313 0.4883 0.4245
k=4 0.7628 0.7005 0.6294 0.5787 0.5323 0.4898
k=5 0.8499 0.7477 0.6505 0.5743 0.5348 0.4988
k=6 0.8926 0.7673 0.6660 0.5850 0.5445 0.4990
k=7 0.9349 0.8051 0.6544 0.5874 0.5384 0.5003
k=8 0.9334 0.8214 0.6747 0.5856 0.5362 0.5009

TABLE 7.7
Contraction numbers for W-cycle algorithms on the unit square

� � 1 � 1 � m=11 m=12 m=13 m=14 m=15 m=16
k=4 0.4250 0.4113 0.3943 0.3790 0.3660 0.3473
k=5 0.4288 0.4078 0.3958 0.3774 0.3670 0.3558
k=6 0.4296 0.4137 0.3957 0.3803 0.3642 0.3553
k=7 0.4285 0.4117 0.3954 0.3817 0.3667 0.3546

TABLE 7.8
Contraction numbers for W-cycle algorithms for large � ’s.
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